首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FLP "recombinase" of the 2-micron circle yeast plasmid can resolve synthetic FLP site-Holliday junctions. Mutants of the FLP protein that are blocked in recombination but are normal in substrate cleavage can also mediate resolution. The products of resolution by these mutants are almost exclusively nicked molecules with a protein-bound 3' end. There is no significant asymmetry in strand cleavage (top versus bottom) by the mutants in linear or in circular FLP substrates; nor is there a bias in resolution (toward parentals or toward recombinants) of Holliday junctions (corresponding to top- or to bottom-strand exchange) by wild-type FLP. During normal FLP recombination, a small amount of the expected Holliday intermediate can be detected.  相似文献   

2.
3.
Escherichia coli RecA protein catalyzes reciprocal strand-exchange reactions between duplex DNA molecules, provided that one contains a single-stranded gap or tail, to form recombination intermediates containing Holliday junctions. Recombination reactions are thought to occur within helical RecA-nucleoprotein filaments in which DNA molecules are interwound. Structures generated in vitro by RecA protein have been used to detect an activity from fractionated E. coli extracts that resolves the intermediates into heteroduplex recombinant products. Resolution occurs by specific endonucleolytic cleavage at the Holliday junction. The products of cleavage are characteristic of patch and splice recombinants.  相似文献   

4.
The RuvC protein of Escherichia coli catalyzes the resolution of recombination intermediates during genetic recombination and the recombinational repair of damaged DNA. Resolution involves specific recognition of the Holliday structure to form a complex that exhibits twofold symmetry with the DNA in an open configuration. Cleavage occurs when strands of like polarity are nicked at the sequence 5'-WTT decreases S-3' (where W is A or T and S is G or C). To determine whether the cleavage site needs to be located at, or close to, the point at which DNA strands exchange partners, Holliday structures were constructed with the junction points at defined sites within this sequence. We found that the efficiency of resolution was optimal when the cleavage site was coincident with the position of DNA strand exchange. In these studies, junction targeting was achieved by incorporating uncharged methyl phosphonates into the DNA backbone, providing further evidence for the importance of charge-charge repulsions in determining DNA structure.  相似文献   

5.
6.
In yeast meiosis, crossing-over between homologues is dependent upon double-strand breaks. We demonstrate that the occurrence of these breaks is independent of pairing between homologues by showing that they occur with normal frequency, timing, and position in the absence of a homologue. This observation supports models that view double-strand breaks as initiating events and crossing-over as a consequence of repair of these breaks.  相似文献   

7.
A phage lambda-based recombination system, Red, can be used for high-efficiency mutagenesis, repair, and engineering of chromosomal or episomal DNA in vivo in Escherichia coli. When long linear double-stranded DNA with short flanking homologies to their targets are used for the recombination, the lambda Exo, Beta, and Gam proteins are required. The current model is: (i) Gam inhibits the host RecBCD activity, thereby protecting the DNA substrate for recombination; (ii) Exo degrades from each DNA end in a 5' --> 3' direction, creating double-stranded DNA with 3' single-stranded DNA tails; and (iii) Beta binds these 3' overhangs to protect and anneal them to complementary sequences. We have tested this model for Red recombination by using electroporation to introduce overlapping, complementary oligonucleotides that when annealed in vivo approximate the recombination intermediate that Exo should create. Using this technique we found Exo-independent recombination. Surprisingly, a similarly constructed substrate with 5' overhangs recombined more efficiently. This 5' overhang recombination required both Exo and Beta for high levels of recombination and the two oligonucleotides need to overlap by only 6 bp on their 3' ends. Results indicate that Exo may load Beta onto the 3' overhang it produces. In addition, multiple overlapping oligonucleotides were successfully used to generate recombinants in vivo, a technique that could prove useful for many genetic engineering procedures.  相似文献   

8.
A general model for genetic recombination.   总被引:69,自引:0,他引:69       下载免费PDF全文
A general model is proposed for genetic recombination. Its essential new feature is the hypothesis that recombination is initiated by a single-strand (or asymmetric) transfer, which may, after isomerization, become a two-strand (or symmetric) exchange. The likelihood of this transition from asymmetric to symmetric strand exchange determines certain characteristic features of recombination in any particular organism.  相似文献   

9.
OBJECTIVE: In type 1 diabetes the circulating IGF-system is altered with low IGF-I and changes in levels of IGF-binding proteins (IGFBPs) which may be of importance for the development of diabetes complications. Our aim was to study if IGF-I, as supported by experimental data in animals, can be affected by dietary protein intake. DESIGN AND METHODS: Twelve patients with type 1 diabetes, age 37.5+/-10.0 years (mean+/-SD), diabetes duration 20.1+/-9.3 years and HbA1c 6.3+/-0.6% were allocated to isocaloric diets with either low normal protein content (LNP), (10 E%; 0.9 g protein/kg body weight) or high normal protein content (HNP) (20 E%; 1.8 g protein/kg body weight) in an open randomised cross-over study. Each diet was taken for 10 days with a wash-out period of 11 days in between. Circulating levels of total and free IGF-I and -II, IGFBP-1, -2 and -3 and GH-binding protein (GHBP) as well as ghrelin were measured with validated in-house immunoassays. RESULTS: At day 10, urinary urea excretion was 320+/-75 mmol/24h during LNP diet compared with 654+/-159 mmol/24h during HNP diet (p<0.001). There were no changes in body weight or glycaemic control between the diets. Fasting levels of total IGF-I were 121+/-33 microg/L after LNP and 117+/-28 microg/L after HNP diet (ns) and the corresponding concentrations of IGFBP-1 were 142(141) and 132(157)mug/L [median (IQR)] (ns). There were no differences in plasma concentrations of total IGF-II, free IGF-I and -II, IGFBP-3, GHBP and ghrelin, whereas a small difference was found for IGFBP-2 (302+/-97 vs. 263+/-66 microg/L; LNP vs. HNP; p<0.04). CONCLUSIONS: A twofold change of the dietary protein intake does not influence the altered circulating IGF-system in type 1 diabetes. In order to affect the IGF-system other interventions must be used.  相似文献   

10.
Early folding intermediate of ribonuclease A.   总被引:10,自引:7,他引:10       下载免费PDF全文
Pulsed hydrogen exchange (2H-1H) is used to characterize the folding process of ribonuclease A (disulfide bonds intact). The results show one principal early folding intermediate (I1), which is formed rapidly after the start of folding and whose proton-exchange properties change with the time of folding. All probes that are hydrogen bonded within the beta-sheet of native ribonuclease A are protected in I1. Thus, the results suggest that the beta-sheet is formed rapidly and cooperatively. The initial protection factors of probes in the beta-sheet are between 10 and 100, but they increase with time of folding and exceed 1000 at 400 msec from the start of folding. Thus, the beta-sheet is only moderately stable when it is first formed, but subsequent events stabilize it, possibly through interactions involving hydrophobic side chains. The large protection factors of the beta-sheet probes in an early folding intermediate are unexpected and remarkable. Probes in the three alpha-helices are fewer in number and give less accurate data than the beta-strand probes. The folding kinetics expected for a simple sequential model of folding are outlined. An important difference between the observed and predicted behavior is that the early folding intermediate is not fully populated when it is first formed.  相似文献   

11.
The Holliday junction is an essential intermediate of homologous recombination. RecA of Bacteria, Rad51 of Eukarya, and RadA of Archaea are structural and functional homologs. These proteins play a pivotal role in the formation of Holliday junctions from two homologous DNA duplexes. RuvC is a specific endonuclease that resolves Holliday junctions in Bacteria. A Holliday junction-resolving activity has been found in both yeast and mammalian cells. To examine whether the paradigm of homologous recombination apply to Archaea, we assayed and found the activity to resolve a synthetic Holliday junction in crude extract of Pyrococcus furiosus cells. The gene, hjc (Holliday junction cleavage), encodes a protein composed of 123 amino acids, whose sequence is not similar to that of any proteins with known function. However, all four archaea, whose total genome sequences have been published, have the homologous genes. The purified Hjc protein cleaved the recombination intermediates formed by RecA in vitro. These results support the notion that the formation and resolution of Holliday junction is the common mechanism of homologous recombination in the three domains of life.  相似文献   

12.
A mechanism for initiation of genetic recombination.   总被引:9,自引:5,他引:4       下载免费PDF全文
A mechanism for the initiation of genetic recombination is proposed. Its key features are the pairing, nicking, and cross-annealing of palindromic loops, i.e., structures formed by DNA with sequences of inverted complementary repeats. This mechanism may provide a simple, yet specific means of producing crossed strand connections between homologous DNA duplexes to form structures which can be intermediates in the process of genetic recombination.  相似文献   

13.
14.
15.
Resolution of Holliday junctions by eukaryotic DNA topoisomerase I.   总被引:6,自引:0,他引:6       下载免费PDF全文
The Holliday junction, a key intermediate in both homologous and site-specific recombination, is generated by the reciprocal exchange of single strands between two DNA duplexes. Resolution of the junctions can occur in two directions with respect to flanking markers, either restoring the parental DNA configuration or generating a genetic crossover. Recombination can be regulated, in principle, by factors that influence the directionality of the resolution step. We demonstrate that the vaccinia virus DNA topoisomerase, a eukaryotic type I enzyme, catalyzes resolution of synthetic Holliday junctions in vitro. The mechanism entails concerted transesterifications at two recognition sites, 5'-CCCTT decreases, that are opposed within a partially mobile four-way junction. Cruciforms are resolved unidirectionally and with high efficiency into two linear duplexes. These findings suggest a model whereby type I topoisomerases may either promote or suppress genetic recombination in vivo.  相似文献   

16.
During its unidirectional unwinding of DNA, RecBCD enzyme cuts one DNA strand near a properly oriented Chi site, a hotspot of homologous genetic recombination in Escherichia coli. We report here that individual DNA molecules containing two properly oriented Chi sites were cut with about 40% efficiency at one or the other Chi site but not detectably at both Chi sites. Furthermore, initial incubation of RecBCD with Chi-containing DNA reduced its ability both to unwind DNA and to cut at Chi sites on subsequently added DNA molecules much more than did initial incubation with Chi-free DNA; the nuclease activity was less severely affected. These results imply that RecBCD loses its Chi-cutting activity upon cutting at a single Chi site and provide a mechanism for ensuring single genetic exchanges near the ends of DNA molecules.  相似文献   

17.
Genetic recombination in bacteria is facilitated by the RecA strand transfer protein and strongly depends on the homology between interacting sequences. RecA-independent recombination is detectable but occurs at extremely low frequencies and is less responsive to the extent of homology. In this article, we show that RecA-independent recombination in Escherichia coli is depressed by the redundant action of single-strand exonucleases. In the absence of multiple single-strand exonucleases, the efficiency of RecA-independent recombination events, involving either gene conversion or crossing-over, is markedly increased to levels rivaling RecA-dependent events. This finding suggests that RecA-independent recombination is not intrinsically inefficient but is limited by single-strand DNA substrate availability. Crossing-over is inhibited by exonucleases ExoI, ExoVII, ExoX, and RecJ, whereas only ExoI and RecJ abort gene-conversion events. In ExoI(-) RecJ(-) strains, gene conversion can be accomplished by transformation of short single-strand DNA oligonucleotides and is more efficient when the oligonucleotide is complementary to the lagging-strand replication template. We propose that E. coli encodes an unknown mechanism for RecA-independent recombination (independent of prophage recombination systems) that is targeted to replication forks. The potential of RecA-independent recombination to mediate exchange at short homologies suggests that it may contribute significantly to genomic change in bacteria, especially in species with reduced cellular exonuclease activity or those that encode DNA protection factors.  相似文献   

18.
At Cape Maclear on the Nankumba Peninsula, close to the southern end of Lake Malawi, Schistosoma haematobium is highly prevalent in the local people and many tourists become infected with this parasite each year. A 'Bilharzia Control Programme' was initiated in this area in August 1998, as a development collaboration between the Government of Malawi, the Danish Agency for Development Assistance (Danida), and the Danish Bilharziasis Laboratory. Although Bulinus globosus is a known host for S. haematobium, B. nyassanus has not previously been incriminated as an intermediate host. However, schistosome-infected B. nyassanus were discovered in surveys to identify transmission sites on the peninsula. Experimental infections of wild-caught B. nyassanus with S. haematobium proved successful and S. haematobium eggs were found in hamsters experimentally exposed to cercariae retrieved from schistosome-infected, field-collected B. nyassanus. These are remarkable observations since, although there are very few reports of diploid members of this species group being experimentally infected with S. haematobium, B. nyassanus is a diploid member (2n = 36) of the truncatus/tropicus group. Bulinus nyassanus is probably responsible for transmission in Lake Malawi, along rather exposed shorelines, devoid of aquatic macrophytes, with a substrate of sand or gravel.  相似文献   

19.
Transposon-specified site-specific recombination.   总被引:10,自引:1,他引:10       下载免费PDF全文
Cointegrate DNA molecules containing two copies of a transposable element appear to be intermediates in the transposition process. These structures are resolved by site-specific recombination to yield the normal end products of transposition. The transposable element gamma delta (Tn1000) synthesizes a product interchangeable with the Tn1/3tnpR protein in promoting Tn1/3 site-specific recombination. These data support the hypothesis that cointegrates containing directly repeated copies of Tn1/3 are obligatory intermediates in interreplicon transposition of Tn1/3. In addition, we show here that the reaction is independent of the element-encoded tnpA gene product. Tn501, which specifies mercury resistance, also produces cointegrates as intermediates in interreplicon transposition. The appearance of Tn501-specified recombination activity that can act on these cointegrates requires growth of cells in the presence of Hg2+.  相似文献   

20.
Ligand-regulated site-specific recombination.   总被引:11,自引:1,他引:10       下载免费PDF全文
Site-specific recombination offers a potential way to alter a living genome by design in a precise and stable manner. This potential requires strategies which can be used to regulate the recombination event. We describe a strategy to regulate FLP recombinase activity which relies on expressing FLP as a fusion protein with steroid hormone receptor ligand binding domains (LBDs). In the absence of a ligand cognate to the LBD, the recombinase activity of the fusion protein is extremely low. Upon ligand administration, recombinase activity is rapidly induced. These results outline the basis for inducible expression or disruption strategies based on inducible recombination. Additionally, we have exploited the conditional nature of FLP-LBD fusion proteins to direct integration of a plasmid into a specific genomic site at frequencies approaching the frequency of random integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号