首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study tests the hypothesis that the surface electromyographic (EMG) activity of upper airway dilators would respond to inspiratory loading in a healthy humans model of ventilator trigger asynchrony. EMG activity was measured in levator alae-nasi, genioglossus, parasternal, scalene and diaphragm muscles in eight subjects. They breathed quietly through a face mask and then were connected to a mechanical ventilator. Recordings were performed during nasal breathing against negative pressure triggers (-2.5%, -5% and -10% of maximal inspiratory pressure) and during oro-nasal breathing with a "-10% trigger". Scalene, alae-nasi and genioglossus EMG activity level increased with the "-10% trigger". While no breathing route dependence was found in scalene, the significant increase was only found for nasal breathing in alae-nasi and for oro-nasal breathing in genioglossus. The dyspnea intensity was significantly correlated with the EMG activity level of these three muscles. Surface EMG of airway dilator muscles could be used as a complementary tool to assess inspiratory drive during mechanical ventilation.  相似文献   

2.
We assessed upper airway responses to acute and chronic inspiratory loading. In Experiment I, 11 healthy subjects underwent T(2)-weighted magnetic resonance imaging (MRI) of upper airway dilator muscles (genioglossus and geniohyoid) before and up to 10 min after a single bout of pressure threshold inspiratory muscle training (IMT) at 60% maximal inspiratory mouth pressure (MIP). T(2) values for genioglossus and geniohyoid were increased versus control (p<0.001), suggesting that these airway dilator muscles are activated in response to acute IMT. In Experiment II, nine subjects underwent 2D-Flash sequence MRI of the upper airway during quiet breathing and while performing single inspirations against resistive loads (10%, 30% and 50% MIP); this procedure was repeated after 6 weeks of IMT. Lateral narrowing of the upper airway occurred at all loads, whilst anteroposterior narrowing occurred at the level of the laryngopharynx at loads > or =30% MIP. Changes in upper airway morphology and narrowing after IMT were undetectable using MRI.  相似文献   

3.
Obstructive sleep apnoea (OSA) is characterised by repetitive collapse of the upper airway during sleep owing to a sleep-related decrement in upper airway muscle activity with consequent failure of the pharyngeal dilator muscles to oppose the collapsing pressure that is generated by the diaphragm and accessory muscles during inspiration. The causes of upper airway obstruction during sleep are multi-factorial but there is evidence implicating intrinsic upper airway muscle function and impaired central regulation of the upper airway muscles in the pathophysiology of OSA. The condition is associated with episodic hypoxia due to recurrent apnoea. However, despite its obvious importance very little is known about the effects of episodic hypoxia on upper airway muscle function. In this review, we examine the evidence that chronic intermittent hypoxia can affect upper airway muscle structure and function and impair CNS control of the pharyngeal dilator muscles. We review the literature and discuss results from our laboratory showing that episodic hypoxia/asphyxia reduces upper airway muscle endurance and selectively impairs pharyngeal dilator EMG responses to physiological stimulation. Our observations lead us to speculate that episodic hypoxia--a consequence of periodic airway occlusion--is responsible for progression of OSA through impairment of the neural control systems that regulate upper airway patency and through altered respiratory muscle contractile function, leading to the establishment of a vicious cycle of further airway obstruction and hypoxic insult that chronically exacerbates and perpetuates the condition. We conclude that chronic intermittent hypoxia/asphyxia contributes to the pathophysiology of sleep-disordered breathing.  相似文献   

4.
The modulation of activity of the upper airway dilator and respiratory muscles plays a key role in the regulation of ventilation, but little is known about the link between their neuromuscular activation processes in vivo. This study investigated genioglossus and diaphragm responses to transcranial magnetic stimulation applied in different facilitatory conditions. The amplitude and latency of motor-evoked potential responses and the stimulation intensity threshold leading to a motor response (motor threshold) were recorded with stimulation applied at the vertex and anterolateral area in 13 awake normal subjects. Stimuli were applied during inspiration with and without resistance, during expiration with and without maximal tongue protrusion and during deep inspiration. In each stimulation location and condition, no diaphragmatic response was obtained without previous genioglossus activity (diaphragmatic and genioglossus responses latencies during expiration: 18.1 +/- 2.9 and 6.3 +/- 2.6 ms, respectively, mean +/- s.d., P < 0.01). Genioglossus motor-evoked potential amplitude, latency and motor threshold were significantly modified with tongue protrusion with a maximal effect observed for stimulation in the anterolateral area. Deep inspiration was associated with a significant facilitatory effect on both genioglossus and diaphragm motor responses. The facilitatory effects of respiratory and non-respiratory manoeuvres were also observed during focal stimulation where isolated genioglossus responses were observed. Genioglossus and diaphragm differed in their motor threshold both at baseline and following facilitatory manoeuvres. Conclusions: (1) transcranial magnetic stimulation-induced genioglossus response systematically precedes that of diaphragm; (2) this sequence of activation is not modified by respiratory and non-respiratory manoeuvres; and (3) the genioglossus and diaphragm are differently influenced by these manoeuvres in terms of latency of the motor response and of motor threshold.  相似文献   

5.
Obstructive sleep apnoea (OSA) is a major clinical disorder that is characterised by multiple episodes of upper airway obstruction due to failure of the upper airway dilator muscles to maintain upper airway patency. The incidence of OSA is high in many endocrine disorders including both insulin-dependent and non-insulin-dependent diabetes but the reasons for this are not known. We wished to test the hypothesis that central respiratory motor output to the upper airway muscles is preferentially impaired in a rat model of diabetes mellitus. Sternohyoid (SH) and diaphragm (DIA) EMG activities were recorded in control and streptozotocin (STZ)-induced diabetic rats during normoxia, hypoxia (7.5% O2 in N2) and asphyxia (7.5% O2 and 3% CO2) under pentobarbitone anaesthesia. SH EMG responses to acute hypoxia and asphyxia were significantly impaired in STZ-induced diabetic rats compared to control animals (+47.1 +/- 5.7 vs. +11.7 +/- 1.9% during hypoxia in control and diabetic animals respectively and +56.5 +/- 7.9 vs. +15.7 +/- 5.0% during asphyxia). However, DIA EMG responses to hypoxia and asphyxia were not different for the two groups. We propose that the higher prevalence of OSA in diabetic patients is related to preferential impairment of cranial motor output to the dilator muscles of the upper airway in response to physiological stimuli.  相似文献   

6.
The output from human inspiratory motoneurone pools   总被引:2,自引:1,他引:1  
Survival requires adequate pulmonary ventilation which, in turn, depends on adequate contraction of muscles acting on the chest wall in the presence of a patent upper airway. Bulbospinal outputs projecting directly and indirectly to 'obligatory' respiratory motoneurone pools generate the required muscle contractions. Recent studies of the phasic inspiratory output of populations of single motor units to five muscles acting on the chest wall (including the diaphragm) reveal that the time of onset, the progressive recruitment, and the amount of motoneuronal drive (expressed as firing frequency) differ among the muscles. Tonic firing with an inspiratory modulation of firing rate is common in low intercostal spaces of the parasternal and external intercostal muscles but rare in the diaphragm. A new time and frequency plot has been developed to depict the behaviour of the motoneurone populations. The magnitude of inspiratory firing of motor unit populations is linearly correlated to the mechanical advantage of the intercostal muscle region at which the motor unit activity is recorded. This represents a 'neuromechanical' principle by which the CNS controls motoneuronal output according to mechanical advantage, presumably in addition to the Henneman's size principle of motoneurone recruitment. Studies of the genioglossus, an obligatory upper airway muscle that helps maintain airway patency, reveal that it receives simultaneous inspiratory, expiratory and tonic drives even during quiet breathing. There is much to be learned about the neural drive to pools of human inspiratory and expiratory muscles, not only during respiratory tasks but also in automatic and volitional tasks, and in diseases that alter the required drive.  相似文献   

7.
Upper airway stabilizing muscles play a crucial role in the maintenance of upper airway patency. Transcranial magnetic stimulation allows the investigation of the corticomotor activation process for respiratory muscles. This technique has also been used to evaluate the genioglossus corticomotor response. The aims of this study were to characterize the response of different upper airway stabilizing muscles to focal cortical stimulation of the genioglossus. Alae nasi, genioglossus, levator palatini, palatoglossus and diaphragm motor-evoked potential responses to transcranial magnetic stimulation were recorded during expiration, tidal inspiration and deep inspiration in nine normal awake subjects. A concomitant response of the four studied upper airway muscles was observed in the majority of cortical stimuli. The response of these muscles was independent of the diaphragmatic one that was only occasionally observed. Significant positive relationships were found between alae nasi, levator palatini and palatoglossus motor-evoked potential latencies and amplitudes and the corresponding values of the genioglossus. We conclude that transcranial magnetic stimulation applied in the genioglossus area induces a concomitant motor response of upper airway stabilizing muscles with consistent changes in their motor responses during inspiratory manoeuvres.  相似文献   

8.
Upper airway patency to airflow and the occurrence of obstructive sleep apnea involve a complex interplay between pharyngeal anatomy and synergic co‐activation of peri‐pharyngeal muscles. In previous studies we observed large differences in the response to sleep‐associated flow limitation between the genioglossus and other (non‐GG) peri‐pharyngeal muscles. We hypothesized that similar differences are present also during wakefulness. In the present study we compared the response to inspiratory loading of the genioglossus electromyogram and four other peri‐pharyngeal muscles. Studies were performed in eight obstructive sleep apnea patients, seven age‐matched healthy subjects and five additional younger subjects. Electromyogram activity was evaluated over a range of negative oesophageal pressures and expressed as % of maximal electromyograms. In healthy subjects, the slope response to inspiratory loading (electromyogram/pressures) was similar for the genioglossus and non‐GG muscles studied. However, the electromyogram responses were significantly higher in the young subjects compared with older subjects. In contrast, in the obstructive sleep apnea patients, the electromyogram/pressure response of the non‐GG muscles was similar to that of the age‐matched healthy subjects, whereas the slope response of the genioglossus electromyogram was significantly higher than non‐GG muscles. We conclude that both age and the presence of obstructive sleep apnea affect the response of peri‐pharyngeal muscles to inspiratory loading. In patients with obstructive sleep apnea the genioglossus seems to compensate for mechanical disadvantages, but non‐GG muscles apparently are not included in this neuromuscular compensatory mechanism. Our current and previous findings suggest that attempts to improve obstructive sleep apnea with myofunctional therapy should put added emphasis on the training of non‐GG muscles.  相似文献   

9.
Obstructive sleep apnea (OSA) patients have elevated tonic and phasic inspiratory activity in the genioglossus and other upper airway muscles during wakefulness; this protects their upper airway from collapse. In this group, sleep-related decrements of upper airway motor tone result in sleep-related upper airway obstructions. We previously reported that in the rat, a species widely used to study the neural mechanisms of both sleep and breathing, lingual electromyographic activity (EMG) is minimal or absent during slow-wave sleep (SWS) and then gradually increases after the onset of rapid eye movement sleep (REMS) due to the appearance of large phasic bursts. Here, we investigated whether sleep–wake patterns and respiratory modulation of lingual EMG depend on the site of EMG recording within the tongue. In nine chronically instrumented rats, we recorded from 17 sites within the tongue and from the diaphragm across sleep–wake states. We quantified lingual EMG in successive 10 s intervals of continuous 2 h recordings (1–3 p.m.). We found that sleep–wake patterns of lingual EMG did not differ between the base and tip of the tongue, and that respiratory modulation was extremely rare regardless of the recording site. We also determined that the often rhythmic lingual bursts during REMS do not occur with respiratory rhythmicity. This pattern differs from that in OSA subjects who, unlike rats, have collapsible upper airway, exhibit prominent respiratory modulation of upper airway motor tone during quiet wakefulness, retain considerable tonic and inspiratory phasic activity during SWS, and show nadirs of activity during REMS.  相似文献   

10.
Postural effects on pharyngeal protective reflex mechanisms   总被引:5,自引:0,他引:5  
STUDY OBJECTIVES: Pharyngeal muscle dilators are important in obstructive sleep apnea pathogenesis because the failure of protective reflexes involving these muscles yields pharyngeal collapse. Conflicting results exist in the literature regarding the responsiveness of these muscles during stable non-rapid eye movement sleep. However, variations in posture in previous studies may have influenced these findings. We hypothesized that tongue protruder muscles are maximally responsive to negative pressure pulses during supine sleep, when posterior tongue displacement yields pharyngeal occlusion. DESIGN: We studied all subjects in the supine and lateral postures during wakefulness and stable non-rapid eye movement sleep by measuring genioglossus and tensor palatini electromyograms during basal breathing and following negative pressure pulses. SETTING: Upper-airway physiology laboratory of Sleep Medicine Division, Brigham and Women's Hospital. SUBJECTS/PARTICIPANTS: 17 normal subjects. MEASUREMENTS AND RESULTS: We observed an increase in genioglossal responsiveness to negative pressure pulses in sleep as compared to wakefulness in supine subjects (3.9 percentage of maximum [%max] +/- 1.1 vs 4.4 %max +/- 1.0) but a decrease in the lateral decubitus position (4.1 %max +/- 1.0 vs 1.5 %max +/- 0.4), the interaction effect being significant. Despite this augmented reflex, collapsibility, as measured during negative pressure pulses, increased more while subjects were in the supine position as compared with the lateral decubitus position. While the interaction between wake-sleep state and position was also significant for the tensor palatini, the effect was weaker than for genioglossus, although, for tensor palatini, baseline activity was markedly reduced during non-rapid eye movement sleep as compared with wakefulness. CONCLUSION: We conclude that body posture does have an important impact on genioglossal responsiveness to negative pressure pulses during non-rapid eye movement sleep. We speculate that this mechanism works to prevent pharyngeal occlusion when the upper airway is most vulnerable to collapse eg, during supine sleep.  相似文献   

11.
To investigate the neural mechanism of the expiratory activity of the inspiratory muscles during a cough, EMG of the respiratory muscles were recorded in anesthetized and tracheostomized dogs. A laparoscope was used to minimize injury to the abdominal muscles for implantation of the electrodes into the costal diaphragm. During the expulsive phase of a cough, the diaphragm was active in 7 of 12 dogs and the external intercostal muscle was active in 3 of 6 dogs. During a cough, the expiratory activity of the diaphragm, after the termination of its inspiratory activity, started at 52.9 +/- 24.6 ms, and that of external intercostal muscle started at 51.1 +/- 20.5 ms. The expiratory activity of the internal intercostal muscle and of the transversus abdominis started at 34.3 +/- 13.0 and 27.8 +/- 15.2 ms, respectively. The onset of expiratory activity of the inspiratory muscles is significantly later than that of expiratory muscles. Continuous activity in the expiratory muscles evoked by airway occlusion, i.e., Hering-Breuer reflex, was suppressed during the inspiratory phase of a cough, but not suppressed during the expulsive phase even when the expiratory activity of the diaphragm was observed. We concluded that the expiratory activity of inspiratory muscles is controlled independently of both expiratory activity of the expiratory muscles and inspiratory activity of the inspiratory muscles.  相似文献   

12.
H M Schotland  E K Insko  R J Schwab 《Sleep》1999,22(5):605-613
Upper airway musculature is important in the pathogenesis of obstructive sleep apnea. Electromyographic studies of patients with obstructive sleep apnea demonstrate increased activity of upper airway dilator muscles. Biopsy studies of these muscles show both adaptation and muscle injury. In this study we utilized quantitative magnetic resonance imaging to characterize changes in the upper airway musculature of patients with obstructive sleep apnea. This technique provides measurements of the T2 relaxation times of upper airway muscles (genioglossus, geniohyoid, sternohyoid/sternothyroid) spatially localized to submillimeter resolution. Our results demonstrate that the mean T2 values of genioglossus (p = 0.04) and geniohyoid (p = 0.06) differ between the apneic and control groups, while the values for the sternohyoid/sternothyroid muscles (p = 0.6) are similar between groups. In both apneics and normals respectively the T2 values for the genioglossus (p = 0.0003, 0.0001) and geniohyoid (p = 0.0054, 0.001) were significantly greater than for the sternohyoid/sternothyroid muscles. The changes observed are compatible with the hypothesis that there is increased edema and possibly increased fat content of the tongue muscles in patients with obstructive sleep apnea.  相似文献   

13.
1. The breath-by-breath augmentation of inspiratory effort in the five breaths following airway occlusion or elastic loading was assessed in anaesthetized rabbits from changes of airway pressure, diaphragm e.m.g. and lung volume.2. When the airway was occluded in animals breathing air, arterial O(2) tension fell by 20 mmHg and CO(2) tension rose by 7 mmHg within the time of the first five loaded breaths.3. Inhalation of 100% O(2) or carotid denervation markedly reduced the breath-by-breath progression but had little or no effect on the responses at the first loaded breath.4. These results indicate that the breath-by-breath augmentation of inspiratory effort following addition of a load is mainly due to asphyxial stimulation of the carotid bodies, rather than to the gradual emergence of a powerful load-compensating reflex originating in the chest-wall, as postulated by some workers.5. The small residual progression seen in animals breathing 100% O(2) or following carotid denervation was not eliminated (a) by combining these procedures or (b) by addition of gas to the lungs to prevent the progressive lung deflation which occurred during airway occlusion.6. Bilateral vagotomy, when combined with carotid denervation, abolished the residual breath-by-breath progression of inspiratory effort.  相似文献   

14.
Younes M  Park E  Horner RL 《Sleep》2007,30(4):478-488
OBJECTIVE: To determine whether certain sedatives may, by increasing arousal threshold, allow pharyngeal dilator muscle activity to increase more in response to chemical stimuli before arousal occurs. DESIGN, PARTICIPANTS AND INTERVENTIONS: Thirteen chronically instrumented rats were studied during sleep following injections of placebo or sedating doses of pentobarbital (10 mg/kg). Intermittently, inspired CO2 was increased gradually until arousal occurred. MEASUREMENTS AND RESULTS: Maximum genioglossus activity reached before arousal was higher with pentobarbital than placebo (34.5 +/- 24.3 vs 3.7 +/- 2.9mV; P < 0.001) for 2 reasons. First, genioglossus activity was greater during undisturbed sleep before CO2 was applied (23.3 +/- 15.3 vs 2.5 +/- 1.5 mV, P < 0.001). When sleep periods were long, a ramp-like increase in genioglossus activity (GG-Ramp) began and progressed until arousal. GG-Ramps developed with both placebo and pentobarbital but reached higher levels with pentobarbital due to longer sleep periods and faster increase in genioglossus activity during the ramp. GG-Ramps began when diaphragm activity was lowest and progressed despite unchanged diaphragm activity. Second, as hypothesized, the increase in genioglossus activity with CO2 before arousal was greater than with placebo (11.2 +/- 2.5 vs 1.2 +/- 2.5mV; P < 0.05) due to increased arousal threshold. In 27 of 126 CO2 challenges delivered while GG-Ramps were in progress, genioglossus activity paradoxically decreased despite increased diaphragmatic activity. These negative responses occurred randomly in 7 of 13 rats. CONCLUSIONS: In rats: 1) Sedatives may allow genioglossus activity to reach higher levels during sleep. 2) A time-dependent increase in genioglossus activity occurs during undisturbed sleep that is unrelated to chemical drive. 3) Transient hypercapnia may elicit inhibition of genioglossus activity under currently unidentified circumstances.  相似文献   

15.
STUDY OBJECTIVES: The objective was to evaluate the responsiveness of upper airway muscles to hypercapnia with and without intrapharyngeal negative pressure during non-rapid eye movement (NREM) sleep and wakefulness. DESIGN: We assessed the genioglossal muscle response to CO2 off and on continuous positive airway pressure (CPAP) (to attenuate negative pressure) during stable NREM sleep and wakefulness in the supine position. SETTING: Laboratory of the Sleep Medicine Division, Brigham and Women's Hospital. PATIENTS OR PARTICIPANTS: Eleven normal healthy subjects. INTERVENTIONS: During wakefulness and NREM sleep, we measured genioglossal electromyography (EMG) on and off CPAP at the normal eupneic level and at levels 5 and 10 mm Hg above the awake eupneic level. MEASUREMENTS AND RESULTS: We observed that CO2 could increase upper-airway muscle activity during NREM sleep and wakefulness in the supine position with and without intrapharyngeal negative pressure. The application of nasal CPAP significantly decreased genioglossal EMG at all 3 levels of PETCO2 during NREM sleep (13.0 +/- 4.9% vs. 4.6 +/- 1.6% of maximal EMG, 14.6 +/- 5.6% vs. 7.1 +/- 2.3% of maximal EMG, and 17.3 +/- 6.3% vs. 10.2 +/- 3.1% of maximal EMG, respectively). However, the absence of negative pressure in the upper airway did not significantly affect the slope of the pharyngeal airway dilator muscle response to hypercapnia during NREM sleep (0.72 +/- 0.30% vs. 0.79 +/- 0.27% of maximal EMG per mm Hg PCO2, respectively, off and on CPAP). CONCLUSIONS: We conclude that both chemoreceptive and negative pressure reflex inputs to this upper airway dilator muscle are still active during stable NREM sleep.  相似文献   

16.
Increased airway resistance can induce snoring and sleep apnea, and nasal obstruction is a common problem in snoring and obstructive sleep apnea (OSA) patients. Many snoring and OSA patients breathe via the mouth during sleep. Mouth breathing may contribute to increased collapsibility of the upper airways due to decreased contractile efficiency of the upper airway muscles as a result of mouth opening. Increased nasal airway resistance produces turbulent flow in the nasal cavity, induces oral breathing, promotes oscillation of the pharyngeal airway and can cause snoring.  相似文献   

17.
Hypoglossal motoneurons (HMNs), which innervate the tongue muscles, are involved in several important physiological functions, including the maintenance of upper airway patency. The neural mechanisms that affect HMN excitability are therefore important determinants of effective breathing. Obstructive sleep apnea is a disorder characterized by recurrent collapse of the upper airway that is likely due to decline of pharyngeal motoneuron activity during sleep. Because cholinergic neuronal activity is closely coupled to wake and sleep states, we tested the effects and pharmacology of nicotinic acetylcholine receptor (nAChR) activation on HMNs. We made intracellular recordings from HMNs in medullary slices from neonatal rats and found that local application of the nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, excited HMNs by a Ca(2+)-sensitive, and TTX-insensitive inward current that was blocked by dihydro-beta-erythroidine (IC(50): 19+/-3 nM), methyllycaconitine (IC(50): 32+/-7 nM), and mecamylamine (IC(50): 88+/-11 nM), but not by alpha-bungarotoxin (10 nM). This is consistent with responses being mediated by postsynaptic nAChRs that do not contain the alpha7 subunit. These results suggest that nAChR activation may contribute to central maintenance of upper airway patency and that the decline in firing rate of cholinergic neurons during sleep could potentially disfacilitate airway dilator muscle activity, contributing to airway obstruction.  相似文献   

18.
Drive to the human respiratory muscles   总被引:1,自引:0,他引:1  
The motor control of the respiratory muscles differs in some ways from that of the limb muscles. Effectively, the respiratory muscles are controlled by at least two descending pathways: from the medulla during normal quiet breathing and from the motor cortex during behavioural or voluntary breathing. Neurophysiological studies of single motor unit activity in human subjects during normal and voluntary breathing indicate that the neural drive is not uniform to all muscles. The distribution of neural drive depends on a principle of neuromechanical matching. Those motoneurones that innervate intercostal muscles with greater mechanical advantage are active earlier in the breath and to a greater extent. Inspiratory drive is also distributed differently across different inspiratory muscles, possibly also according to their mechanical effectiveness in developing airway negative pressure. Genioglossus, a muscle of the upper airway, receives various types of neural drive (inspiratory, expiratory and tonic) distributed differentially across the hypoglossal motoneurone pool. The integration of the different inputs results in the overall activity in the muscle to keep the upper airway patent throughout respiration. Integration of respiratory and non-respiratory postural drive can be demonstrated in respiratory muscles, and respiratory drive can even be observed in limb muscles under certain circumstances. Recordings of motor unit activity from the human diaphragm during voluntary respiratory tasks have shown that depending on the task there can be large changes in recruitment threshold and recruitment order of motor units. This suggests that descending drive across the phrenic motoneurone pool is not necessarily consistent. Understanding the integration and distribution of drive to respiratory muscles in automatic breathing and voluntary tasks may have implications for limb motor control.  相似文献   

19.
STUDY OBJECTIVES: To predict the airflow dynamics during sleep using a mathematic model that incorporates a number of static and dynamic upper airway forces, and to compare the numerical results to clinical flow data recorded from patients with sleep-disordered breathing on and off various treatment options. DESIGN: Upper airway performance was modeled in virtual subjects characterized by parameter settings that describe common combinations of risk factors predisposing to upper airway collapse during sleep. The treatments effect were induced by relevant changes of the initial parameter values. SETTING: Computer simulations at our website (http://www.utu.fi/ml/sovmat/bio/). PARTICIPANTS: Risk factors considered in the simulation settings were sex, obesity, pharyngeal collapsibility, and decreased phasic activity of pharyngeal muscles. INTERVENTIONS: The effects of weight loss, pharyngeal surgery, nasal continuous positive airway pressure, and respiratory stimulation on the inspiratory flow characteristics were tested with the model. MEASUREMENTS AND RESULTS: Numerical predictions were investigated by means of 3 measurable inspiratory airflow characteristics: initial slope, total volume, and flow shape. The model was able to reproduce the inspiratory flow shape characteristics that have previously been described in the literature. Simulation results also supported the observations that a multitude of factors underlie the pharyngeal collapse and, therefore, certain medical therapies that are effective in some conditions may prove ineffective in others. CONCLUSIONS: A mathematic model integrating the current knowledge of upper airway physiology is able to predict individual treatment responses. The model provides a framework for designing novel and potentially feasible treatment alternatives for sleep-disordered breathing.  相似文献   

20.
Increased loop gain (a function of both controller gain and plant gain), which results in instability in feedback control, is of major importance in producing recurrent central apnoeas during sleep but its role in causing obstructive apnoeas is not clear. The purpose of this study was to investigate the role of loop gain in producing obstructive sleep apnoeas. Owing to the complexity of factors that may operate to produce obstruction during sleep, we used a mathematical model to sort them out. The model used was based on our previous model of neurochemical control of breathing, which included the effects of chemical stimuli and changes in alertness on respiratory pattern generator activity. To this we added a model of the upper airways that contained a narrowed section which behaved as a compressible elastic tube and was tethered during inspiration by the contraction of the upper airway dilator muscles. These muscles in the model, as in life, responded to changes in hypoxia, hypercapnia and alertness in a manner similar to the action of the chest wall muscles, opposing the compressive action caused by the negative intraluminal pressure generated during inspiration which was magnified by the Bernoulli Effect. As the velocity of inspiratory airflow increased, with sufficiently large increase in airflow velocity, obstruction occurred. Changes in breathing after sleep onset were simulated. The simulations showed that increases in controller gain caused the more rapid onset of obstructive apnoeas. Apnoea episodes were terminated by arousal. With a constant controller gain, as stiffness decreased, obstructed breaths appeared and periods of obstruction recurred longer after sleep onset before disappearing. Decreased controller gain produced, for example, by breathing oxygen eliminated the obstructive apnoeas resulting from moderate reductions in constricted segment stiffness. This became less effective as stiffness was reduced more. Contraction of the upper airway muscles with hypercapnia and hypoxia could prevent obstructed apnoeas with moderate but not with severe reductions in stiffness. Increases in controller gain, as might occur with hypoxia, converted obstructive to central apnoeas. Breathing CO2 eliminated apnoeas when the activity of the upper airway muscles was considered to change as a function of CO2 to some exponent. Low arousal thresholds and increased upper airway resistance are two factors that promoted the occurrence and persistence of obstructive sleep apnoeas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号