首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent report has demonstrated that inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release plays a crucial role in neurite growth. Here, using 31P-NMR, we examine whether activation of the metabotropic glutamate receptor 1 (mGluR1), which induces the production of IP3, could modulate phospholipid metabolism in human embryonic kidney 293 cells. mGluR1α- but not ionotropic glutamate receptor 1-expressing cells stimulated with glutamate exhibited a drastic reduction in the phosphorylcholine level, with corresponding increases in the level of phosphatidylcholine, a major phospholipid component. Quantitative analysis of cell growth revealed that mGluR1α-expressing cells cultured with 100μM glutamate were statistically significantly longer than the nontransfected cells. The effect was no longer observed following co-incubation with a metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-carboxyphenylglycine. These results suggest that mGluR1α activation triggers phosphatidylcholine biosynthesis and may contribute to neurite extension.  相似文献   

2.
Upon activation of cell surface receptors coupled to the Gq subclass of G proteins, phospholipase C (PLC) beta hydrolyses membrane phospholipid to yield a pair of second messengers, inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol. PLCbeta4 has been characterized as the isoform enriched in cerebellar Purkinje cells (PCs) and the retina and involved in motor and visual functions. Here we examined cellular and subcellular distributions of PLCbeta4 in adult mouse brains. Immunohistochemistry showed that high levels of PLCbeta4 were detected in the somatodendritic domain of neuronal populations expressing the metabotropic glutamate receptor (mGluR) type 1alpha, including olfactory periglomerular cells, neurons in the bed nucleus anterior commissure, thalamus, substantia nigra, inferior olive, and unipolar brush cells and PCs in the cerebellum. Low to moderate levels were detected in many other mGluR1alpha-positive neurons and in a few mGluR1alpha-negative neurons. In PCs, immunogold electron microscopy localized PLCbeta4 to the perisynapse, at which mGluR1alpha is concentrated, and to the smooth endoplasmic reticulum in dendrites and spines, an intracellular Ca2+ store gated by IP3 receptors. In the cerebellum, immunoblot demonstrated its concentrated distribution in the post-synaptic density and microsomal fractions, where mGluR1alpha and type 1 IP3 receptor were also greatly enriched. Furthermore, PLCbeta4 formed coimmunoprecipitable complexes with mGluR1alpha, type 1 IP3 receptor and Homer 1. These results suggest that PLCbeta4 is preferentially localized in the perisynapse and smooth endoplasmic reticulum as a component of the physically linked phosphoinositide signaling complex. This close molecular relationship might provide PLCbeta4 with a high-fidelity effector function to mediate various neuronal responses under physiological and pathophysiological conditions.  相似文献   

3.
In the cerebellum, synaptic strength at the synapses between parallel fibers and Purkinje cells is best known to be modulated via metabotropic glutamate receptor 1 (mGluR1)-dependent cerebellar long-term depression (LTD). An increase in intracellular calcium levels plays an important role in inducing mGluR1-dependent cerebellar LTD. Downstream of mGluR1, there are two major sources of calcium: transient receptor potential canonical (TRPC) channels and inositol trisphosphate receptors (IP(3)R). IP(3)R triggers a calcium release from the intracellular calcium store. Here, we show that TRPC channels mediate mGluR1-evoked slow currents to regulate cerebellar LTD in Sprague Dawley rats. We found that the inhibition of TRPC channels blocks the induction of cerebellar LTD. Moreover, we show that processes known to underlie cerebellar LTD induction, such as increases in intracellular calcium concentration, the activation of protein kinase C, and the internalization of GluR2, are also hindered by blocking TRPC. These results suggest that the mGluR1-evoked activation of TRPC channels is required for the induction of cerebellar LTD.  相似文献   

4.
Metabotropic glutamate receptor (mGluR) is highly expressed in cerebellar Purkinje cells. The purpose of this study was pharmacological and immunocytochemical characterization of the mGluR in single cerebellar neurons, especially Purkinje cells. Ca2+ imaging with fura-2 in cultured cerebellar neurons, identified immunocytochemically, was used to record the direct effects of drugs in stable conditions. In addition, the expression of mGluR was examined, and expression of the intracellular receptor for inositol trisphosphate (IP3) produced by mGluR activation was studied immunocytochemically with specific antibodies. Purkinje neurons and some other neurons showed Ca(2+)-mobilizing responses to mGluR agonists. These responses were mediated by mGluR because they were not blocked by ionotropic GluR antagonists, were independent of the caffeine-sensitive Ca2+ pool, and were blocked by inhibitors of IP3-induced Ca2+ release. This is the first pharmacological characterization of mGluR at single Purkinje cells. The results differed as follows from those in earlier studies in which phosphoinositide turnover of the entire population of cerebellar cells was monitored: (1) the mGluR responses were not blocked by pertussis toxin or D,L-2-amino-3-phosphonopropionic acid; (2) glutamate was a potent agonist, whereas L-aspartate was ineffective; and (3) the dose-response relationship showed an all-or-none tendency. The metaboltropic response of Purkinje cells changed markedly during development, with a sharp peak after day 4 of culture, whereas mGluR and IP3 receptor proteins increased steadily during maturation. This apparent desensitization of mGluR was not blocked by inhibitors of protein kinase C (PKC) or ADP-ribosyltransferase. The metabotropic responses were mainly localized to the center of the somata of Purkinje cells even on day 4, whereas both receptor proteins were expressed throughout the cell. These results suggest that the function of mGluR is spatially and developmentally controlled by a posttranslational mechanism involving a mechanism other than phosphorylation by PKC or ADP-ribosylation.  相似文献   

5.
We examined the regulation of glutamate transporter protein expression after stimulation with selective metabotropic glutamate receptor (mGluR) agonists in cultured human glial cells. mGluR3 and mGluR5 are expressed in human astrocytes and in human glioma cells in vivo as well as in vitro, as shown by either RT-PCR or western blot analysis. The selective group I agonist (S)-3,5-dihydroxyphenylglycine produced a significant down-regulation of both GLAST and GLT-1 protein expression in astrocytes cultured in the presence of growth factors. This condition mimics the morphology of reactive glial cells in vivo including an increased expression of mGluR5 protein (observed in pathological conditions). In contrast, (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine, a selective agonist of group II metabotropic glutamate receptors, positively modulates the expression of GLAST and GLT-1 proteins. A similar opposite effect of (S)-3,5-dihydroxyphenylglycine and (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine was observed for the expression of EAAT3 protein in U373 glioblastoma cell line. Selective group I and II antagonists prevented these effects. Pharmacological inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-K pathways reduces the induction of GLT-1 observed in response to the group II metabotropic glutamate receptor agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine. Thus, mGluR3 and mGluR5 can critically and differentially modulate the expression of glutamate transporters and may represent interesting pharmacological targets to regulate the extracellular levels of glutamate in pathological conditions.  相似文献   

6.
PMCA2, a major calcium pump, is expressed at particularly high levels in Purkinje neurons. Accordingly, PMCA2-null mice exhibit ataxia suggesting cerebellar pathology. It is not yet known how changes in PMCA2 expression or activity affect molecular pathways in Purkinje neurons. We now report that the levels of metabotropic glutamate receptor 1 (mGluR1), which plays essential roles in motor coordination, synaptic plasticity, and associative learning, are reduced in the cerebellum of PMCA2-null mice as compared to wild type littermates. The levels of inositol 1,4,5-triphosphate receptor type 1 (IP3R1), an effector downstream to mGluR1, which mediates intracellular calcium signaling, and the expression of Homer 1b/c and Homer 3, scaffold proteins that couple mGluR1 to IP3R1, are also reduced in somata and dendrites of some Purkinje cell subpopulations. In contrast, no alterations occur in the levels of mGluR1 and its downstream effectors in the hippocampus, indicating that the changes are region specific. The reduction in cerebellar mGluR1, IP3R1 and Homer 3 levels are neither due to a generic decrease in Purkinje proteins nor extensive dendritic loss as immunoreactivity to total and non-phosphorylated neurofilament H (NFH) is increased in Purkinje dendrites and microtubule associated protein 2 (MAP2) staining reveals a dense dendritic network in the molecular layer of the PMCA2-null mouse cerebellum. PMCA2 coimmunoprecipitates with mGluR1, Homer 3 and IP3R1, suggesting that the calcium pump is a constituent of the mGluR1 signaling complex. Our results suggest that the decrease in the expression of mGluR1 and its downstream effectors and perturbations in the mGluR1 signaling complex in the absence of PMCA2 may cumulatively result in aberrant metabotropic glutamate receptor signaling in Purkinje neurons leading to cerebellar deficits in the PMCA2-null mouse.  相似文献   

7.
The development of a neuronal dendritic tree is modulated both by signals from afferent fibers and by an intrinsic program. We have previously shown that chronic activation of either type 1 metabotropic glutamate receptors (mGluR1s) or protein kinase C (PKC) in organotypic cerebellar slice cultures of mice and rats severely inhibits the growth and development of the Purkinje cell dendritic tree. The signaling events linking receptor activation to the regulation of dendritic growth remain largely unknown. We have studied whether channels allowing the entry of Ca(2+) into Purkinje cells, in particular the type 3 transient receptor potential cation channels (TRPC3s), P/Q-type Ca(2+) channels, and T-type Ca(2+) channels, might be involved in signaling after mGluR1 or PKC stimulation. We show that the inhibition of dendritic growth seen after mGluR1 or PKC stimulation is partially rescued by pharmacological blockade of P/Q-type and T-type Ca(2+) channels, indicating that activation of these channels mediating Ca(2+) influx contributes to the inhibition of dendritic growth. In contrast, the absence of Ca(2+) -permeable TRPC3s in TRPC3-deficient mice or pharmacological blockade had no effect on mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. Similarly, blockade of Ca(2+) influx through glutamate receptor δ2 or R-type Ca(2+) channels or inhibition of release from intracellular stores did not influence mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. These findings suggest that both T-type and P/Q-type Ca(2+) channels, but not TRPC3 or other Ca(2+) -permeable channels, are involved in mGluR1 and PKC signaling leading to the inhibition of dendritic growth in cerebellar Purkinje cells.  相似文献   

8.
9.
We report here the isolation of a novel gene termed mGluR5R (mGluR5-related). The N-terminus of mGluR5R is highly similar to the extracellular domain of metabotropic glutamate receptor 5 (mGluR5) whereas the C-terminus bears similarity to the testis-specific gene, RNF18. mGluR5R is expressed in the human CNS in a coordinate fashion with mGluR5. Although the sequence suggests that mGluR5R may be a secreted glutamate binding protein, we found that when expressed in HEK293 cells it was membrane associated and not secreted. Furthermore, mGluR5R was incapable of binding the metabotropic glutamate receptor class I selective agonist, quisqualate. Although mGluR5R could not form disulfide-mediated covalent homodimers, it was able to form a homomeric complex, presumably through noncovalent interactions. mGluR5R also formed noncovalent heteromeric associations with an engineered construct of the extracellular domain of mGluR5 as well as with full-length mGluR5 and mGluR1alpha. The ability of mGluR5R to associate with mGluR1alpha and mGluR5 suggests that it may be a modulator of class I metabotropic glutamate receptor function.  相似文献   

10.
C6 glioma cells were treated for hours with 100 microM L-glutamate, quisqualate or trans-ACPD. In all cases, phospholipase C-coupled metabotropic glutamate receptors (mGluRs) present in these cells are down-regulated after this agonist treatment. Cell surface metabotropic glutamate receptor density was minimum at 6 h of agonist treatment and reached near control values after 30 h of treatment. This recovery was associated with a progressive increase in mGluR1 and mGluR1a mRNA level between 6 and 24 h and was not due to agonist removal. Specific L-[3H]glutamate or [3H](+/-)trans-ACPD binding decrease detected in C6 cells after 6 h of 100 microM L-glutamate treatment was associated with a remarkable increase of specific L-[3H]glutamate binding detected in clathrin-coated vesicles isolated from these treated cells. Moreover, this decrease was blocked in the presence of 0.5 M sucrose or 1 microM phenylarsine oxide, suggesting that desensitization and down-regulation of mGluR can be due to an endocytosis process through clathrin-coated pits and vesicles.  相似文献   

11.
The studies of signaling mechanisms involved in the disruption of the cytoskeleton homeostasis were performed in a model of quinolinic acid (QUIN) neurotoxicity in vitro. This investigation focused on the phosphorylation level of intermediate filament (IF) subunits of astrocytes (glial fibrillary acidic protein - GFAP) and neurons (low, medium and high molecular weight neurofilament subunits - NFL, NFM and NFH, respectively). The activity of the phosphorylating system associated with the IFs was investigated in striatal slices of rat exposed to QUIN or treated simultaneously with QUIN plus glutamate receptor antagonists, calcium channel blockers or kinase inhibitors. Results showed that in astrocytes, the action of 100 μM QUIN was mainly due to increased Ca(2+) influx through NMDA and L-type voltage-dependent Ca(2+) channels (L-VDCC). In neuronal cells QUIN acted through metabotropic glutamate receptor (mGluR) activation and influx of Ca(2+) through NMDA receptors and L-VDCC, as well as Ca(2+) release from intracellular stores. These mechanisms then set off a cascade of events including activation of PKA, PKCaMII and PKC, which phosphorylate head domain sites on GFAP and NFL. Also, Cdk5 was activated downstream of mGluR5, phosphorylating the KSP repeats on NFM and NFH. mGluR1 was upstream of phospholipase C (PLC) which, in turn, produced diacylglycerol (DAG) and inositol 3,4,5 triphosphate (IP3). DAG is important to activate PKC and phosphorylate NFL, while IP(3) contributed to Ca(2+) release from internal stores promoting hyperphosphorylation of KSP repeats on the tail domain of NFM and NFH. The present study supports the concept of glutamate and Ca(2+) contribution in excitotoxic neuronal damage provoked by QUIN associated to dysfunction of the cytoskeleton homeostasis and highlights the differential signaling mechanisms elicited in striatal astrocytes and neurons.  相似文献   

12.
Ionotropic and metabotropic (mGluR1a) glutamate receptors were reported to be segregated from each other within the postsynaptic membrane at individual synapses. In order to establish whether this pattern of distribution applies to the hippocampal principal cells and to other postsynaptic metabotropic glutamate receptors, the mGluR1a/b/c and mGluR5 subtypes were localized by immunocytochemistry. Principal cells in all hippocampal fields were reactive for mGluR5, the strata oriens and radiatum of the CA1 area being most strongly immunolabelled. Labelling for mGluR1b/c was strongest on some pyramids in the CA3 area, weaker on granule cells and absent on CA1 pyramids. Subpopulations of non-principal cells showed strong mGluR1 or mGluR5 immunoreactivity. Electron microscopic pre-embedding immunoperoxidase and both pre- and postembedding immunogold methods consistently revealed the extrasynaptic location of both mGluRs in the somatic and dendritic membrane of pyramidal and granule cells. The density of immunolabelling was highest on dendritic spines. At synapses, immunoparticles for both mGluR1 and mGluR5 were found always outside the postsynaptic membrane specializations. Receptors were particularly concentrated in a perisynaptic annulus around type I synaptic junctions, including the invaginations at 'perforated'synapses. Measurements of immunolabelling on dendritic spines showed decreasing levels of receptor as a function of distance from the edge of the synaptic specialization. We propose that glutamatergic synapses with an irregular edge develop in order to increase the circumference of synaptic junctions leading to an increase in the metabotropic to ionotropic glutamate receptor ratio at glutamate release sites. The perisynaptic position of postsynaptic metabotropic glutamate receptors appears to be a general feature of glutamatergic synaptic organization and may apply to other G-protein-coupled receptors.  相似文献   

13.
The electrosensory lobes (ELLs) of mormyrid and gymnotid fish are useful sites for studying plasticity and descending control of sensory processing. This study used immunocytochemistry to examine the functional circuitry of the mormyrid ELL. We used antibodies against the following proteins and amino acids: the neurotransmitters glutamate and gamma-aminobutyric acid (GABA); the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD); GABA transporter 1; the anchoring protein for GABA and glycine receptors, gephyrin; the calcium binding proteins calbindin and calretinin; the NR1 subunit of the N-methyl-D-aspartate glutamate receptor; the metabotropic glutamate receptors mGluR1alpha, mGluR2/3, and mGluR5; and the intracellular signaling molecules calcineurin, calcium calmodulin kinase IIalpha (CAMKIIalpha) and the receptor for inositol triphosphate (IP3R1alpha). Selective staining allowed for identification of new cell types including a deep granular layer cell that relays sensory information from primary afferent fibers to higher order cells of ELLS. Selective staining also allowed for estimates of relative numbers of different cell types. Dendritic staining of Purkinje-like medium ganglion cells with antibodies against metabotropic glutamate receptors and calcineurin suggests hypotheses concerning mechanisms of the previously demonstrated synaptic plasticity in these cells. Finally, several cell types including the above-mentioned granular cells, thick-smooth dendrite cells, and large multipolar cells of the intermediate layer were present in the two zones of ELL that receive input from mormyromast electroreceptors but were absent in the zone of ELL that receives input from ampullary electroreceptors, indicating markedly different processing for these two types of input. J. Comp. Neurol. 483:124-142, 2005. (c) 2005 Wiley-Liss, Inc.  相似文献   

14.
We have studied the distributions of group II metabotropic glutamate receptors, mGluR2 and mGluR3, and a group III metabotropic glutamate receptor, mGluR4, in the adult rat retina and during postnatal development using receptor specific anti-peptide antisera. Of the three receptors examined, mGluR3 was not expressed in the retina. MGluR2 showed a distinct stratification pattern in the inner plexiform layer (IPL). Double-labelling immunocytochemistry revealed that mGluR2 was localized in the processes of cholinergic amacrine cells. MGluR4 was found throughout the entire IPL. At the subcellular level, both mGluR2 and mGluR4 were found to be localized exclusively in processes postsynaptic to bipolar cell synapses in the IPL. During postnatal development, labelling for mGluR2 was detected at around postnatal day five. MGluR4 was already present at postnatal day one, prior to the establishment of synaptic connections in the IPL. The differential expression patterns of individual metabotropic glutamate receptors in the adult and developing rat retina suggest distinct roles for these receptors in retinal synaptic circuitry.  相似文献   

15.
We have studied the expression of mRNAs for seven metabotropic glutamate receptors (mGluR1–7) in the retina of the adult rat by in situ hybridization with tissue sections and isolated cells using [α35S]dATP-labelled oligonucleotide probes. Hybridization revealed the expression of six of the metabotropic receptor mRNAs, mGluR1, 2 and 4–7, in the retina, while mGluR3 was not detected. Each of the expressed receptor mRNAs showed a distinct pattern of expression. In the outer nuclear layer, corresponding to photoreceptor somata, no labelling was detected. In the outer part of the inner nuclear layer, putative horizontal cells were labelled for mGluR5. More proximal in this layer, corresponding to the position of bipolar cell somata, there was strong labelling for mGluR6. A small number of bipolar cells were also labelled for mGluR5 and mGluR7. In situ hybridization with isolated cells showed that mGluR6 was expressed by rod bipolar cells. Subsets of amacrine cells, with cell bodies along the border between the inner nuclear layer and the inner plexiform layer, were positive for mGluR1, 2, 4 and 7, suggesting considerable heterogeneity of these receptors among amacrine cells. None of the seven metabotropic receptor mRNAs was expressed in isolated Müller glial cells. In the ganglion cell layer, virtually every ganglion cell and displaced amacrine cell was labelled for mGluR1 and mGluR4. Some cells in this layer (˜20% of the total), most likely both ganglion cells and displaced amacrine cells, were also labelled for mGluR2 and mGluR7. These findings suggest that metabotropic glutamate receptors are considerably more widespread among neurons in the retina than indicated by previous physiological and pharmacological investigations.  相似文献   

16.
Spontaneous epileptiform burst activity occurs in acute hippocampal slice dentate granule cells perfused with 10mM potassium and 0.5mM calcium [J. Neurophys. 68 (1992) 2016]. We report that activation of the group II metabotropic glutamate receptor subtype 3 (mGluR3) induces an increase in spontaneous burst duration, whereas inhibition of mGluR3 reversibly reduces spontaneous burst frequency. Neither activation, nor inhibition, of group II mGluR had any effects on spontaneous negative dc shifts, or the number of spikes per burst, as compared to control. We conclude that mGluR3 can modulate high potassium, low calcium-induced spontaneous epileptiform burst activity in acute rat hippocampal slice dentate granule cells.  相似文献   

17.
代谢型谷氨酸受体参与对MAPK的调节   总被引:1,自引:0,他引:1  
Mitogen—activated protein kinase(MAPK)在成体脑细胞高度表达并参与了多种细胞功能活动的调节。近年来,本实验室的实验结果表明五型代谢型谷氨酸受体(mGluR5)可以激活纹状体培养神经元内MAPK的主要亚型ERK,ERK的激活经由两条独立的胞内信号通路介导,传统的IP3/Ca^2+通路介导了一部分的ERK激活,而mGluR5的C-端结合蛋白Homer则以Ca^2+非依赖方式介导了主要的ERK激活。经两条通路激活的ERK可以协同刺激转录因子Elk-1和CREB,从而促进Elk-1和CREB敏感基因的表达。MAPK的分子生物学研究可以帮助我们了解谷氨酸受体信号转导、诱发性基因转录与表达以及神经元或突触的可塑性变化的分子机制。  相似文献   

18.
19.
Radial glial cells play an essential role through their function as guides for neuronal migration during development. Disruption of metabotropic glutamate receptor 5 (mGluR5) function retards the growth of radial glial processes in vitro. Neuregulins (NRG) are activated by proteolytic cleavage and regulate (radial) glial maintenance via ErbB3/ErbB4 receptors. We show here that blocking ErbB4 disrupts radial process extension. Soluble NRG acting on ErbB4 receptors is able to promote radial process extension in particular where process elongation has been impeded by blockade of mGluR5, the nonselective cation channel canonical transient receptor potential 3 (TRPC3), or matrix metalloproteases (MMP). NRG does not restore retarded process growth caused by ErbB4 blockade. Stimulation of muscarinic receptors restores process elongation due to mGluR5 blockade but not that caused by TRPC3, MMP or ErbB4 blockade suggesting that muscarinic receptors can replace mGluR5 with respect to radial process extension. Additionally, NRG/ErbB4 causes Ca2+ mobilization in a population of cells through cooperation with ErbB1 receptors. Our results indicate that mGluR5 promotes radial process growth via NRG activation by a mechanism involving TRPC3 channels and MMPs. Thus neurotransmitters acting on G‐protein coupled receptors could play a central role in the maintenance of the radial glial scaffold through activation of NRG/ErbB4 signaling.  相似文献   

20.
Reactive gliosis is a prominent morphological feature of mesial temporal lobe epilepsy. Because astrocytes express glutamate receptors, we examined changes in metabotropic glutamate receptor (mGluR) 2/3, mGluR5 and transforming growth factor (TGF)-beta in glial cells of the hippocampal regions in an experimental rat model of spontaneous seizures. Rats that exhibited behavioural status epilepticus (SE) directly after 1 h of electrical angular bundle stimulation, displayed chronic spontaneous seizures after a latent period of 1-2 weeks as observed using continuous electrographic monitoring. SE resulted in hypertrophy of astrocytes and microglia activation throughout the hippocampus as revealed by immunolabelling studies. A dramatic, seizure intensity-dependent increase in vimentin immunoreactivity (a marker for reactive astrocytes) was revealed in CA3 and hilar regions where prominent neuronal loss occurs. Increased vimentin labelling was first apparent 24 h after onset of SE and persisted up to 3 months. mGluR2/3 and mGluR5 protein expression increased markedly in glial cells of CA3 and hilus by 1 week after SE, and persisted up to 3 months after SE. Double immunolabelling of brain sections with vimentin confirmed co-localization with glial fibrillary acidic protein (GFAP), mGluR2/3 and mGluR5 in reactive astrocytes. TGF-beta, a cytokine implicated in mGluR3-mediated neuroprotection, was also upregulated during the first 3 weeks after SE throughout the hippocampus. This study demonstrates seizure-induced upregulation of two mGluR subtypes in reactive astrocytes, which - together with the increased production of TGF-beta - may represent a novel mechanism for modulation of glial function and for changes in glial-neuronal communication in the course of epileptogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号