首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptor (GPCR)-evoked signal transduction pathways leading to the activation of extracellular signal-regulated kinases (ERK) are quite different among cell types. In cardiomyocytes, much attention has been focused on the activation of protein kinase C (PKC) or mobilization of intracellular Ca(2+) ([Ca(2+)](i)), however, the contributions of tyrosine kinases are controversial. In the present study, we characterized the signaling pathways involving tyrosine kinases, Pyk2 and epidermal growth factor receptor (EGFR), and their contribution to ERK activation in cultured cardiomyocytes. We initially investigated the potential involvement of [Ca(2+)](i) and PKC on the activation of these kinases in endothelin-stimulated cardiomyocytes. Interestingly, activation of Pyk2 was abrogated by chelating [Ca(2+)](i) or by downregulation of PKC, whereas transactivation of EGFR was solely dependent on PKC. By using a compound that selectively interferes with EGFR (AG1478), c-Src (PP1), or disrupts actin cytoskeleton (cytochalasin D), we demonstrated that cytochalasin D completely inhibited the activation of Pyk2, but not that of EGFR, whereas AG1478 did not inhibit the activation of Pyk2, indicating that transactivation of EGFR and signaling pathways involving Pyk2 were distinct pathways. Furthermore, activation of ERK and Shc, and c- fos gene expression were significantly inhibited by AG1478 but not by cytochalasin D or PP1. Overexpression of deletion mutant of EGFR attenuated the activation of ERK. These facts demonstrated the existence of two distinct tyrosine kinase pathways requiring Pyk2 or EGFR downstream from GPCR in cardiomyocytes. EGFR was Ca(2+)-independently activated and predominantly contributed to Shc/ERK/c- fos activation, while Pyk2 or c-Src contributed less to it.  相似文献   

2.
c-Jun N-terminal kinases (JNKs) are potently activated by a number of cellular stimuli. Small GTPases, in particular Rac, are responsible for initiating the activation of the JNK pathways. So far, the signals leading from extracellular stimuli to the activation of Rac have remained elusive. Recent studies have demonstrated that the Src homology 2 (SH2)- and Src homology 3 (SH3)-containing adaptor protein Crk is capable of activating JNK when ectopically expressed. We found here that transient expression of Crk induces JNK activation, and this activation was dependent on both the SH2- and SH3-domains of Crk. Expression of p130Cas (Cas), a major binding protein for the Crk SH2-domain, also induced JNK activation, which was blocked by the SH2-mutant of Crk. JNK activation by Cas and Crk was effectively blocked by a dominant-negative form of Rac, suggesting for a linear pathway from the Cas-Crk-complex to the Rac-JNK activation. Many of the stimuli that activate the Rac-JNK pathway enhance engagement of the Crk SH2-domain. JNK activation by these stimuli, such as epidermal growth factor, integrin ligand binding and v-Src, was efficiently blocked by dominant-negative mutants of Crk. A dominant-negative form of Cas in turn blocked the integrin-, but not epidermal growth factor - nor v-Src-mediated JNK activation. Together, these results demonstrate an important role for Crk in connecting multiple cellular stimuli to the Rac-JNK pathway, and a role for the Cas-Crk complex in integrin-mediated JNK activation.  相似文献   

3.
Juvenile nephronophthisis type 1 is caused by mutations of NPHP1, the gene encoding for nephrocystin. The function of nephrocystin is presently unknown, but the presence of a Src homology 3 domain and its recently described interaction with p130(Cas) suggest that nephrocystin is part of the focal adhesion signaling complex. We generated a nephrocystin-specific antiserum and analyzed the interaction of native nephrocystin with endogenous proteins. Immunoprecipitation of nephrocystin revealed that nephrocystin forms protein complexes with p130(Cas), proline-rich tyrosine kinase 2 (Pyk2), and tensin, indicating that these proteins participate in a common signaling pathway. Expression of nephrocystin resulted in phosphorylation of Pyk2 on tyrosine 402 as well as activation of downstream mitogen-activated protein kinases, such as ERK1 and ERK2. Our findings suggest that nephrocystin helps to recruit Pyk2 to cell matrix adhesions, thereby initiating phosphorylation of Pyk2 and Pyk2-dependent signaling. A lack of functional nephrocystin may compromise Pyk2 signaling in a subset of renal epithelial cells.  相似文献   

4.
5.
Csk (C-terminal Src kinase), a protein-tyrosine kinase, bearing the Src homology 2 and 3 (SH2 and SH3) domains, has been implicated in phosphorylation of c-Src Tyr-527, resulting in suppression of c-Src kinase activity. We found that mutations in the SH2 or SH3 domain of Csk, though they did not affect its kinase activity, resulted in a loss of suppression of c-Src activity in fibroblasts. In normal fibroblasts, tyrosine-phosphorylated paxillin and focal adhesion kinase pp125FAK, which colocalize at focal adhesion plaques, were the major proteins to which the Csk SH2 domain bound. Loss of binding to these proteins by the Csk SH2 mutants correlated with loss of the activity to suppress c-Src. Consistent with this observation, the levels of tyrosine phosphorylation of paxillin and pp125FAK were greatly reduced during mitosis, whereas the kinase activity of c-Src was elevated. We suggest that the SH2 domain is required for Csk to suppress c-Src, perhaps in combination with the SH3 domain, by anchoring Csk to a particular subcellular location where c-Src may exist. Our data also indicate that a certain fraction of the Csk and Src family kinases function at the focal adhesion plaques. The activity of the c-Src kinase localized at the focal adhesion plaques appears to be regulated by cell adhesion to the extracellular matrix.  相似文献   

6.
G-protein-coupled receptor agonists including endothelin-1 (ET-1) and phenylephrine (PE) induce hypertrophy in neonatal ventricular cardiomyocytes. Others and we previously reported that Rac1 signaling pathway plays an important role in this agonist-induced cardiomyocyte hypertrophy. In this study reported here, we found that a Ca(2+)-sensitive non-receptor tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2)/cell adhesion kinase beta (CAKbeta), is involved in ET-1- and PE-induced cardiomyocyte hypertrophy medicated through Rac1 activation. ET-1, PE or the Ca(2+) inophore, ionomycin, stimulated a rapid increase in tyrosine phosphorylation of Pyk2. The tyrosine phosphorylation of Pyk2 was suppressed by the Ca(2+) chelator, BAPTA. ET-1- or PE-induced increases in [(3)H]-leucine incorporation and expression of atrial natriuretic factor and the enhancement of sarcomere organization. Infection of cardiomyocytes with an adenovirus expressing a mutant Pyk2 which lacked its kinase domain or its ability to bind to c-Src, eliminated ET-1- and PE-induced hypertrophic responses. Inhibition of Pyk2 activation also suppressed Rac1 activation and reactive oxygen species (ROS) production. These findings suggest that the signal transduction pathway leading to hypertrophy involves Ca(2+)-induced Pyk2 activation followed by Rac1-dependent ROS production.  相似文献   

7.
G-protein-coupled receptor agonists including endothelin-1 (ET-1) and phenylephrine (PE) induce hypertrophy in neonatal ventricular cardiomyocytes. Others and we previously reported that Rac1 signaling pathway plays an important role in this agonist-induced cardiomyocyte hypertrophy. In this study reported here, we found that a Ca(2+)-sensitive non-receptor tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2)/cell adhesion kinase beta (CAKbeta), is involved in ET-1- and PE-induced cardiomyocyte hypertrophy medicated through Rac1 activation. ET-1, PE or the Ca(2+) inophore, ionomycin, stimulated a rapid increase in tyrosine phosphorylation of Pyk2. The tyrosine phosphorylation of Pyk2 was suppressed by the Ca(2+) chelator, BAPTA. ET-1- or PE-induced increases in [(3)H]-leucine incorporation and expression of atrial natriuretic factor and the enhancement of sarcomere organization. Infection of cardiomyocytes with an adenovirus expressing a mutant Pyk2 which lacked its kinase domain or its ability to bind to c-Src, eliminated ET-1- and PE-induced hypertrophic responses. Inhibition of Pyk2 activation also suppressed Rac1 activation and reactive oxygen species (ROS) production. These findings suggest that the signal transduction pathway leading to hypertrophy involves Ca(2+)-induced Pyk2 activation followed by Rac1-dependent ROS production.  相似文献   

8.
OBJECTIVES: We sought to determine whether potassium (K(+)) channel blockers (KBs) can activate extracellular signal-regulated kinase (ERK) and to characterize the upstream signals leading to ERK activation in cardiomyocytes. BACKGROUND: Because KBs attenuate K(+) outward current, they may possibly prolong the duration of action potentials, leading to an increase in calcium (Ca(2+)) transient ([Ca(2+)](i)) in cardiomyocytes. Elevation of intracellular Ca(2+) levels can trigger various signaling events. Influx of Ca(2+) through L-type Ca(2+) channels after membrane depolarization induced activation of MEK and ERK through activation of Ras in neurons. Although KBs are frequently used to treat cardiac arrhythmias, their effect on signaling pathways remains unknown. METHODS: Primary cultured rat cardiomyocytes were stimulated with four different KBs-4-aminopyridine (4-AP), E-4031, tetra-ethylammonium and quinidine-and phosphorylation of ERK, proline-rich tyrosine kinase 2 (Pyk2) and epidermal growth factor receptor (EGFR) was detected. Action potentials were recorded by use of a conventional microelectrode. (Ca(2+))(i) was monitored by the fluorescent calcium indicator Fluo-4. RESULTS: E-4031, 4-AP, tetra-ethylammonium and quinidine induced phosphorylation of ERK. 4-Aminopyridine prolonged the duration of action potentials by 37% and increased (Ca(2+))(i) by 52% at 1 mmol/l. Pre-incubation of ethyleneglycoltetraacetic acid, 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis and diltiazem completely blocked this phosphorylation, whereas flufenamic acid and benzamil did not. 4-Aminopyridine induced tyrosine phosphorylation of Pyk2 and EGFR, which peaked at 5 and 10 min, respectively. Cytochalasin D, AG1478 and dominant-negative EGFR strongly inhibited the phosphorylation of ERK, whereas calphostin C, calmidazolium and KN62 did not. CONCLUSIONS: These findings indicate that KBs induce ERK activation, which starts with Ca(2+) entry through the L-type Ca(2+) channel in cardiomyocytes, and that EGFR and Pyk2 are involved in this activation.  相似文献   

9.
Nakamura I  Rodan GA  Duong le T 《Endocrinology》2003,144(11):4739-4741
Both p130Cas and c-Cbl have been reported to play critical roles in osteoclast function as downstream targets of c-Src kinase. The purpose of this study was to examine adhesion- and macrophage colony-stimulating factor (M-CSF)-induced tyrosine phosphorylation of these two molecules in prefusion osteoclasts (pOCs) derived from either Src+/? or Src-/- mice and to directly compare the roles of p130Cas and c-Cbl in osteoclast function. Cell attachment of normal pOCs to vitronectin induces tyrosine phosphorylation of p130Cas and, to a much lesser extent, of c-Cbl. Treatment with M-CSF results in further tyrosine phosphorylation of both p130Cas and c-Cbl, suggesting cooperation between alpha v beta 3 integrin and the M-CSF receptor, c-Fms, in osteoclasts. However, M-CSF induces tyrosine phosphorylation of c-Cbl, but not p130Cas in pOCs in suspension, confirming the role of c-Cbl as a downstream effector of c-Fms. This observation also suggests that M-CSF-mediated p130Cas phosphorylation requires ligand engagement of alpha v beta 3 integrin. In Src-deficient pOCs plated on vitronectin, although M-CSF highly induces Cbl phosphorylation, it does not affect p130Cas phosphorylation. These results suggest that in osteoclasts 1) tyrosine phosphorylation of p130Cas depends on alpha v beta 3 integrin-mediated cell adhesion, even in the presence of M-CSF; 2) on the other hand, c-Cbl phosphorylation is predominantly activated by M-CSF and is independent of cell adhesion; 3) lastly, although c-Src is essential for both adhesion- and M-CSF-mediated phosphorylation of p130Cas, it is clearly not required for c-Cbl phosphorylation in M-CSF-treated pOCs. Taken together, p130Cas and c-Cbl play distinct roles in the signal transduction pathways that mediate cytoskeletal organization in osteoclasts.  相似文献   

10.
The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.  相似文献   

11.
The role of ERK, Jun N-terminal kinase (JNK), p38, and c-Src in GnRH-stimulated FSHbeta-subunit promoter activity was examined in the LbetaT-2 gonadotroph cell line. Incubation of the cells with a GnRH agonist resulted in activation of ERK, JNK, p38, and c-Src. The peak of ERK activation was observed at 5 min, whereas that of JNK, p38, and c-Src at 30 min, declining thereafter. ERK activation by GnRH is dependent on protein kinase C (PKC), as evident by activation, inhibition, and depletion of 12-O-tetradecanoylphorbol-13-acetate-sensitive PKC subspecies. Ca(2+) influx, but not Ca(2+) mobilization, is required for ERK activation. GnRH signaling to ERK is partially mediated by dynamin and a protein tyrosine kinase, apparently c-Src. ERK activation by GnRH in LbetaT-2 cells does not involve transactivation of epidermal growth factor receptor or mediation via Gbetagamma or beta-arrestin. Once activated by GnRH, ERK translocates to the nucleus. We examined the role of ERK, JNK, p38, and c-Src in GnRH-stimulated ovine FSHbeta promoter, linked to a luciferase reporter gene (-4741oFSHbeta-LUC). The PKC activator 12-O-tetradecanoylphorbol-13-acetate, but not the Ca(2+) ionophore ionomycin, stimulated FSHbeta-luciferase (LUC) activity. Furthermore, down-regulation of PKC, but not removal of Ca(2+), inhibited the GnRH response. Cotransfection of FSHbeta-LUC and the constitutively active forms of Raf-1 and MEK stimulated FSHbeta-LUC activity, whereas the dominant negatives of Ras, Raf-1, and MEK and the selective MEK inhibitor PD98059, abolished GnRH-induced FSHbeta-LUC activity. The dominant negatives of CDC42 and JNK reduced the GnRH response by 36 and 49%, respectively. Incubation of the cells with the p38 or the c-Src inhibitors SB203580 and PP1 also reduced the GnRH response. Surprisingly, two proximal activator protein-1 sites contribute very little to the GnRH response. Thus, PKC, ERK, JNK, p38, and c-Src, but not Ca(2+), are involved in GnRH induction of the ovine FSHbeta gene.  相似文献   

12.
In pressure-overloaded myocardium, our recent study demonstrated cytoskeletal assembly of c-Src and other signaling proteins which was partially mimicked in vitro using adult feline cardiomyocytes embedded in three-dimensional (3D) collagen matrix and stimulated with an integrin-binding Arg-Gly-Asp (RGD) peptide. In the present study, we improved this model further to activate c-Src and obtain a full assembly of the focal adhesion complex (FAC), and characterized c-Src localization and integrin subtype(s) involved. RGD dose response experiments revealed that c-Src activation occurs subsequent to its cytoskeletal recruitment and is accompanied by p130Cas cytoskeletal binding and focal adhesion kinase (FAK) Tyr925 phosphorylation. When cardiomyocytes expressing hexahistidine-tagged c-Src via adenoviral gene delivery were used for RGD stimulation, the expressed c-Src exhibited relocation: (i) biochemical analysis revealed c-Src movement from the detergent-soluble to the -insoluble cytoskeletal fraction and (ii) confocal microscopic analysis showed c-Src movement from a nuclear/perinuclear to a sarcolemmal region. RGD treatment also caused sarcolemmal co-localization of FAK and vinculin. Characterization of integrin subtypes revealed that beta3, but not beta1, integrin plays a predominant role: (i) expression of cytoplasmic domain of beta1A integrin did not affect the RGD-stimulated FAC formation and (ii) both pressure-overloaded myocardium and RGD-stimulated cardiomyocytes exhibited phosphorylation of beta3 integrin at Tyr773/785 sites but not beta1 integrin at Thr788/789 sites. Together these data indicate that RGD treatment in cardiomyocytes causes beta3 integrin activation and c-Src sarcolemmal localization, that subsequent c-Src activation is accompanied by p130Cas binding and FAK Tyr925 phosphorylation, and that these events might be crucial for growth and remodeling of hypertrophying adult cardiomyocytes.  相似文献   

13.
Proline-rich tyrosine kinase 2 (PYK2) is a nonreceptor protein tyrosine kinase that links G-protein-coupled receptors to activation of MAPK cascades and cellular growth. In smooth muscle and other cell types, PYK2 activation is dependent on either Ca(2+) or protein kinase C (PKC), and we have previously shown that endothelin-1 (ET) activates PYK2 in adult and neonatal rat ventricular myocytes (NRVM). However, ET both alters intracellular Ca(2+) ([Ca(2+)](i)), and activates the novel, Ca(2+)-independent PKCs. Therefore, immunoprecipitation and western blotting experiments were used to examine the PKC and Ca(2+) dependence of PYK2 activation in NRVM. PYK2 was activated by ET (100 nM; 2-30 min) and phenylephrine (50 microM; 2-30 min), which are both hypertrophic agonists that activate Gq-coupled receptors. Moreover, adenoviral (Adv)-mediated overexpression of constitutively active (ca) Galphaq increased PYK2-Y(402) phosphorylation as early as 8 h post-infection, as compared to NRVM infected with a control Adv encoding beta-galactosidase. caGalphaq overexpression also induced PKC epsilon and PKCdelta (but not PKCalpha) translocation, followed by downregulation of both novel PKC isoenzymes. Phorbol myristate acetate (PMA; 200 nM), a direct activator of Ca(2+)-dependent and Ca(2+)-independent PKCs, activated PYK2 within 10 min, and PYK2 phosphorylation remained elevated after 30 min of stimulation. Adv-mediated overexpression of caPKC epsilon increased PYK2 phosphorylation, whereas Adv-mediated overexpression of a kinase-inactive mutant of PKC epsilon markedly inhibited ET-induced, but not basal PYK2 phosphorylation. In contrast, both basal and ET-induced PYK2 phosphorylation were blocked by treatment with the Src-family protein kinase inhibitor PP2. Although reducing [Ca(2+)](i) with either nifedipine (10 microM) or BAPTA-AM (50 microM) decreased basal PYK2 phosphorylation, it did not prevent ET-induced PYK2 activation. Furthermore, increasing [Ca(2+)](i) with ionomycin (10 microM), K(+) depolarization, or BayK8644 (1 microM) was not sufficient to further activate PYK2. These data demonstrate that ET-induced PYK2 activation is Gq, PKC epsilon, and Src dependent, describing a distinct signaling pathway leading to agonist-induced PYK2 activation in cardiomyocytes.  相似文献   

14.
Angiotensin II (Ang II) is a vasoactive hormone with critical roles in vascular smooth muscle cell growth, an important feature of hypertension and atherosclerosis. Many of these effects are dependent on the production of reactive oxygen species (ROS). Ang II induces phosphorylation of the epidermal growth factor (EGF) receptor (EGF-R), which serves as a scaffold for various signaling molecules. Here, we provide novel evidence that ROS are critical mediators of EGF-R transactivation by Ang II. Pretreatment of vascular smooth muscle cells with the antioxidants diphenylene iodonium, Tiron, N-acetylcysteine, and ebselen significantly inhibited ( approximately 80% to 90%) tyrosine phosphorylation of the EGF-R by Ang II but not by EGF. Of the 5 autophosphorylation sites on the EGF-R, Ang II mainly phosphorylated Tyr1068 and Tyr1173 in a redox-sensitive manner. The Src family kinase inhibitor PP1, overexpression of kinase-inactive c-Src, or chelation of intracellular Ca(2+) attenuated EGF-R transactivation. Although antioxidants had no effects on the Ca(2+) mobilization or phosphorylation of Ca(2+)-dependent tyrosine kinase Pyk2, they inhibited c-Src activation by Ang II, suggesting that c-Src is 1 signaling molecule that links ROS and EGF-R phosphorylation. Furthermore, Ang II-induced tyrosine phosphorylation of the autophosphorylation site and the SH2 domain of c-Src was redox sensitive. These findings emphasize the importance of ROS in specific Ang II-stimulated growth-related signaling pathways and suggest that redox-sensitive EGF-R transactivation may be a potential target for antioxidant therapy in vascular disease.  相似文献   

15.
Translocations of the anaplastic lymphoma kinase (ALK) gene have been described in anaplastic large-cell lymphomas (ALCLs) and in stromal tumors. The most frequent translocation, t(2;5), generates the fusion protein nucleophosmin (NPM)-ALK with intrinsic tyrosine kinase activity. Along with transformation, NPM-ALK induces morphologic changes in fibroblasts and lymphoid cells, suggesting a direct role of ALK in cell shaping. In this study, we used a mass-spectrometry-based proteomic approach to search for proteins involved in cytoskeleton remodeling and identified p130Cas (p130 Crk-associated substrate) as a novel interactor of NPM-ALK. In 293 cells and in fibroblasts as well as in human ALK-positive lymphoma cell lines, NPM-ALK was able to bind p130Cas and to induce its phosphorylation. Both of the effects were dependent on ALK kinase activity and on the adaptor protein growth factor receptor-bound protein 2 (Grb2), since no binding or phosphorylation was found with the kinase-dead mutant NPM-ALK(K210R) or in the presence of a Grb2 dominant-negative protein. Phosphorylation of p130Cas by NPM-ALK was partially independent from Src (tyrosine kinase pp60c-src) kinase activity, as it was still detectable in Syf-/- cells. Finally, p130Cas-/- (also known as Bcar1-/-) fibroblasts expressing NPM-ALK showed impaired actin filament depolymerization and were no longer transformed compared with wild-type cells, indicating an essential role of p130Cas activation in ALK-mediated transformation.  相似文献   

16.
Previous studies have suggested that heterotrimeric G proteins and tyrosine kinases may be involved in lipopolysacchaide (LPS) signaling events. Signal transduction pathways activated by LPS we examined in human pomonocytic THP-l cells. We hypothesized that Gi proteins and Src tyrosine kinase differentially affect mitogen-activated protein (MAP) kinases (MAPK) and nuclear factor kappa(NF-kappaB) activation. Post-receptor coupling to Ga, proteins were examined using pertussis toxin (PTx),which inhibits Galpha i receptor-coupling. The involvement of the Src family of tyrosine kinases was examined using the selective Src tyrosine kinase inhibitor pyrazolopyrimidine-2 (PP2). Pretreatment of THP-1 cells with PTx attenuated LPS-induced activation of c-Jun-N-terminal kinase (JNK) and p38 kinase, and production of tumor necrosis factor-alpha (TN-alpha) and thromboxane B2 (TXB2). Pretreatment with PP2 inhibited TNF-alpha and TxB2 production, but had no effect on p38 kinase or JNK signaling. Therefore, the Ga i-coupled signaling pathways and Src tyrosine kinase-coupled signaling pathways are necessary for LPS-induced TNF-alpha and TxB2 production, but differ in their effects on MAPK activation. Neither PTx nor PP2 inhibited LPS-induced activation of interleukin receptor activated kinase (IRAK) or inhibited translocation of NF-kappaB. However, PP2 inhibited LPS-induced NF-kappaB transactivation of a luciferase reporter gene construct in a concentration-dependent manner. Thus, LPS induction of Src tyrosine kinases may be essential in downstream NF-kappaB tansactivation of genes following DNA binding. PTx had no effect on NF-kaapaB activation of the reporter construct. These data suggest upstream divergence in signaling through Galpha i,pathways leading to MAPK activation and other signaling events leading to IkappaBalpha degradation and NF-kaapaB DNA binding.  相似文献   

17.
OBJECTIVE: Articular deposition of monosodium urate monohydrate (MSU) crystals may promote cartilage and bone erosion. Therefore, the aim of this study was to determine how MSU crystals stimulate chondrocytes. METHODS: Nitric oxide (NO) release, and expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase 3 (MMP-3) were assessed in cultured chondrocytes treated with MSU. MSU-induced functional signaling by specific protein kinases (p38, Src, and the focal adhesion kinase [FAK] family members proline-rich tyrosine kinase 2 [Pyk-2] and FAK) was also examined using selective pharmacologic inhibitors and transfection of kinase mutants. RESULTS: MSU induced MMP-3 and iNOS expression and NO release in chondrocytes in a p38-dependent manner that did not require interleukin-1 (IL-1), as demonstrated by using IL-1 receptor antagonist. MSU induced rapid tyrosine phosphorylation of Pyk-2 and FAK, their adaptor protein paxillin, and interacting kinase c-Src. Pyk-2 and c-Src signaling both mediated p38 MAPK activation in response to MSU. Pyk-2 and c-Src signaling played a major role in transducing MSU-induced NO production and MMP-3 expression. But, despite the observed FAK phosphorylation, a selective pharmacologic FAK inhibitor and a FAK dominant-negative mutant both failed to block MSU-induced NO release or MMP-3 expression in parallel experiments. CONCLUSION: In chondrocytes, MSU crystals activate a signaling kinase cascade typically employed by adhesion receptors that involves upstream Src and FAK family activation and downstream p38 activation. In this cascade, Pyk-2, Src, and p38 kinases transduce MSU-induced NO production and MMP-3 expression. Our results identify Pyk-2 and c-Src as novel sites for potential therapeutic intervention in cartilage degradation in chronic gout.  相似文献   

18.
H Iwasaki  S Eguchi  H Ueno  F Marumo  Y Hirata 《Endocrinology》1999,140(10):4659-4668
Endothelin-1 (ET-1), a potent endothelium-derived vasoconstrictor peptide, exerts a growth-promoting effect on vascular smooth muscle cells, implicating its pathogenic role in vascular remodeling. To gain insight into the cellular and molecular mechanism whereby ET-1 induces vascular growth, we studied whether transactivation of receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor, are required for activation of p42/p44 mitogen-activated protein (MAP) kinase and p70 S6 kinase (p70S6K), and subsequent growth-promotion by ET-1 in cultured rat vascular smooth muscle cells. Immunoblotting with antiphosphotyrosine antibody revealed that ET-1 rapidly (within 2 min) and transiently induced tyrosine phosphorylation of several proteins, among which 180-kDa protein was shown to be EGFR. ET-1 rapidly increased association of EGFR and Shc with glutathione-S-transferase-Grb2 fusion protein. The ET-1-induced activation of MAP kinase was reduced by an EGFR kinase inhibitor (AG1478) but not by a platelet-derived growth factor receptor kinase inhibitor (AG1296). AG1478 dose-dependently decreased ET-1-stimulated MAP kinase activity as well as [3H]leucine and [3H]thymidine uptake. The ET-1-induced tyrosine phosphorylation of EGFR, as well as MAP kinase activation, was inhibited by an ETA receptor antagonist and intracellular Ca2+ antagonists but not by an ETB receptor antagonist, pertussis toxin, or protein kinase C inhibitors. In addition, dominant negative mutant of H-Ras and a MAP kinase kinase (MEK-1) inhibitor (PD98059) completely blocked ET-1-induced MAP kinase activation as well as [3H]leucine and [3H]thymidine uptake. Both AG1478 and PD98059 inhibited ET-1-induced phosphorylation and activation of p70S6K. Furthermore, rapamycin, a selective inhibitor of mammalian target of rapamycin, completely blocked ET-1-stimulated [3H]leucine and [3H]thymidine uptake. These results suggest that ETA receptor-mediated vascular growth by ET-1 requires both MAP kinase and p70S6K cascades mediated partly via Ca2+-dependent EGFR transactivation.  相似文献   

19.
Proline-rich tyrosine kinase 2 (Pyk2), a member of the focal adhesion kinase family, is thought to act as a key component in vasculogenesis and angiogenesis. Therefore, we studied the effect of mutant Pyk2 expression on the migration and proliferation in endothelial cells (ECs). Two types of mutant Pyk2 were examined by adenovirus vectors AxCA-Pyk2K457A, expressing a kinase inactive mutant, and AxCA-Pyk2Y402F, expressing a tyrosine autophosphorylation site mutant, in addition to AxCA-Pyk2, expressing wild-type Pyk2. Migration of ECs infected with AxCA-Pyk2Y402F increased to a level similar to that of ECs infected with AxCA-Pyk2. The size of effect was dependent on the amount of applied adenoviruses within the range of 3-30 multiplicity of infection. In contrast, AxCA-Pyk2K457A infection did not show any significant effect on cell migration. Western blotting showed that both phosphorylation of Pyk2 Y(881) and association of p130(Cas) with Pyk2 were enhanced in ECs infected with AxCA-Pyk2Y402F as well as with AxCA-Pyk2, but not in ECs infected with AxCA-Pyk2K457A. Therefore, signaling mediated by Pyk2 Y(881) and p130(Cas) may be involved in the migration of ECs infected either with AxCA-Pyk2Y402F or with AxCA-Pyk2. In proliferation assay, AxCA-Pyk2 infection suppressed EC proliferation significantly; however, neither AxCA-Pyk2Y402F nor AxCA-Pyk2K457A showed such an inhibitory effect. Thus, the two Pyk2 mutants revealed that Pyk2 signaling differentially regulates cell migration and proliferation pathways.  相似文献   

20.
In primary human T cells, anergy induction results in enhanced p59Fyn activity. Because Fyn is the kinase primarily responsible for the phosphorylation of PAG (the phosphoprotein associated with glycosphingolipid-enriched microdomains), which negatively regulates Src-kinase activity by recruiting Csk (the C-terminal Src kinase) to the membrane, we investigated whether anergy induction also affects PAG. Analysis of anergic T cells revealed that PAG is hyperphosphorylated at the Csk binding site, leading to enhanced Csk recruitment and inhibitory tyrosine phosphorylation within Fyn. This together with enhanced phosphorylation of a tyrosine within the SH2 domain of Fyn leads to the formation of a hyperactive conformation, thus explaining the enhanced Fyn kinase activity. In addition, we have also identified the formation of a multiprotein complex containing PAG, Fyn, Sam68, and RasGAP in stimulated T cells. We demonstrate that PAG-Fyn overexpression is sufficient to suppress Ras activation in Jurkat T cells and show that this activity is independent of Csk binding. Thus, in addition to negatively regulating Src family kinases by recruiting Csk, PAG also negatively regulates Ras by recruiting RasGAP to the membrane. Finally, by knocking down PAG, we demonstrate both enhanced Src kinase activity and Ras activation, thereby establishing PAG as an important negative regulator of T-cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号