首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Role of the B domain for factor VIII and factor V expression and function   总被引:4,自引:3,他引:4  
Pittman  DD; Marquette  KA; Kaufman  RJ 《Blood》1994,84(12):4214-4225
Factor V and factor VIII are homologous cofactors in the blood coagulation cascade that have the domain structure A1-A2-B-A3-C1-C2, of which the B domain has extensively diverged. In transfected COS-1 monkey cells, expression of factor VIII is approximately 10-fold less efficient than that of factor V, primarily because of inefficient protein secretion and, to a lesser extent, reduced mRNA expression. To study the functional significance and effect of the B domain on expression and activity, chimeric cDNAs were constructed in which the B domains of factor V and factor VIII were exchanged. Expression of a factor VIII chimera harboring the B-domain of factor V yielded a fully functional factor VIII molecule that was expressed twofold more efficiently than wild-type factor VIII because of increased mRNA expression. Thus, sequences within the factor VIII B domain were not responsible for the inefficient secretion of factor VIII compared with factor V. Expression of a factor V chimera harboring the B domain of factor VIII was slightly reduced compared with wild-type factor V, although the secreted molecule had significantly reduced procoagulant activity correlating with dissociated heavy and light chains and resistance to thrombin activation. Interestingly, the factor V chimera containing the factor VIII B domain was efficiently activated by Russell's viper venum (RVV). A factor V B domain deletion (residues 710- 1545) molecule also exhibited significantly reduced procoagulant activity caused by resistance to thrombin cleavage and activation, although this molecule was activatable by RVV. These results show that, in contrast to factor VIII, thrombin activation of factor V requires sequences within the B domain. In addition, thrombin activation of factor V occurs through a different mechanism than activation by RVV.  相似文献   

2.
Thrombin-catalyzed activation of coagulation factor V (FV) is an essential positive feedback reaction within the blood clotting system. Efficient processing at the N- (Arg(709)-Ser(710)) and C-terminal activation cleavage sites (Arg(1545)-Ser(1546)) requires initial substrate interactions with 2 clusters of positively charged residues on the proteinase surface, exosites I and II. We addressed the mechanism of activation of human factor V (FV) using peptides that cover the entire acidic regions preceding these cleavage sites, FV (657-709)/ (FVa2) and FV(1481-1545)/(FVa3). FVa2 appears to interact mostly with exosite I, while both exosites are involved in interactions with the C-terminal linker. The 1.7-? crystal structure of irreversibly inhibited thrombin bound to FVa2 unambiguously reveals docking of FV residues Glu(666)-Glu(672) to exosite I. These findings were confirmed in a second, medium-resolution structure of FVa2 bound to the benzamidine-inhibited proteinase. Our results suggest that the acidic A2-B domain linker is involved in major interactions with thrombin during cofactor activation, with its more N-terminal hirudin-like sequence playing a critical role. Modeling experiments indicate that FVa2, and likely also FVa3, wrap around thrombin in productive thrombin·FV complexes that cover a large surface of the activator to engage the active site.  相似文献   

3.
Coagulation factor V is a high molecular weight plasma glycoprotein that participates as a cofactor in the conversion of prothrombin to thrombin by factor Xa. A phage lambda gt11 Hep G2 cell cDNA expression library was screened by using an affinity-purified antibody to human factor V, and 11 positive clones were isolated and plaque-purified. The clone containing the largest cDNA insert contained 2970 nucleotides and coded for 938 amino acids, a stop codon, and 155 nucleotides of 3' noncoding sequence including a poly(A) tail. The coding region includes 651 amino acids from the carboxyl terminus that constitute the light chain of human factor Va and 287 amino acids that are part of the connecting region of the protein. The predicted amino acid sequence agreed completely with 147 amino acid residues that were identified by Edman degradation of cyanogen bromide peptides isolated from the light chain. During the activation of factor V, several peptide bonds are cleaved by thrombin, giving rise to a heavy chain, a connecting fragment(s), and a light chain. The light chain is generated by the cleavage of an Arg-Ser peptide bond. The amino acid sequence of the light chain is homologous (40%) with the carboxyl-terminal fragment (Mr, 73,000) of human factor VIII. Both fragments have a similar domain structure that includes a single ceruloplasmin-related domain followed by two C domains. The carboxyl terminus of the connecting region, however, shows no significant amino acid sequence homology with factor VIII. It is very acidic and contains a number of potential N-linked glycosylation sites. It also contains about 20 tandem repeats of nine amino acids.  相似文献   

4.
Factor VIII functions in the intrinsic pathway of coagulation as the cofactor for factor IXa proteolytic activation of factor X. Proteolytic cleavage is required for activation and may be responsible for inactivation of cofactor activity. To identify which of the multiple cleavages are required for activation and inactivation of factor VIII, site-directed DNA-mediated mutagenesis of the factor VIII cDNA was performed and the altered forms of factor VIII were expressed in COS-1 monkey cells and characterized. Conversion of arginine residues to isoleucine residues at the aminoterminal side of the cleavage sites at positions 740, 1648, and 1721 resulted in cleavage resistance at the modified site with no alteration in the in vitro procoagulant activity and the susceptibility to thrombin activation. Similar modification of the thrombin cleavage sites at either position 372 or position 1689 resulted in molecules with residual factor VIII activity but resistant to thrombin cleavage at the modified site and not susceptible to thrombin activation. Modification of the arginine to either an isoleucine or a lysine at residue 336, the site postulated for proteolytic inactivation by activated protein C, resulted in a factor VIII molecule with increased procoagulant activity. This increased activity may result from greater resistance to proteolytic inactivation. A model for the activation and inactivation of factor VIII is proposed.  相似文献   

5.
O'Brien  DP; Tuddenham  EG 《Blood》1989,73(8):2117-2122
We have purified the factor VIII from a CRM+ Hemophilia A plasma (90 U/dL VIII:Ag but 0 U/dL VIII:C) and analyzed the protein before and after thrombin activation by Western blotting with monoclonal antibodies (MoAbs). Normal or patient citrated plasma was ultracentrifuged, cryo-ethanol-precipitated and chromatographed on Sepharose 6B. The void volume fractions were reduced and subjected to ion exchange chromatography yielding material of specific activity approximately 1,000 U/mg protein (VIII:C or VIII:Ag). Factor VIII purified in this way from normal plasma is fully activatable by thrombin with proteolytic fragmentation as previously described by F. Rotblat et al (Biochemistry 24: 4294, 1985). Factor VIII 1,689-Cys has the normal distribution of factor VIII light and heavy chains prior to thrombin activation. After exposure to thrombin the heavy chain polypeptides were fully proteolysed but the light chain was totally resistant to cleavage. This is consistent with the demonstration in the patient's leucocyte DNA of a C to T transition in codon 1,689 converting Arg to Cys at the light chain thrombin cleavage site as previously described by J. Gitschier et al (Blood 72:1022, 1988). Uncleaved light chain of Factor VIII 1,689-Cys is not released from von Willebrand factor (vWF) by thrombin, but this is not the sole cause of the functional defect since the protein purified free of vWF has no coagulant activity. We conclude that the functional defect in factor VIII 1,689-Cys is a consequence of failure to release the acidic peptide from the light chain upon thrombin activation.  相似文献   

6.
Kalafatis  M; Haley  PE; Lu  D; Bertina  RM; Long  GL; Mann  KG 《Blood》1996,87(11):4695-4707
Human factor V is activated to factor Va by alpha-thrombin after cleavages at Arg709, Arg1018, and Arg1545. Factor Va is inactivated by activated protein C (APC) in the presence of a membrane surface after three sequential cleavages of the heavy chain. Cleavage at Arg506 provides for efficient exposure of the inactivating cleavages at Arg306 and Arg679. Membrane-bound factor V is also inactivated by APC after cleavage at Arg306. Resistance to APC is associated with a single nucleotide change in the factor V gene (G1691-->A) corresponding to a single amino acid substitution in the factor V molecule: Arg506-->Gln (factor V Leiden). The consequence of this mutation is a delay in factor Va inactivation. Thus, the success of the APC-resistance assay is based on the fortuitous activation of factor V during the assay. Plasmas from normal individuals (1691 GG) and individuals homozygous for the factor V mutation (1691 AA) were diluted in a buffer containing 5 mmol/L CaCl2, phospholipid vesicles (10 micromol/L), and APC. APC, at concentrations < or = 5.5 nmol/L, prevented clot formation in normal plasma, whereas under similar conditions, a clot was observed in plasma from APC-resistant individuals. Gel electrophoresis analyses of factor V fragments showed that membrane-bound factor V is primarily cleaved at Arg306 in both plasmas. However, whereas in normal plasma production of factor Va heavy chain is counterbalanced by fast degradation after cleavage at Arg506/Arg306, in the APC-resistant individuals' plasma, early generation and accumulation of the heavy chain portion of factor Va occurs as a consequence of delayed cleavage at Arg306. At elevated APC concentrations (>5.5 nmol/L), no clot formation was observed in either plasma from normal or APC-resistant individuals. Our data show that resistance to APC in patients with the Arg506-->Gln mutation is due to the inefficient degradation (inactivation) of factor Va heavy chain by APC.  相似文献   

7.
We have purified factor VIII from a patient with moderately severe hemophilia A (FVIII, 4 U/dL; FVIII:Ag, 110 U/dL) and subjected the protein to Western blot analysis after time course activation with thrombin. The cross reacting material-positive (CRM+) FVIII has the normal distribution of heavy and light chains before thrombin activation, and, after incubation with the enzyme, appropriate cleavages are made at positions 740 and 1689. However, the normal thrombin cleavage at position 372 in the heavy chain of this molecule does not occur. This result is consistent with the demonstration in the patient's leukocyte DNA of a C to T transition in codon 372, leading to the substitution of a cysteine for an arginine residue at the heavy chain internal cleavage site. The severely impaired functional activity of this molecule confirms that the heavy chain of FVIII must be proteolysed in order to effect full cofactor activation in vivo. However, a threefold activation was detected when this protein was incubated with thrombin. No evidence of thrombin-mediated cleavage at position 336 in the heavy chain was detected, in contrast to the variant recombinant B domainless-molecule, FVIII 372-Ile, described by Pittman and Kaufman (Proc Natl Acad Sci USA 85:2429, 1988). Using gel permeation studies of the FVIII/von Willebrand factor (vWF) complex before and after thrombin activation, we have demonstrated that the 40 Kd A2 domain of wild type FVIII dissociates from vWF after cleavage by the enzyme. In contrast, incomplete dissociation was detected in the case of FVIII 372-Cys. We conclude that the functional defect in FVIII 372-Cys is a consequence of the resistance to proteolysis of the internal scissile bond in the heavy chain.  相似文献   

8.
An immunoadsorbent method has been developed for the direct analysis of normal and variant plasma factor VIII. Using this method, the molecular defect responsible for mild hemophilia A has been identified for a patient whose plasma factor VIII activity is 0.05 unit/ml, even though the factor VIII antigen content is 3.25 units/ml. Although the variant factor VIII has an apparently normal molecular mass and chain composition, the 92-kDa heavy chain accumulates when the variant protein is incubated with thrombin and the 44-kDa heavy chain fragment cannot be detected. In contrast, thrombin cleavage of the 80-kDa light chain to the 72-kDa fragment is normal. As these data indicate a loss of factor VIII cleavage by thrombin at arginine-372, the genetic defect was determined by polymerase-chain-reaction amplification of exon 8 of the factor VIII gene and direct sequencing of the amplified product. A single-base substitution (guanine----adenine) was identified that produces an arginine to histidine substitution at amino acid residue 372. These data identify the molecular basis of an abnormal factor VIII, "factor VIII-Kumamoto," that lacks procoagulant function because of impaired thrombin activation.  相似文献   

9.
Coagulation factor VIII (FVIII) is a cofactor in the intrinsic pathway of blood coagulation for which deficiency results in the bleeding disorder hemophilia A. FVIII contains a domain structure of A1-A2-B-A3- C1-C2 of which the B domain is dispensable for procoagulant activity in vitro. In this report, we compare the properties of B-domain-deleted FVIII (residues 760 through 1639, designated LA-VIII) to wildtype recombinant FVIII. In transfected Chinese hamster ovary (CHO) cells, LA- VIII was expressed at a 10- to 20-fold greater level compared with wildtype FVIII. The specific activity of purified LA-VIII was indistinguishable from wild-type recombinant FVIII and both exhibited similar thrombin activation coefficients. Wildtype recombinant-derived FVIII and LA-VIII also displayed similar timecourses of thrombin activation and heavy chain cleavage. However, compared with wildtype recombinant-derived FVIII, the light chain of LA-VIII was cleaved fivefold more rapidly by thrombin. Addition of purified von Willebrand factor (vWF) did not alter the kinetics of thrombin cleavage or activation of either wildtype recombinant-derived FVIII or LA-VIII. The immunogenicity of LA-VIII was compared with wildtype FVIII in a novel model of neonatal tolerance induction in mice. The results did not detect any immunologic differences between wildtype FVIII and LA-VIII, suggesting that LA-VIII does not contain significant new epitopes that are absent in wildtype FVIII. LA-VIII was tolerated well on infusion into FVIII-deficient dogs and was able to correct the cuticle bleeding time similar to wildtype recombinant factor VIII. In vivo, LA-VIII was bound to canine vWF and exhibited a half-life similar to wildtype recombinant FVIII. These studies support that B-domain-deleted FVIII may be efficacious in treatment of hemophilia A in humans.  相似文献   

10.
J W Precup  B C Kline  D N Fass 《Blood》1991,77(9):1929-1936
To study the interaction of human factor VIII (FVIII) with its various ligands, select regions of cDNA encoding FVIII light chain were cloned into the plasmid expression vector pET3B to overproduce FVIII protein fragments in the bacterium Escherichia coli. Partially purified FVIII protein fragments were used to produce monoclonal antibodies. One monoclonal antibody, 60-B, bound both an FVIII protein fragment (amino acid residues 1563 through 1909) and recombinant human FVIII, but not porcine FVIII. This antibody prevented FVIII-vWF binding and acted as an inhibitor in both the activated partial thromboplastin time (APTT) assay and a chromogenic substrate assay that measured factor Xa generation. The ability of the antibody to inhibit FVIII activity was diminished in a dose-dependent fashion by von Willebrand factor. This anti-FVIII monoclonal antibody bound to a synthetic peptide, K E D F D I Y D E D E, equivalent to FVIII amino acid residues 1674 through 1684. The 60-B antibody did not react with a peptide in which the aspartic acid residue at 1681 (underlined) was changed to a glycine, which is the amino acid present at this position in porcine FVIII. Gel electrophoretic analysis of thrombin cleavage patterns of human FVIII showed that the 60-B antibody prevented thrombin cleavage at light chain residue 1689. The coagulant inhibitory activity of the 60-B antibody may be due, in part, to the prevention of thrombin activation of FVIII light chain.  相似文献   

11.
Proteolytic inactivation of blood coagulation factor IX by thrombin   总被引:3,自引:0,他引:3  
Kisiel  W; Smith  KJ; McMullen  BA 《Blood》1985,66(6):1302-1308
Coagulation factor IX is a vitamin K-dependent glycoprotein that circulates in blood as a precursor of a serine protease. Incubation of human factor IX with human alpha-thrombin resulted in a time and enzyme concentration-dependent cleavage of factor IX yielding a molecule composed of a heavy chain (mol wt 50,000) and a doublet light chain (mol wt 10,000). The proteolysis of factor IX by thrombin was significantly inhibited by physiological levels of calcium ions. Under nondenaturing conditions, the heavy and light chains of thrombin- cleaved factor IX remained strongly associated, but these chains were readily separated by gel filtration in the presence of denaturants. Amino-terminal sequence analyses of the isolated heavy and light chains of thrombin-cleaved human factor IX indicated that thrombin cleaved peptide bonds at Arg327-Val328 and Arg338-Ser339 in this molecule. Comparable cleavages were observed in bovine factor IX by bovine thrombin and occurred at Arg319-Ser320 and Arg339-Ser340. Essentially, a complete loss of factor IX procoagulant activity was associated with its cleavage by thrombin. Furthermore, thrombin-cleaved factor IX neither developed coagulant activity after treatment with factor XIa nor inhibited the coagulant activity of native factor IX. These data indicate that thrombin cleaves factor IX near its active site serine residue, rendering it incapable of activating factor X. Whether or not this reaction occurs in vivo is unknown.  相似文献   

12.
Shima  M; Ware  J; Yoshioka  A; Fukui  H; Fulcher  CA 《Blood》1989,74(5):1612-1617
We have analyzed the factor VIII (FVIII) protein and the nucleotide sequence around two thrombin cleavage sites, at arginine 372 in the FVIII heavy chain and arginine 1689 in the FVIII light chain in a naturally occurring dysfunctional FVIII variant, FVIII Okayama. The patient was a 42-year-old hemophiliac with a FVIII coagulant activity of 0.03 U/mL and a FVIII antigen level of 0.8 U/mL. The patient's FVIII was not thrombin activatable to levels seen in normal plasma. Immunoblotting of partially purified FVIII Okayama and normal FVIII showed that thrombin cleavage of the 92 kilodalton (Kd) heavy chain was impaired in the mutant protein. The patient's genomic DNA was amplified using the polymerase chain reaction with two sets of synthetic oligonucleotide primers spanning amino acid residues 319 to 400 and 1630 to 1720. Sequence analysis of the amplified DNA fragments revealed a cytosine to thymine transition, converting an arginine to a cysteine codon at residue 372. No abnormality was found in the FVIII light chain region analyzed. The patient's hemophilic brother and carrier mother revealed the same mutation. We conclude that the pathogenesis of hemophilia A in this patient is probably due to an arginine to cysteine substitution at a thrombin cleavage site in the FVIII heavy chain.  相似文献   

13.
Purified human factor VIII procoagulant protein (VIII:C) was treated with purified human activated protein C (APC) and the loss of VIII:C activity correlated with proteolysis of the VIII:C polypeptides. APC proteolyzed all VIII:C polypeptides with mol wt = 92,000 or greater, but not the doublet at mol wt = 79-80,000. These results and our previous thrombin activation studies of purified VIII:C, are analogous with similar studies of factor V and form the basis for the following hypothesis: activated VIII:C consists of heavy and light chain polypeptides [mol wt = 92,000 and mol wt = 79-80,000 (or 71-72,000), respectively] which are similar in Mr to the heavy and light chains of activated factor V. Thrombin activates VIII:C and V by generating these polypeptide chains from larger precursors and APC inactivates both molecules by cleavage at a site located in the heavy chain region of activated VIII:C and V.  相似文献   

14.
Individuals with hemophilia A require frequent infusion of preparations of coagulation factor VIII. The activity of factor VIII (FVIII) as a cofactor for factor IXa in the coagulation cascade is limited by its instability after activation by thrombin. Activation of FVIII occurs through proteolytic cleavage and generates an unstable FVIII heterotrimer that is subject to rapid dissociation of its subunits. In addition, further proteolytic cleavage by thrombin, factor Xa, factor IXa, and activated protein C can lead to inactivation. We have engineered and characterized a FVIII protein, IR8, that has enhanced in vitro stability of FVIII activity due to resistance to subunit dissociation and proteolytic inactivation. FVIII was genetically engineered by deletion of residues 794-1689 so that the A2 domain is covalently attached to the light chain. Missense mutations at thrombin and activated protein C inactivation cleavage sites provided resistance to proteolysis, resulting in a single-chain protein that has maximal activity after a single cleavage after arginine-372. The specific activity of partially purified protein produced in transfected COS-1 monkey cells was 5-fold higher than wild-type (WT) FVIII. Whereas WT FVIII was inactivated by thrombin after 10 min in vitro, IR8 still retained 38% of peak activity after 4 hr. Whereas binding of IR8 to von Willebrand factor (vWF) was reduced 10-fold compared with WT FVIII, in the presence of an anti-light chain antibody, ESH8, binding of IR8 to vWF increased 5-fold. These results demonstrate that residues 1690–2332 of FVIII are sufficient to support high-affinity vWF binding. Whereas ESH8 inhibited WT factor VIII activity, IR8 retained its activity in the presence of ESH8. We propose that resistance to A2 subunit dissociation abrogates inhibition by the ESH8 antibody. The stable FVIIIa described here provides the opportunity to study the activated form of this critical coagulation factor and demonstrates that proteins can be improved by rationale design through genetic engineering technology.  相似文献   

15.
Thrombin treatment of the coagulation factor VIII results in a rapid activation of procoagulant activity with a subsequent first order decay. The structural requirements for thrombin-activated factor VIII were characterized using recombinant-derived human factor VIII and site-directed DNA-mediated mutagenesis. Thrombin-activated human recombinant-derived factor VIII was isolated in an active form by passage over Mono-S fast protein liquid chromatography. The peak fractions had a specific activity of 60,000 U/mg. The subunit composition in the peak fraction contained the 50-Kd A1 domain from the heavy chain, the 73-Kd light chain fragment, and trace amounts of the 43-Kd A2 domain. The requirement of domain A2 for functional activity was shown in several ways. First, the addition of an inhibitory monoclonal antibody that recognizes domain A2 destroyed factor VIIIa activity. Second, addition of a Mono-S FPLC fraction that contained the A2 domain polypeptide back to the peak activity fraction increased activity of the factor VIIIa by 22-fold. The maximum specific activity achieved was 180,000 U/mg. Finally, expression of an A2 domain deletion mutant did not yield procoagulant activity, although the mutant was effectively secreted from the cell, exhibited appropriate heavy and light chain association, and was susceptible to thrombin cleavage. Cotransfection of this A2 domain deletion mutant with an A2 domain expression vector yielded a secreted complex and restored procoagulant activity in the conditioned medium. This result shows that the A2 domain can fold and assemble with A2-deleted factor VIII to yield a functional molecule. We conclude that the A2 domain is required for functional factor VIIIa activity and loss of activity in activated factor VIII may result from dissociation of A2 from the thrombin-activated heterotrimer.  相似文献   

16.
The regulation of human factor V by a neutrophil protease   总被引:1,自引:0,他引:1  
Oates  AM; Salem  HH 《Blood》1987,70(3):846-851
Neutrophils activated with serum opsonized zymosan, soluble heat- aggregated IgG, and ionophore A23187 in the presence of calcium release a material capable of initially activating factor V. Subsequent inactivation of factor V was only observed with neutrophil releasate derived from IgG and ionophore. In this study we examine the nature of this neutrophil activity and investigate its role in the regulation of factor V/Va. From early in the fractionation it was apparent that the cells contained different enzymes capable of cleaving factor V. The most active of these was isolated and found to be an isomer of human neutrophil elastase. The purified protease caused a dose-dependent activation of isolated factor V to a maximum of threefold. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, single-chain factor V was cleaved to form intermediates of 100 and 91 kilodaltons (kD). Coagulant activity correlated with the formation of a 97-kD heavy and 77-kD light chain. On prolonged incubation the formed factor Va(e) was inactivated in association with proteolysis of the 97-kD band to smaller peptides and cleavage of the 77-kD light chain to a molecular weight of 75 kD, which is similar to thrombin-activated factor Va light chain. Neutrophil elastase also caused rapid inactivation of thrombin- activated factor V, factor Va(t). These observations suggest that elastase cleaves factor V at sites distinct from that by thrombin and therefore represents a novel factor V activation pattern. It is proposed that upon neutrophil activation elastase is secreted into the plasma milieu to initiate factor V activation. This serves to generate small amounts of thrombin that, in turn, by positive feedback fully activates factor V and thus amplifies the coagulation reaction.  相似文献   

17.
The molecular defect responsible for moderate and severe hemophilia A has been identified for two unrelated patients with the CRM-positive form of this disorder (factor VIII activity of 0.02 and 0.05 U/mL with factor VIII antigen of 0.87 and 2.20 U/mL). In both cases, the immunopurified dysfunctional factor VIII protein is abnormal, in that the 80 Kd light chain is not cleaved by thrombin at arginine-1689. The basis for this failure was identified by polymerase chain reaction amplification of exon 14 of the variant factor VIII genes and direct sequencing of the amplified products. In both cases, a single base substitution (C to T) was identified that produces an arginine to cysteine substitution at amino acid residue 1689. These data identify the molecular defects of the two identical factor VIII variant proteins. The dysfunctional factor VIII has been designated "Factor VIII-East Hartford," the residence of the patient in whom the defect was first identified.  相似文献   

18.
Phosphorylation of factor Va and factor VIIIa by activated platelets   总被引:3,自引:3,他引:3  
Kalafatis  M; Rand  MD; Jenny  RJ; Ehrlich  YH; Mann  KG 《Blood》1993,81(3):704-719
Platelet activation leads to the incorporation of 32[PO4(2-)] into bovine coagulation factor Va and recombinant human factor VIII. In the presence of the soluble fraction from thrombin-activated platelets and (gamma-32P) adenosine triphosphate, radioactivity is incorporated exclusively into the M(r) = 94,000 heavy chain (H94) of factor Va and into the M(r) = 210,000 to 90,000 heavy chains as well into the M(r) = 80,000 light chain of factor VIII. Proteolysis of the purified phosphorylated M(r) = 94,000 factor Va heavy chain by activated protein C (APC) gave products of M(r) = 70,000, 24,000, and 20,000. Only the intermediate M(r) = 24,000 fragment contained radioactivity. Because the difference between the M(r) = 24,000 and M(r) = 20,000 fragments is located on the COOH-terminal end of the bovine heavy chain, phosphorylation of H94 must occur within the M(r) = 4,000 peptide derived from the carboxyl-terminal end of H94 (residues 663 through 713). Exposure of the radioactive factor VIII molecule to thrombin ultimately resulted in a nonradioactive light chain and an M(r) = 24,000 radioactive fragment that corresponds to the carboxyl-terminal segment of the A1 domain of factor VIII. Based on the known sequence of human factor VIII, phosphorylation of factor VIII by the platelet kinase probably occurs within the acidic regions 337 through 372 and 1649 through 1689 of the procofactor. These acidic regions are highly homologous to sequences known to be phosphorylated by casein kinase II. Results obtained using purified casein kinase II gave a maximum observed stoichiometry of 0.6 mol of 32[PO4(2-)]/mol of factor Va heavy chain and 0.35 mol of 32[PO4(2-)]/mol of factor VIII. Phosphoamino acid analysis of phosphorylated factor Va by casein kinase II or by the platelet kinase showed only the presence of phosphoserine while phosphoamino acid analysis of phosphorylated factor VIII by casein kinase II showed the presence of phosphothreonine as well as small amounts of phosphoserine. The platelet kinase responsible for the phosphorylation of the two cofactors was found to be inhibited by several synthetic protein kinase inhibitors. Finally, partially phosphorylated factor Va was found to be more sensitive to APC inactivation than its native counterpart. Our findings suggest that phosphorylation of factors Va and VIIIa by a platelet casein kinase II- like kinase may downregulate the activity of the two cofactors.  相似文献   

19.
B J Lamphear  P J Fay 《Blood》1992,80(12):3120-3126
Factor IXa was shown to inactivate both factor VIII and factor VIIIa in a phospholipid-dependent reaction that could be blocked by an antifactor IX antibody. Factor IXa-catalyzed inactivation correlated with proteolytic cleavages within the A1 subunit of factor VIIIa and within the heavy chain (contiguous A1-A2-B domains) of factor VIII. Furthermore, a relatively slow conversion of factor VIII light chain to a 68-Kd fragment was observed after prolonged incubation. Sites of cleavage were identified within the A1 domain at Arg336-Met337 and within the factor VIII light chain at Arg1719-Asn1720. Factor IXa failed to cleave isolated factor VIII heavy chains, yet cleaved isolated factor VIII light chain. In addition, the purified A1/A3-C1-C2 dimer derived from factor VIIIa was a substrate for factor IXa; however, cleavage of the A1 subunit occurred at less than 30% the rate of cleavage of A1 in trimeric factor VIIIa. These data suggest that factor VIII light chain contributes to the binding site for factor IXa and also support a role for a heavy chain determinant located within the A2 subunit in the association of factor VIIIa with factor IXa. Furthermore, the capacity of factor IXa to proteolytically inactivate its cofactor, factor VIIIa, suggests a mode of regulation within the intrinsic tenase complex.  相似文献   

20.
Viskup  RW; Tracy  PB; Mann  KG 《Blood》1987,69(4):1188-1195
Human platelet factor V has been isolated using either a monoclonal or polyclonal antibody directed against human plasma factor V. The largest peptide observed upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified human platelet factor V comigrates with purified human plasma factor V. However, a significant portion of the isolated protein is represented by peptides of lower apparent molecular weight (Mr). These lower Mr species that copurify with platelet factor V have been shown to be platelet factor V components by their immunological cross-reactivity with monoclonal and polyclonal antibodies to purified human plasma factor V. Platelets isolated from whole blood drawn directly into inhibitors to prevent proteolysis and platelet activation demonstrate the pattern of fragmented platelet factor V. The components of purified platelet factor V demonstrate apparent Mr ranging between 115 K and 330 K and are detectably different from the intermediates and end products observed during the thrombin cleavage of single-chain plasma factor V. Upon treatment with thrombin the platelet factor V components are cleaved and the end products are indistinguishable from those obtained upon thrombin activation of plasma factor V to plasma factor Va. Examination of the components by immunoblotting demonstrates that some of the cleavages which have occurred in the platelet factor V molecule are within the 150-K activation peptide. Bioassay indicates that platelet factor V exists as a procofactor and cleavage by thrombin yields the active cofactor, platelet factor Va. These data suggest that human platelet factor V is stored in the platelet as a partially fragmented procofactor that can be activated by thrombin to yield human platelet factor Va, the active cofactor in the human prothrombinase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号