首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over 12 months, romosozumab increased bone formation and decreased bone resorption, resulting in increased bone mineral density (BMD) in postmenopausal women with low BMD (NCT00896532). Herein, we report the study extension evaluating 24 months of treatment with romosozumab, discontinuation of romosozumab, alendronate followed by romosozumab, and romosozumab followed by denosumab. Postmenopausal women aged 55 to 85 years with a lumbar spine (LS), total hip (TH), or femoral neck T‐score ≤–2.0 and ≥–3.5 were enrolled and randomly assigned to placebo, one of five romosozumab regimens (70 mg, 140 mg, 210 mg monthly [QM]; 140 mg Q3M; 210 mg Q3M) for 24 months, or open‐label alendronate for 12 months followed by romosozumab 140 mg QM for 12 months. Eligible participants were then rerandomized 1:1 within original treatment groups to placebo or denosumab 60 mg Q6M for an additional 12 months. Percentage change from baseline in BMD and bone turnover markers (BTMs) at months 24 and 36 and safety were evaluated. Of 364 participants initially randomized to romosozumab, placebo, or alendronate, 315 completed 24 months of treatment and 248 completed the extension. Romosozumab markedly increased LS and TH BMD through month 24, with largest gains observed with romosozumab 210 mg QM (LS = 15.1%; TH = 5.4%). Women receiving romosozumab who transitioned to denosumab continued to accrue BMD, whereas BMD returned toward pretreatment levels with placebo. With romosozumab 210 mg QM, bone formation marker P1NP initially increased after treatment initiation and gradually decreased to below baseline by month 12, remaining below baseline through month 24; bone resorption marker β‐CTX rapidly decreased after treatment, remaining below baseline through month 24. Transition to denosumab further decreased both BTMs, whereas after transition to placebo, P1NP returned to baseline and β‐CTX increased above baseline. Adverse events were balanced between treatment groups through month 36. These data suggest that treatment effects of romosozumab are reversible upon discontinuation and further augmented by denosumab. © 2018 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.  相似文献   

2.
Romosozumab, a monoclonal antibody that binds sclerostin, has a dual effect on bone by increasing bone formation and reducing bone resorption, and thus has favorable effects in both aspects of bone volume regulation. In a phase 2 study, romosozumab increased areal BMD at the lumbar spine and total hip as measured by DXA compared with placebo, alendronate, and teriparatide in postmenopausal women with low bone mass. In additional analyses from this international, randomized study, we now describe the effect of romosozumab on lumbar spine and hip volumetric BMD (vBMD) and BMC at month 12 as assessed by QCT in the subset of participants receiving placebo, s.c. teriparatide (20 µg once daily), and s.c. romosozumab (210 mg once monthly). QCT measurements were performed at the lumbar spine (mean of L1 and L2 entire vertebral bodies, excluding posterior processes) and hip. One year of treatment with romosozumab significantly increased integral vBMD and BMC at the lumbar spine and total hip from baseline, and compared with placebo and teriparatide (all p < 0.05). Trabecular vertebral vBMD improved significantly and similarly from baseline (p < 0.05) with both romosozumab (18.3%) and teriparatide (20.1%), whereas cortical vertebral vBMD gains were larger with romosozumab compared with teriparatide (13.7% versus 5.7%, p < 0.0001). Trabecular hip vBMD gains were significantly larger with romosozumab than with teriparatide (10.8% versus 4.2%, p = 0.01), but were similar for cortical vBMD (1.1% versus –0.9%, p = 0.12). Cortical BMC gains were larger with romosozumab compared with teriparatide at both the spine (23.3% versus 10.9%, p < 0.0001) and hip (3.4% versus 0.0%, p = 0.03). These improvements are expected to result in strength gains and support the continued clinical investigation of romosozumab as a potential therapy to rapidly reduce fracture risk in ongoing phase 3 studies. © 2016 American Society for Bone and Mineral Research.  相似文献   

3.
Romosozumab is a monoclonal antibody that inhibits sclerostin and has been shown to reduce the risk of fractures within 12 months. In a phase II, randomized, placebo‐controlled clinical trial of treatment‐naïve postmenopausal women with low bone mass, romosozumab increased bone mineral density (BMD) at the hip and spine by the dual effect of increasing bone formation and decreasing bone resorption. In a substudy of that trial, which included placebo and teriparatide arms, here we investigated whether those observed increases in BMD also resulted in improvements in estimated strength, as assessed by finite element analysis. Participants received blinded romosozumab s.c. (210 mg monthly) or placebo, or open‐label teriparatide (20 μg daily) for 12 months. CT scans, obtained at the lumbar spine (n = 82) and proximal femur (n = 46) at baseline and month 12, were analyzed with finite element software (VirtuOst, O.N. Diagnostics) to estimate strength for a simulated compression overload for the spine (L1 vertebral body) and a sideways fall for the proximal femur, all blinded to treatment assignment. We found that, at month 12, vertebral strength increased more for romosozumab compared with both teriparatide (27.3% versus 18.5%; p = 0.005) and placebo (27.3% versus –3.9%; p < 0.0001); changes in femoral strength for romosozumab showed similar but smaller changes, increasing more with romosozumab versus teriparatide (3.6% versus –0.7%; p = 0.027), and trending higher versus placebo (3.6% versus ?0.1%; p = 0.059). Compartmental analysis revealed that the bone‐strengthening effects for romosozumab were associated with positive contributions from both the cortical and trabecular bone compartments at both the lumbar spine and hip. Taken together, these findings suggest that romosozumab may offer patients with osteoporosis a new bone‐forming therapeutic option that increases both vertebral and femoral strength within 12 months. © 2017 American Society for Bone and Mineral Research.  相似文献   

4.
In the Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) clinical trial (NCT01631214), 1 year of romosozumab followed by alendronate reduced the risk of vertebral and nonvertebral fractures compared to alendronate alone in women with prevalent fracture. We performed post hoc analyses of data from patients in ARCH (romosozumab, n = 1739; alendronate, n = 1726) who had a baseline BMD measurement and received at least one open-label alendronate dose. We evaluated 1-year mean BMD and corresponding T-score changes; proportions of patients achieving T-scores > −2.5 at the total hip (TH), femoral neck (FN), and lumbar spine (LS); and group differences in fracture rates after 12 months, while all participants were on alendronate. Subsequently, we investigated the relationship between T-scores achieved at the TH, FN, and LS at 12 months and subsequent fracture incidence. At 1 year, mean change from baseline in TH BMD was 6.3% (T-score change 0.31) with romosozumab versus 2.9% (T-score change 0.15) with alendronate (p < .001). The proportion of patients with TH T-score > −2.5 increased from 34% at baseline to 55% after 1 year of romosozumab and from 32% at baseline to 44% after 1 year of alendronate. Compared with patients receiving alendronate in year 1, those receiving romosozumab had a 75% reduction in new or worsening vertebral fracture (p < .001) in year 2, and a 19% reduction in nonvertebral fracture (p = .120) and 40% reduction in hip fracture (p = .041) during the open-label period. TH and FN T-scores achieved at month 12 were associated with subsequent nonvertebral and vertebral fracture rates and the relationships were independent of treatment received. LS T-score at 12 months was associated with vertebral but not nonvertebral fracture risk. We conclude that 1 year of romosozumab leads to larger BMD gains versus alendronate, and that the T-score achieved with either therapy is related to subsequent fracture risk. These data support the use of T-score as a therapeutic target for patients with osteoporosis. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.  相似文献   

5.
Denosumab reduces bone resorption and vertebral and nonvertebral fracture risk. Denosumab discontinuation increases bone turnover markers 3 months after a scheduled dose is omitted, reaching above‐baseline levels by 6 months, and decreases bone mineral density (BMD) to baseline levels by 12 months. We analyzed the risk of new or worsening vertebral fractures, especially multiple vertebral fractures, in participants who discontinued denosumab during the FREEDOM study or its Extension. Participants received ≥2 doses of denosumab or placebo Q6M, discontinued treatment, and stayed in the study ≥7 months after the last dose. Of 1001 participants who discontinued denosumab during FREEDOM or Extension, the vertebral fracture rate increased from 1.2 per 100 participant‐years during the on‐treatment period to 7.1, similar to participants who received and then discontinued placebo (n = 470; 8.5 per 100 participant‐years). Among participants with ≥1 off‐treatment vertebral fracture, the proportion with multiple (>1) was larger among those who discontinued denosumab (60.7%) than placebo (38.7%; p = 0.049), corresponding to a 3.4% and 2.2% risk of multiple vertebral fractures, respectively. The odds (95% confidence interval) of developing multiple vertebral fractures after stopping denosumab were 3.9 (2.1–7. 2) times higher in those with prior vertebral fractures, sustained before or during treatment, than those without, and 1.6 (1.3–1.9) times higher with each additional year of off‐treatment follow‐up; among participants with available off‐treatment total hip (TH) BMD measurements, the odds were 1.2 (1.1–1.3) times higher per 1% annualized TH BMD loss. The rates (per 100 participant‐years) of nonvertebral fractures during the off‐treatment period were similar (2.8, denosumab; 3.8, placebo). The vertebral fracture rate increased upon denosumab discontinuation to the level observed in untreated participants. A majority of participants who sustained a vertebral fracture after discontinuing denosumab had multiple vertebral fractures, with greatest risk in participants with a prior vertebral fracture. Therefore, patients who discontinue denosumab should rapidly transition to an alternative antiresorptive treatment. Clinicaltrails.gov : NCT00089791 (FREEDOM) and NCT00523341 (Extension). © 2017 American Society for Bone and Mineral Research.  相似文献   

6.
Osteoporosis is a chronic disease and requires long‐term treatment with pharmacologic therapy to ensure sustained antifracture benefit. Denosumab reduced the risk for new vertebral, nonvertebral, and hip fractures over 36 months in the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. Whereas discontinuation of denosumab has been associated with transient increases in bone remodeling and declines in bone mineral density (BMD), the effect on fracture risk during treatment cessation is not as well characterized. To understand the fracture incidence between treatment groups after cessation of investigational product, we evaluated subjects in FREEDOM who discontinued treatment after receiving two to five doses of denosumab or placebo, and continued study participation for ≥7 months. The off‐treatment observation period for each individual subject began 7 months after the last dose and lasted until the end of the study. This subgroup of 797 subjects (470 placebo, 327 denosumab), who were evaluable during the off‐treatment period, showed similar baseline characteristics for age, prevalent fracture, and lumbar spine and total hip BMD T‐scores. During treatment, more placebo‐treated subjects as compared with denosumab‐treated subjects sustained a fracture and had significant decreases in BMD. During the off‐treatment period (median 0.8 years per subject), 42% versus 28% of placebo‐ and denosumab‐treated subjects, respectively, initiated other therapy. Following discontinuation, similar percentages of subjects in both groups sustained a new fracture (9% placebo, 7% denosumab), resulting in a fracture rate per 100 subject‐years of 13.5 for placebo and 9.7 for denosumab (hazard ratio [HR] 0.82; 95% confidence interval [CI], 0.49–1.38), adjusted for age and total hip BMD T‐score at baseline. There was no apparent difference in fracture occurrence pattern between the groups during the off‐treatment period. In summary, there does not appear to be an excess in fracture risk after treatment cessation with denosumab compared with placebo during the off‐treatment period for up to 24 months. © 2013 American Society for Bone and Mineral Research.  相似文献   

7.
Denosumab is a fully human monoclonal antibody that inhibits bone resorption by neutralizing RANKL, a key mediator of osteoclast formation, function, and survival. This phase 3, multicenter, double‐blind study compared the efficacy and safety of denosumab with alendronate in postmenopausal women with low bone mass. One thousand one hundred eighty‐nine postmenopausal women with a T‐score ≤ ?2.0 at the lumbar spine or total hip were randomized 1:1 to receive subcutaneous denosumab injections (60 mg every 6 mo [Q6M]) plus oral placebo weekly (n = 594) or oral alendronate weekly (70 mg) plus subcutaneous placebo injections Q6M (n = 595). Changes in BMD were assessed at the total hip, femoral neck, trochanter, lumbar spine, and one‐third radius at 6 and 12 mo and in bone turnover markers at months 1, 3, 6, 9, and 12. Safety was evaluated by monitoring adverse events and laboratory values. At the total hip, denosumab significantly increased BMD compared with alendronate at month 12 (3.5% versus 2.6%; p < 0.0001). Furthermore, significantly greater increases in BMD were observed with denosumab treatment at all measured skeletal sites (12‐mo treatment difference: 0.6%, femoral neck; 1.0%, trochanter; 1.1%, lumbar spine; 0.6%, one‐third radius; p ≤ 0.0002 all sites). Denosumab treatment led to significantly greater reduction of bone turnover markers compared with alendronate therapy. Adverse events and laboratory values were similar for denosumab‐ and alendronate‐treated subjects. Denosumab showed significantly larger gains in BMD and greater reduction in bone turnover markers compared with alendronate. The overall safety profile was similar for both treatments.  相似文献   

8.
Denosumab is an approved therapy for postmenopausal women with osteoporosis at high or increased risk for fracture. In the FREEDOM study, denosumab reduced fracture risk and increased bone mineral density (BMD). We report the spine and hip dual-energy X-ray absorptiometry (DXA) BMD responses from the overall study of 7808 women and from a substudy of 441 participants in which more extensive spine and hip assessments as well as additional skeletal sites were evaluated. Significant BMD improvements were observed as early as 1 mo at the lumbar spine, total hip, and trochanter (all p < 0.005 vs placebo and baseline). BMD increased progressively at the lumbar spine, total hip, femoral neck, trochanter, 1/3 radius, and total body from baseline to months 12, 24, and 36 (all p < 0.005 vs placebo and baseline). BMD gains above the least significant change of more than 3% at 36 months were observed in 90% of denosumab-treated subjects at the lumbar spine and 74% at the total hip, and gains more than 6% occurred in 77% and 38%, respectively. In conclusion, denosumab treatment resulted in significant, early, and continued BMD increases at both trabecular and cortical sites throughout the skeleton over 36 mo with important gains observed in most subjects.  相似文献   

9.
In the randomized, placebo‐controlled FREEDOM study of women aged 60 to 90 years with postmenopausal osteoporosis, treatment with denosumab once every 6 months for 36 months significantly reduced hip and new vertebral fracture risk by 40% and 68%, respectively. To gain further insight into this efficacy, we performed a nonlinear finite element analysis (FEA) of hip and spine quantitative computed tomography (QCT) scans to estimate hip and spine strength in a subset of FREEDOM subjects (n = 48 placebo; n = 51 denosumab) at baseline, 12, 24, and 36 months. We found that, compared with baseline, the finite element estimates of hip strength increased from 12 months (5.3%; p < 0.0001) and through 36 months (8.6%; p < 0.0001) in the denosumab group. For the placebo group, hip strength did not change at 12 months and decreased at 36 months (–5.6%; p < 0.0001). Similar changes were observed at the spine: strength increased by 18.2% at 36 months for the denosumab group (p < 0.0001) and decreased by –4.2% for the placebo group (p = 0.002). At 36 months, hip and spine strength increased for the denosumab group compared with the placebo group by 14.3% (p < 0.0001) and 22.4% (p < 0.0001), respectively. Further analysis of the finite element models indicated that strength associated with the trabecular bone was lost at the hip and spine in the placebo group, whereas strength associated with both the trabecular and cortical bone improved in the denosumab group. In conclusion, treatment with denosumab increased hip and spine strength as estimated by FEA of QCT scans compared with both baseline and placebo owing to positive treatment effects in both the trabecular and cortical bone compartments. These findings provide insight into the mechanism by which denosumab reduces fracture risk for postmenopausal women with osteoporosis. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. This is an open access article under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.  相似文献   

10.
INTRODUCTION: Denosumab is a fully human monoclonal antibody that inhibits receptor activator of nuclear factor-kappa B ligand (RANKL), an essential mediator of osteoclast formation, function, and survival that has been shown to decrease bone turnover and increase bone mineral density (BMD) in treated patients. We assessed the long-term efficacy and safety of denosumab, and the effects of discontinuing and restarting denosumab treatment in postmenopausal women with low bone mass. METHODS: Postmenopausal women with a lumbar spine T-score of -1.8 to -4.0 or proximal femur T-score of -1.8 to -3.5 were randomized to denosumab every 3 months (Q3M; 6, 14, or 30 mg) or every 6 months (Q6M; 14, 60, 100, or 210 mg); placebo; or open-label oral alendronate weekly. After 24 months, patients receiving denosumab either continued treatment at 60 mg Q6M for an additional 24 months, discontinued therapy, or discontinued treatment for 12 months then re-initiated denosumab (60 mg Q6M) for 12 months. The placebo cohort was maintained. Alendronate-treated patients discontinued alendronate and were followed. Changes in BMD and bone turnover markers (BTM) as well as safety outcomes were evaluated. RESULTS: Overall, 262/412 (64%) patients completed 48 months of study. Continuous, long-term denosumab treatment increased BMD at the lumbar spine (9.4% to 11.8%) and total hip (4.0% to 6.1%). BTM were consistently suppressed over 48 months. Discontinuation of denosumab was associated with a BMD decrease of 6.6% at the lumbar spine and 5.3% at the total hip within the first 12 months of treatment discontinuation. Retreatment with denosumab increased lumbar spine BMD by 9.0% from original baseline values. Levels of BTM increased upon discontinuation and decreased with retreatment. Adverse event rates were similar among treatment groups. CONCLUSIONS: In postmenopausal women with low BMD, long-term denosumab treatment led to gains in BMD and reduction of BTM throughout the course of the study. The effects on bone turnover were fully reversible with discontinuation and restored with subsequent retreatment.  相似文献   

11.
Patients treated with bisphosphonates for osteoporosis may discontinue or require a switch to other therapies. Denosumab binds to RANKL and is a potent inhibitor of bone resorption that has been shown to increase bone mineral density (BMD) and decrease fracture risk in postmenopausal women with osteoporosis. This was a multicenter, international, randomized, double‐blind, double‐dummy study in 504 postmenopausal women ≥ 55 years of age with a BMD T‐score of ?2.0 or less and ?4.0 or more who had been receiving alendronate therapy for at least 6 months. Subjects received open‐label branded alendronate 70 mg once weekly for 1 month and then were randomly assigned to either continued weekly alendronate therapy or subcutaneous denosumab 60 mg every 6 months and were followed for 12 months. Changes in BMD and biochemical markers of bone turnover were evaluated. In subjects transitioning to denosumab, total hip BMD increased by 1.90% at month 12 compared with a 1.05% increase in subjects continuing on alendronate (p < .0001). Significantly greater BMD gains with denosumab compared with alendronate also were achieved at 12 months at the lumbar spine, femoral neck, and 1/3 radius (all p < .0125). Median serum CTX levels remained near baseline in the alendronate group and were significantly decreased versus alendronate (p < .0001) at all time points with denosumab. Adverse events and serious adverse events were balanced between groups. No clinical hypocalcemic adverse events were reported. Transition to denosumab produced greater increases in BMD at all measured skeletal sites and a greater reduction in bone turnover than did continued alendronate with a similar safety profile in both groups. Copyright © 2010 American Society for Bone and Mineral Research  相似文献   

12.
Discontinuation of denosumab is associated with a rapid return of bone mineral density (BMD) to baseline and an increased risk of multiple vertebral fractures. No subsequent treatment regimen has yet been established for preventing either loss of BMD or multiple vertebral fractures after denosumab discontinuation. The aim of this 8-year observational study was to investigate the effect of a single zoledronate infusion, administered 6 months after the last denosumab injection, on fracture occurrence and loss of BMD. We report on 120 women with postmenopausal osteoporosis who were treated with 60 mg denosumab every 6 months for 2 to 5 years (mean duration 3 years) and then 5 mg zoledronate 6 months after the last denosumab injection. All patients were evaluated clinically, by dual-energy X-ray absorptiometry (DXA) and vertebral fracture assessment (VFA), before the first and after the last denosumab injection and at 2.5 years (median) after denosumab discontinuation. During this off-treatment period, 3 vertebral fractures (1.1 per 100 patient-years) and 4 nonvertebral fractures (1.5 per 100 patient-years) occurred. No patients developed multiple vertebral fractures. Sixty-six percent (confidence interval [CI] 57% to 75%) of BMD gained with denosumab was retained at the lumbar spine and 49% (CI 31% to 67%) at the total hip. There was no significant difference in the decrease of BMD between patients with BMD gains of >9% versus <9% while treated with denosumab. Previous antiresorptive treatment or prevalent fractures had no impact on the decrease of BMD, and all bone loss occurred within the first 18 months after zoledronate infusion. In conclusion, a single infusion of 5 mg zoledronate after a 2- to 5-year denosumab treatment cycle retained more than half of the gained BMD and was not associated with multiple vertebral fractures, as reported in patients who discontinued denosumab without subsequent bisphosphonate treatment. © 2020 American Society for Bone and Mineral Research.  相似文献   

13.
Combined teriparatide and denosumab rapidly and substantially increases bone mineral density (BMD) at all anatomic sites. Discontinuation of denosumab however, results in high-turnover bone loss and increased fracture risk. The optimal way to prevent this bone loss remains undefined. This study is a preplanned extension of the DATA-HD study, where postmenopausal women with osteoporosis were randomized to receive 9 months of either 20 μg or 40 μg of teriparatide daily overlapping with denosumab (60 mg administered at months 3 and 9). At the completion of this 15-month study, women were invited to enroll in the DATA-HD Extension where they received a single dose of zoledronic acid (5 mg) 24 to 35 weeks after the last denosumab dose. Areal BMD and bone turnover markers were measured at month 27 and 42 (12 and 27 months after zoledronic acid, respectively) and spine and hip volumetric bone density by quantitative CT was measured at month 42. Fifty-three women enrolled in the DATA-HD Extension. At the femoral neck and total hip, the mean 5.6% and 5.1% gains in BMD achieved from month 0 to 15 were maintained both 12 and 27 months after zoledronic acid administration. At the spine, the mean 13.6% gain in BMD achieved from month 0 to 15 was maintained for the first 12 months but modestly decreased thereafter, resulting in a 3.0% reduction (95% CI, −4.0% to −2.0%, p < .0001) 27 months after zoledronic acid. The pattern of BMD changes between months 15 and 42 were qualitatively similar in the 20-μg and 40-μg groups. A single dose of zoledronic acid effectively maintains the large and rapid total hip and femoral neck BMD increases achieved with combination teriparatide/denosumab therapy for at least 27 months following the transition. Spine BMD was also largely, though not fully, maintained during this period. These data suggest that the DATA-HD Extension regimen may be an effective strategy in the long-term management of patients at high risk of fragility fracture. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

14.
We conducted an open‐label, prospective, randomized trial to assess the efficacy and safety of RANKL inhibition with denosumab to prevent the loss of bone mineral density (BMD) in the first year after kidney transplantation. Ninety kidney transplant recipients were randomized 1:1 2 weeks after surgery to receive denosumab (60 mg at baseline and 6 months) or no treatment. After 12 months, total lumbar spine areal BMD (aBMD) increased by 4.6% (95% confidence interval [CI] 3.3–5.9%) in 46 patients in the denosumab group and decreased by ?0.5% (95% CI ?1.8% to 0.9%) in 44 patients in the control group (between‐group difference 5.1% [95% CI 3.1–7.0%], p < 0.0001). Denosumab also increased aBMD at the total hip by 1.9% (95% CI, 0.1–3.7%; p = 0.035) over that in the control group at 12 months. High‐resolution peripheral quantitative computed tomography in a subgroup of 24 patients showed that denosumab increased volumetric BMD at the distal tibia and radius (all p < 0.05). Biomarkers of bone turnover (C‐terminal telopeptide of type I collagen, procollagen type I N‐terminal propeptide) markedly decreased with denosumab (all p < 0.0001). Episodes of cystitis and asymptomatic hypocalcemia occurred more often with denosumab, whereas graft function, rate of rejections, and incidence of opportunistic infections were similar. In conclusion, denosumab increased BMD in the first year after kidney transplantation but was associated with more frequent episodes of urinary tract infection.  相似文献   

15.
Minimizing post‐fracture bone loss is an important aspect of recovery from hip fracture, and determination of factors that affect bone mineral density (BMD) response to treatment after hip fracture may assist in the development of targeted therapeutic interventions. A post hoc analysis of the HORIZON Recurrent Fracture Trial was done to determine the effect of zoledronic acid (ZOL) on total hip (TH) and femoral neck (FN) BMD in subgroups with low‐trauma hip fracture. A total of 2127 patients were randomized (1:1) to yearly infusions of ZOL 5 mg (n = 1065) or placebo (n = 1062) within 90 days of operation for low‐trauma hip fracture. The 1486 patients with a baseline and at least one post‐baseline BMD assessment at TH or FN (ZOL = 745, placebo = 741) were included in the analyses. Percentage change from baseline in TH and FN BMD was assessed at months 12 and 24 and compared across subgroups of hip fracture patients. Percentage change from baseline in TH and FN BMD at months 12 and 24 was greater (p < 0.05) in ZOL‐treated patients compared with placebo in most subgroups. Treatment‐by‐subgroup interactions (p < 0.05) indicated that a greater effect on BMD was observed for TH BMD at month 12 in females, in patients in the lower tertile body mass index at baseline (≤22.6 kg/m2), and in patients with baseline FN BMD T‐score of ≤ –2.5; for FN BMD in patients who received ZOL for >6 weeks post‐surgery; and for TH and FN BMD in patients with a history of one or more prior fractures. All interactions were limited to the first 12 months after treatment with none observed for the 24‐month comparisons. (Clinical trial registration number NCT00046254.) © 2014 American Society for Bone and Mineral Research.  相似文献   

16.
Increased bone turnover and rapid bone loss follow discontinuation of denosumab. We investigated the long-term efficacy of zoledronate (ZOL) in maintaining bone mineral density (BMD) after discontinuation of denosumab. In this randomized, open-label, interventional study, we included 61 postmenopausal women and men older than 50 years discontinuing denosumab after 4.6 ± 1.6 years. We administered ZOL 6 months (6 M) or 9 months (9 M) after the last denosumab or when bone turnover had increased (observation group [OBS]). ZOL was readministrated if p-cross-linked C-terminal telopeptide (p-CTX) increased ≥1.26 μg/L or BMD decreased ≥5%. The results after 12 months have previously been published; here we report the outcome after 24 months (ClinicalTrials NCT03087851). Fifty-eight patients completed the study. From 12 to 24 months after the initial ZOL, lumbar spine (LS) BMD was maintained: 0.9 ± 0.9%, 0.4 ± 0.8%, and 0.3 ± 0.7% in the 6 M, 9 M, and OBS groups, respectively (p > .05, no between-group differences). Similarly, total hip (TH) and femoral neck (FN) BMD did not change in any group during year 2. From baseline to 24 months after ZOL, LS BMD decreased by 4.0 ± 0.8%, 4.1 ± 0.8%, and 4.3 ± 1.5% in the 6 M, 9 M, and OBS groups, respectively (p < .001, no between-group differences). Significant bone loss (LS, TH, or FN) was found in all groups 24 months after ZOL: 6 M group: n = 12 (60%), 9 M group: n = 7 (37%), and OBS group: n = 10 (53%). P-CTX did not change significantly during the second year (p > .05, no between-group differences). No patient fulfilled the CTX or fracture criteria for retreatment during year 2; however, 9 patients were retreated at M24 due to BMD loss ≥5%. Two patients sustained a non-vertebral fracture during year 2. Treatment with ZOL subsequent to long-term denosumab did not fully prevent increased bone turnover and bone loss during the first year; however, CTX remained with the reference range and BMD was maintained during the second year. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

17.
The 3-year FREEDOM trial assessed the efficacy and safety of 60 mg denosumab every 6 months for the treatment of postmenopausal women with osteoporosis. Participants who completed the FREEDOM trial were eligible to enter an extension to continue the evaluation of denosumab efficacy and safety for up to 10 years. For the extension results presented here, women from the FREEDOM denosumab group had 2 more years of denosumab treatment (long-term group) and those from the FREEDOM placebo group had 2 years of denosumab exposure (cross-over group). We report results for bone turnover markers (BTMs), bone mineral density (BMD), fracture rates, and safety. A total of 4550 women enrolled in the extension (2343 long-term; 2207 cross-over). Reductions in BTMs were maintained (long-term group) or occurred rapidly (cross-over group) following denosumab administration. In the long-term group, lumbar spine and total hip BMD increased further, resulting in 5-year gains of 13.7% and 7.0%, respectively. In the cross-over group, BMD increased at the lumbar spine (7.7%) and total hip (4.0%) during the 2-year denosumab treatment. Yearly fracture incidences for both groups were below rates observed in the FREEDOM placebo group and below rates projected for a "virtual untreated twin" cohort. Adverse events did not increase with long-term denosumab administration. Two adverse events in the cross-over group were adjudicated as consistent with osteonecrosis of the jaw. Five-year denosumab treatment of women with postmenopausal osteoporosis maintained BTM reduction and increased BMD, and was associated with low fracture rates and a favorable risk/benefit profile.  相似文献   

18.
Denosumab reduces the risk of new vertebral and nonvertebral fractures. Previous trials suggest that the efficacy of antiresorptives on fractures might differ by patients' characteristics, such as age, bone mineral density (BMD), and fracture history. In the FREEDOM study, 7808 women aged 60 to 90 years with osteoporosis were randomly assigned to receive subcutaneous injections of denosumab (60 mg) or placebo every 6 months for 3 years. New vertebral and nonvertebral fractures were radiologically confirmed. Subgroup analyses described in this article were prospectively planned before study unblinding to evaluate the effect of denosumab on new vertebral and nonvertebral fractures across various subgroups. Compared with placebo, denosumab decreased the risk of new vertebral fractures in the overall study population over 3 years. This effect did not significantly differ for any of the nine subgroups analyzed (p > 0.09 for all potential interactions). Denosumab also reduced all nonvertebral fractures by 20% in the full study cohort over 3 years. This risk reduction was statistically significant in women with a baseline femoral neck BMD T‐score ≤ ?2.5 but not in those with a T‐score > ?2.5; in those with a body mass index (BMI) < 25 kg/m2 but not ≥ 25 kg/m2; and in those without but not with a prevalent vertebral fracture. These differential treatment effects were not explained by differences in BMD responses to denosumab. Denosumab 60 mg administered every 6 months for 3 years in women with osteoporosis reduced the risk of new vertebral fractures to a similar degree in all subgroups. The effect of denosumab on nonvertebral fracture risk differed by femoral neck BMD, BMI, and prevalent vertebral fracture at baseline. © 2012 American Society for Bone and Mineral Research  相似文献   

19.
Objective: To investigate the characteristics of recurrent fracture of a new vertebral body after percutaneous vertebroplasty in patients with osteoporosis. Methods: 29 postmenopausal osteoporosis patients were divided into two groups: 14 patients with recurrent fracture of a new vertebral body after vertebroplasty comprised the new fracture group and there were15 patients without recurrent fracture in the control group. The following variables were reviewed: age, body mass index (BMI), history of fractures, history of metabolic disease, anti‐osteoporosis therapy, type of back brace used, bone mineral density (BMD) of the lumbar spine and hip, intact parathyroid hormone (iPTH), serum calcium and phosphorus, and time since vertebroplasty. Results: Compared with the control group, patients in the new fracture group were statistically significantly different with respect to BMI (t = 2.538, P = 0.027), BMD of the lumbar spine (t = 2.761, P = 0.015), BMD of the hip (t = 2.367, P = 0.037) and iPTH (t = 2.711, P = 0.017). Twelve (86%) of the 14 patients' new vertebral fractures occurred within six months after treatment of the initial fracture, and 10 (71%) fractures were adjacent to those previously treated by percutaneous vertebroplasty. Conclusions: A substantial number of patients with osteoporosis develop new fractures after vertebroplasty; two‐thirds of these new fractures occur in vertebrae adjacent to those previously treated. The following variables influence the outcome: BMI, history of fractures, history of metabolic diseases and medications, BMD of lumbar spine and hip, anti‐osteoporosis therapy, and use of back brace.  相似文献   

20.
Finite element analysis of computed tomography (CT) scans provides noninvasive estimates of bone strength at the spine and hip. To further validate such estimates clinically, we performed a 5‐year case‐control study of 1110 women and men over age 65 years from the AGES‐Reykjavik cohort (case = incident spine or hip fracture; control = no incident spine or hip fracture). From the baseline CT scans, we measured femoral and vertebral strength, as well as bone mineral density (BMD) at the hip (areal BMD only) and lumbar spine (trabecular volumetric BMD only). We found that for incident radiographically confirmed spine fractures (n = 167), the age‐adjusted odds ratio for vertebral strength was significant for women (2.8, 95% confidence interval [CI] 1.8 to 4.3) and men (2.2, 95% CI 1.5 to 3.2) and for men remained significant (p = 0.01) independent of vertebral trabecular volumetric BMD. For incident hip fractures (n = 171), the age‐adjusted odds ratio for femoral strength was significant for women (4.2, 95% CI 2.6 to 6.9) and men (3.5, 95% CI 2.3 to 5.3) and remained significant after adjusting for femoral neck areal BMD in women and for total hip areal BMD in both sexes; fracture classification improved for women by combining femoral strength with femoral neck areal BMD (p = 0.002). For both sexes, the probabilities of spine and hip fractures were similarly high at the BMD‐based interventional thresholds for osteoporosis and at corresponding preestablished thresholds for “fragile bone strength” (spine: women ≤ 4500 N, men ≤ 6500 N; hip: women ≤ 3000 N, men ≤ 3500 N). Because it is well established that individuals over age 65 years who have osteoporosis at the hip or spine by BMD criteria should be considered at high risk of fracture, these results indicate that individuals who have fragile bone strength at the hip or spine should also be considered at high risk of fracture. © 2014 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号