首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human PEG1/MEST, an imprinted gene on chromosome 7   总被引:10,自引:3,他引:10  
The mouse Peg1/Mest gene is an imprinted gene that is expressed particularly in mesodermal tissues in early embryonic stages. It was the most abundant imprinted gene among eight paternally expressed genes (Peg 1-8) isolated by a subtraction-hybridization method from a mouse embryonal cDNA library. It has been mapped to proximal mouse chromosome 6, maternal duplication of which causes early embryonic lethality. The human chromosomal region that shares syntenic homology with this is 7q21-qter, and human maternal uniparental disomy 7 (UPD 7) causes apparent growth deficiency and slight morphological abnormalities. Therefore, at least one paternally expressed imprinted gene seems to be present in this region. In this report, we demonstrate that human PEG1/MEST is an imprinted gene expressed from a paternal allele and located on chromosome 7q31-34, near D7S649. It is the first imprinted gene mapped to human chromosome 7 and a candidate for a gene responsible for primordial growth retardation including Silver-Russell syndrome (SRS).   相似文献   

2.
The evolution of genomic imprinting in mammals occurred more than 100 million years ago, and resulted in the formation of genes that are functionally haploid because of parent-of-origin-dependent expression. Despite ample evidence from studies in a number of species suggesting the presence of imprinted genes on human chromosome 14, their identity has remained elusive. Here we report the identification of two reciprocally imprinted genes, GTL2 and DLK1, which together define a novel imprinting cluster on human chromosome 14q32. The maternally expressed GTL2 (gene trap locus 2) gene encodes for a nontranslated RNA. DLK1 (delta, Drosophila, homolog-like 1) is a paternally expressed gene that encodes for a transmembrane protein containing six epidermal growth factor (EGF) repeat motifs closely related to those present in the delta/notch/serrate family of signaling molecules. The paternal expression, chromosomal localization, and biological function of DLK1 also make it a likely candidate gene for the callipyge phenotype in sheep. Many of the predicted structural and regulatory features of the DLK1/GTL2 domain are highly analogous to those implicated in IGF2/H19 imprint regulation, including two hemimethylated consensus binding sites for the vertebrate enhancer blocking protein, CTCF. These results provide evidence that a common mechanism and domain organization may be used for juxtapositioned, reciprocally imprinted genes.  相似文献   

3.
4.
The Dlk1 and Gtl2 genes are linked and reciprocally imprinted   总被引:13,自引:0,他引:13       下载免费PDF全文
Genes subject to genomic imprinting exist in large chromosomal domains, probably reflecting coordinate regulation of the genes within a cluster. Such regulation has been demonstrated for the H19, Igf2, and Ins2 genes that share a bifunctional imprinting control region. We have identified the Dlk1 gene as a new imprinted gene that is paternally expressed. Furthermore, we show that Dlk1 is tightly linked to the maternally expressed Gtl2 gene. Dlk1 and Gtl2 are coexpressed and respond in a reciprocal manner to loss of DNA methylation. These genes are likely to represent a new example of coordinated imprinting of linked genes.  相似文献   

5.
Maternal uniparental disomy 14 [upd(14)mat] is associated with a recognizable phenotype that includes pre- and postnatal growth retardation, neonatal hypotonia, feeding problems and precocious puberty. Chromosome 14 contains an imprinted gene cluster, which is regulated by a differentially methylated region (IG-DMR) between DLK1 and GTL2. Here we report on four patients with clinical features of upd(14)mat who show a maternal-only methylation pattern, but biparental inheritance for chromosome 14. In three of the patients loss of paternal methylation appears to be a primary epimutation, whereas the other patient has a paternally derived deletion of -1 Mb that includes the imprinted DLK1-GTL2 gene cluster. These findings demonstrate that the upd(14)mat phenotype is caused by altered expression of genes within this cluster.  相似文献   

6.
BACKGROUND: Mouse imprinted gene Peg3 encodes a large C2H2 type zinc finger protein with unique characteristics. Peg3 knockout mice were found to show an impairment in maternal behaviour of the adult female. Mouse Peg3 is located on the proximal region of chromosome 7 which is syntenic to the long arm of human chromosome 19. It has been reported that a loss of heterozygosity (LOH) of chromosome 19q occurs frequently in several glioma types. RESULTS: We isolated human PEG3 cDNA. Both human and mouse PEG3 were strongly expressed in the adult brain and the Peg3 protein was localized in the nuclei of both neurones and glial cells. A significant decrease in PEG3 expression was more commonly observed in glioma cell lines as compared with that in primary cultures of astrocytes. Transfection of PEG3 cDNA in a glioma cell line resulted in a loss of tumorigenicity in nude mice. CONCLUSIONS: The human PEG3 gene is a paternally expressed imprinted gene. Introduction of PEG3 cDNA into the glioma cells suggests that human PEG3 protein functions as a tumour suppressor. Human PEG3 is located on 19q13.4 and is one of the candidates for tumour suppressor genes that are predicted to be sited in gliomas.  相似文献   

7.
DLK1-MEG3 is an imprinted locus consisting of multiple maternally expressed noncoding RNA genes and paternally expressed protein-coding genes. The expression of maternally expressed gene 3 (MEG3) is selectively lost in clinically nonfunctioning adenomas (NFAs) of gonadotroph origin; however, expression status of other genes at this locus in human pituitary adenomas has not previously been reported. Using quantitative real-time RT-PCR, we evaluated expression of 24 genes from the DLK1-MEG3 locus in 44 human pituitary adenomas (25 NFAs, 7 ACTH-secreting, 7 GH-secreting, and 5 PRL-secreting adenomas) and 10 normal pituitaries. The effects on cell proliferation of five miRNAs whose expression was lost in NFAs were investigated by flow cytometry analysis. We found that 18 genes, including 13 miRNAs at the DLK1-MEG3 locus, were significantly down-regulated in human NFAs. In ACTH-secreting and PRL-secreting adenomas, 12 and 7 genes were significantly down-regulated, respectively; no genes were significantly down-regulated in GH-secreting tumors. One of the five miRNAs tested induced cell cycle arrest at the G2/M phase in PDFS cells derived from a human NFA. Our data indicate that the DLK1-MEG3 locus is silenced in NFAs. The growth suppression by miRNAs in PDFS cells is consistent with the hypothesis that the DLK1-MEG3 locus plays a tumor suppressor role in human NFAs.  相似文献   

8.
9.
10.
BACKGROUND: The paternal duplication of mouse distal chromosome 12 leads to late embryonal/neonatal lethality and growth promotion, whereas maternal duplication leads to late embryonal lethality and growth retardation. Human paternal or maternal uniparental disomies of chromosome 14q that are syntenic to mouse distal chromosome 12 have also been reported to show some imprinting effects on growth, mental activity and musculoskeletal morphology. For the isolation of imprinted genes in this region, a systematic screen of maternally expressed genes (Megs) was carried out by our subtraction-hybridization method using androgenetic and normally fertilized embryos. RESULTS: We have isolated seven candidate clones of the mouse Meg gene. Among them, we identified a novel maternally expressed imprinted gene, Meg3, on mouse distal chromosome 12 and showed that it was identical to the Gtl2 gene. We also found that the human homologue MEG3 on chromosome 14q was also monoallelically expressed. CONCLUSIONS: This is the first identification of the imprinting gene, both on mouse distal chromosome 12 and on human chromosome 14q, respectively. Because there are no obvious open reading frames in either the mouse Meg3/Gtl2 or human MEG3, the function of these genes remains unclear. However, this result will provide a good basis for the further investigation of several important imprinted genes in this chromosomal region.  相似文献   

11.
穿膜蛋白DLK1是表皮生长因子(EGF)家族的成员之一,其结构特征为蛋白的细胞外区域拥有6串在结构及氨基酸序列上与表皮生长因子高度同源的重复结构。DLK1基因为父系表达的印记基因,定位于人类染色体14q32。DLK1可以抑制脂肪前体细胞向脂肪细胞分化,在正常神经内分泌细胞及其肿瘤细胞中表达,提示DLK1在神经内分泌轴中起着调控细胞生长分化的作用,同时DLK1在胚胎肝、造血干细胞及早期肌肉组织中均有表达。  相似文献   

12.
13.
14.
Using mouse BAC clones spanning an imprinted interval of proximal mouse chromosome 7 and the genomic sequence of the related interval of human chromosome 19q13.4, we have identified a novel mouse gene, Usp29 (ubiquitin-specific processing protease 29), near two known imprinted genes, Peg3 and Zim1. Gene Usp29 is located directly adjacent to Peg3 in a "head-to-head" orientation, and comprises exons distributed over a genomic distance of at least 400 kb. A similar human gene is also found in the homologous location in human chromosome 19q13.4. The mouse Usp29 gene is also imprinted and is transcribed mainly from the paternal allele with highest expression levels in adult brain, especially in the cerebral cortex and hippocampus, and in the forebrain, face, and limb buds of midgestation mouse embryos. Analysis of a full-length 7.6-kb cDNA clone revealed that Usp29 encodes an 869-amino-acid protein that displays significant homology with yeast and nematode ubiquitin carboxyl-terminal hydrolases. These data suggest that, like the candidate Angelman syndrome gene Ube3a (ubiquitin ligase), Usp29 may represent another imprinted gene involved in the ubiquitination pathway. This identification of a third imprinted gene, Usp29, from the Peg3/Zim1-region confirms the presence of a conserved imprinted domain spanning at least 500 kb in the proximal portion of mouse chromosome 7 (Mmu7).  相似文献   

15.
Human chromosome 15q11-q13 contains genes that are imprinted and expressed from only one parental allele. Prader-Willi syndrome (PWS) is due to the loss of expression of one or more paternally expressed genes on proximal human chromosome 15q, most often by deletion or maternal uniparental disomy. Several candidate genes and a putative imprinting centre have been identified in the deletion region. We report that the human necdin-encoding gene (NDN) is within the centromeric portion of the PWS deletion region, between the two imprinted genes ZNF127 and SNRPN. Murine necdin is a nuclear protein expressed exclusively in differentiated neurons in the brain. Necdin is postulated to govern the permanent arrest of cell growth of post-mitotic neurons during murine nervous system development. We have localized the mouse locus Ndn encoding necdin to chromosome 7 in a region of conserved synteny with human chromosome 15q11-q13, by genetic mapping in an interspecific backcross panel. Furthermore, we demonstrate that expression of Ndn is limited to the paternal allele in RNA from newborn mouse brain. Expression of NDN is detected in many human tissues, with highest levels of expression in brain and placenta. NDN is expressed exclusively from the paternally inherited allele in human fibroblasts. Loss of necdin gene expression may contribute to the disorder of brain development in individuals with PWS.   相似文献   

16.
Genomic imprinting is the epigenetic marking of gene subsets resulting in monoallelic or predominant expression of one of the two parental alleles according to their parental origin. We describe the systematic experimental verification of a prioritized 16 candidate imprinted gene set predicted by sequence-based bioinformatic analyses. We used Quantification of Allele-Specific Expression by Pyrosequencing (QUASEP) and discovered maternal-specific imprinted expression of the Kcnk9 gene as well as strain-dependent preferential expression of the Rarres1 gene in E11.5 (C57BL/6 x Cast/Ei)F1 and informative (C57BL/6 x Cast/Ei) x C57BL/6 backcross mouse embryos. For the remaining 14 candidate imprinted genes, we observed biallelic expression. In adult mouse tissues, we found that Kcnk9 expression was restricted to the brain and also was maternal-specific. QUASEP analysis of informative human fetal brain samples further demonstrated maternal-specific imprinted expression of the human KCNK9 orthologue. The CpG islands associated with the mouse and human Kcnk9/KCNK9 genes were not differentially methylated, but strongly hypomethylated. Thus, we speculate that mouse Kcnk9 imprinting may be regulated by the maternal germline differentially methylated region in Peg13, an imprinted non-coding RNA gene in close proximity to Kcnk9 on distal mouse chromosome 15. Our data have major implications for the proposed role of Kcnk9 in neurodevelopment, apoptosis and tumourigenesis, as well as for the efficiency of sequence-based bioinformatic predictions of novel imprinted genes.  相似文献   

17.
Human chromosome 11p15.5 and distal mouse chromosome 7 include a megabase-scale chromosomal domain with multiple genes subject to parental imprinting. Here we describe mouse and human versions of a novel imprinted gene, IMPT1 , which lies between IPL and p57 KIP2 and which encodes a predicted multi-membrane-spanning protein similar to bacterial and eukaryotic polyspecific metabolite transporter and multi- drug resistance pumps. Mouse Impt1 and human IMPT1 mRNAs are highly expressed in tissues with metabolite transport functions, including liver, kidney, intestine, extra-embryonic membranes and placenta, and there is strongly preferential expression of the maternal allele in various mouse tissues at fetal stages. In post-natal tissues there is persistent expression, but the allelic bias attenuates. An allelic expression bias is also observed in human fetal and post-natal tissues, but there is significant interindividual variation and rare somatic allele switching. The fact that Impt1 is relatively repressed on the paternal allele, together with data from other imprinted genes, allows a statistical conclusion that the primary effect of human chromosome 11p15.5/mouse distal chromosome 7 imprinting is domain-wide relative repression of genes on the paternal homolog. Dosage regulation of the metabolite transporter gene(s) by imprinting might regulate placental and fetal growth.   相似文献   

18.
19.
20.
The recent development of a set of chromosome‐specific, subtelomeric probes has proved useful in diagnosis and recurrence risk counseling of patients and families with mental retardation and in further characterization of known chromosomal abnormalities. Cases of cryptic, subtelomeric rearrangements may account for up to 7.5% of cases of idiopathic moderate–severe mental retardation. We present the molecular cytogenetic studies of trisomy 14q detected by subtelomeric fluorescence in situ hybridization (FISH). Our patient is a 3‐year‐old girl with growth and developmental delay, myelomeningocele, partial agenesis of the corpus callosum, hypertelorism, tented mouth, simple ears, small mandible, and congenital heart disease (atrial and ventricular septal defects with subaortic conus). G‐banded chromosome analysis was apparently normal. A set of FISH‐based, subtelomeric, region‐specific probes revealed trisomy for 14q in the child. Parental FISH studies established that the mother is a balanced carrier for a half‐cryptic translocation between the distal long arm of chromosome 14 and the short arm of chromosome 22. FISH analysis using two BAC clones that contain the imprinted genes MEG3 and DLK1, which localize to 14q32, established that our patient has two maternal copies of these genes. Because the child does not have features of the maternal UPD 14 syndrome, this case suggests that it is absence of expression of a paternally expressed gene, rather than overexpression of a maternally expressed gene, that is responsible for the maternal UPD 14 phenotype. © 2002 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号