首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double retrograde axonal tracing experiments were carried out in order to reveal potential patterns of divergence in axonal projections from the two major sensory nuclei of the mouse brainstem trigeminal complex: the principal sensory and spinal trigeminal nuclei (oralis, interpolaris, and caudalis divisions). The tracers wheat germ agglutinin, N-[acetyl-3H] and horseradish peroxidase were used in paired injection strategies within portions of the cerebellum, superior colliculus, and thalamic ventrobasal complex and/or posterior group of adult ICR white mice. Trigeminal neurons with projections to tactile areas of the cerebellar cortex or underlying deep cerebellar nuclei were found scattered throughout the principal sensory nucleus and interpolaris division, and mainly in dorsal regions of the oralis division of the spinal trigeminal nucleus. Injections of either tracer which involved lateral portions of the rostral half of the superior colliculus labeled trigeminotectal neurons mainly in the contralateral interpolaris division, ventral half of the oralis division, and a ventral region of the principal sensory nucleus near the oralis border. Fewer trigeminotectal neurons were found scattered throughout the principal sensory nucleus and the magnocellular layer of the caudalis divisions, although an occasional labeled neuron wa also found in the marginal layer. Contralaterally projecting trigeminothalamic neurons were observed throughout the principal sensory nucleus, interpolaris division, and within the marginal and magnocellular layers of caudalis. Double-labeled neurons were observed only after paired injections of the tracers in the thalamus and ipsilateral superior colliculus, and they were found within the caudoventral portion of the principal sensory nucleus near the oralis border, throughout the interpolaris division, within the magnocellular layer of caudalis, and only a few double-labeled neurons were also found within the marginal layer. After such injections, 50% of the labeled tectum-projecting neurons in the principal sensory nucleus, 64% in the interpolaris division, and 57% in the caudalis division are branched neurons which have collateralized projections to both the superior colliculus and thalamus. These projections, which have not been described before, appear to arise from more than one class of projection neuron which is differentially distributed within different regions of the trigeminus.  相似文献   

2.
The trigeminal projection to the superior colliculus in neonatal kittens was studied by using both anterograde and retrograde neuroanatomical tracing techniques. Trigeminothalamic observations also were made. In the first series of experiments, horseradish peroxidase was injected into the superior colliculus in kittens on the day of parturition and in adult cats. Retrogradely labeled cells were found throughout the contralateral sensory trigeminal complex: the greatest numbers of cells were concentrated in pars oralis, with fewer in the principal nucleus, and fewer still in pars interpolaris and pars caudalis. Thus, the distribution pattern of trigeminotectal cells in neonates is similar to that in adult animals. In the second series of experiments, we injected tritiated leucine into the rostral portion of the spinal trigeminal nucleus in neonatal kittens and adult cats and compared the laminar and spatial distribution of anterogradely transported label in the superior colliculus and thalamus. Terminal label was observed in both structures in animals as young as 1-2 days postpartum. The label in the superior colliculus was overwhelmingly contralateral and formed a tier of discontinuous patches in the stratum griseum intermediale and, in a more diffuse manner, in the stratum griseum profundum. Most of the patches were located in the rostral 80% of the superior colliculus and were 60-280 micron in width. Although the size of the patches was smaller in the neonates, their distribution was similar to that in adult cats. Thus, with the exception of the difference in patch size, the terminal pattern of trigeminotectal projections is essentially adultlike at birth. The dense pattern of contralateral terminal label in the arcuate division of the ventrobasal complex also was similar to that of the adult cat, as was the trigeminal projection to the supraoculomotor gray. These data indicate that the development of the spatial organization of a major ascending somatosensory pathway to the superior colliculus (and to the thalamus) is largely a prenatal event. It is likely that the further maturation of these systems during postnatal life is limited to fine changes in axonal terminals and synaptic formation within prenatally determined terminal territories. The in utero maturation of these trigeminofugal projections is necessary to enable the newborn kitten to utilize the perioral tactile cues necessary for early orientation and suckling behaviors.  相似文献   

3.
Electrical stimulation of the supraorbital nerve (SO) induces eyelid closure by activation of orbicularis oculi muscle motoneurons located in the facial motor nucleus (VII). Neurons involved in brainstem central pathways implicated in rat blink reflex were localized by analyzing c-Fos protein expression after SO stimulation in conjunction with tracing experiments. A retrograde tracer (gold-horseradish peroxidase [HRP]) was injected into the VII. The distribution patterns of activated c-Fos-immunoreactive neurons and of neurons exhibiting both c-Fos immunoreactivity and gold-HRP labeling were determined in the sensory trigeminal complex (STC), the cervical spinal cord (C1), and the pontomedullary reticular formation. Within the STC, c-Fos immunoreactivity labeled neurons in the ipsilateral ventral part of the principal nucleus, the pars oralis and interpolaris, and bilaterally in the pars caudalis. Colocalization of gold-HRP and c-Fos immunoreactivity was observed in neurons of ventral pars caudalis layers I-IV and ventral pars interpolaris. In C1, SO stimulation revealed c-Fos neurons in laminae I-V. After additional injections in VII, the double-labeled c-Fos/gold-HRP neurons were concentrated in laminae IV and V. Although c-Fos neurons were found throughout the pontomedullary reticular formation, most appeared rostrally around the motor trigeminal nucleus and in the ventral parvocellular reticular nucleus medial to the fiber bundles of the seventh nerve. Caudally, c-Fos neurons were in the lateral portion of the dorsal medullary reticular field. In addition, these reticular areas contained double-labeled neurons in electrically stimulated rats that had received gold-HRP injections in the VII. The presence of double-labeled neurons in the STC, C1, and the reticular formation implies that these neurons receive sensory information from eyelids and project to the VII. These double-labeled neurons could then be involved in di- or trisynaptic pathways contributing to the blink reflex.  相似文献   

4.
The terminal areas and the cells of origin of the projection from the sensory trigeminal nuclei to the mesencephalon were investigated, using the method of anterograde and retrograde transport of horseradish peroxidase or wheat germ agglutinin-horseradish peroxidase conjugate. Injection of tracer into the nucleus interpolaris or nucleus oralis (in the latter cases with involvement of the nucleus principalis) resulted in dense anterograde labeling in the deep and intermediate gray layers of the contralateral superior colliculus, extending throughout the rostrocaudal extent of the colliculus with the exception of its caudalmost part, which was not labeled. Minor projections to the intercollicular nucleus, posterior pretectal nucleus and nucleus of Darkschewitsch were found. Injection of tracer into the nucleus caudalis yielded a completely different result; terminal labeling in the midbrain was now present only in the periaqueductal gray matter, in its rostral and middle parts. The retrograde labeling observed after injection of tracer into the midbrain terminal areas showed that the cells of origin were located mainly in the alaminar spinal trigeminal nucleus, and the highest density of labeled neurons was found in the rostral part (subnucleus y) of the nucleus oralis. The retrograde labeling in the nucleus principalis was very sparse and almost exclusively involved peripherally located neurons. In the nucleus caudalis the overwhelming majority of the retrogradely labeled neurons were situated in its marginal layer. The functional implications of the above observations are discussed in relation to the findings in previous studies of the projections from the dorsal column nuclei and spinal cord to the midbrain. The combined results suggest that the trigeminal projections to the superior colliculus may be involved in the mechanisms of orientational behavior. The observation that the projection to the periaqueductal gray matter originates in the marginal layer suggests that it transmits information related to noxious stimuli.  相似文献   

5.
Transganglionic transport of horseradish peroxidase-wheat germ agglutinin conjugate (HRP-WGA) entrapped in hypoallergenic polyacrylamide gel was used to study the patterns of termination of primary afferents that innervate the lower and upper tooth pulps within the trigeminal sensory nuclear complex (TSNC). HRP injections were made into the inferior and superior alveolar nerves in order to compare the central projections of the whole nerve with those from tooth pulps. In addition, the relationship between the distribution of the trigeminothalamic tract cells and the projection sites of the tooth pulp afferents was investigated by injecting HRP into the posterior ventral thalamus. HRP-labeled tooth pulp afferent fibers innervating the lower and upper teeth projected to the subnucleus dorsalis (Vpd) of pars principalis, the rostrodorsomedial part (Vo.r) and nucleus dorsomedialis (Vo.dm) of pars oralis, the medial regions of pars interpolaris, and laminae I, II, and V of pars caudalis. Terminal fields of the lower tooth pulp afferents formed a rostrocaudally running, uninterrupted column from the midlevel of Vpd to the caudal tip of caudalis. In contrast, the column of termination of upper tooth pulp afferents was discontinuous at the Vpd/Vo.r transition, and ended at the more rostral level of the caudalis than that of the lower tooth pulp afferents. The representation of the lower and upper teeth in the TSNC was organized in a somatotopic fashion which varied from one subdivision to the next, although terminal zones of the inferior and superior alveolar nerves overlapped within the Vo.r, Vo.dm, and dorsomedial part of rostral pars interpolaris. The lower and upper teeth were represented in the Vpd, Vo.r, Vo.dm, medial region of pars interpolaris, and laminae I, II, and V, in a ventrodorsal or caudorostral, dorsoventral, lateromedial, dorsoventral, and mediolateral or dorsomedial-ventrolateral sequence, respectively. The smaller, more focal terminal areas of the teeth contrasted sharply with more extensive terminal fields of the alveolar nerves. The HRP injections within the thalamus indicated that neurons in Vpd, the caudal pars interpolaris, and laminae I/V of caudalis, which are subdivisions of TSNC that receive pulpal projections, sent their axons to the ipsilateral and contralateral posterior ventral thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The fluorescent dyes True Blue, Fast Blue, Nuclear Yellow and SITS were used to examine the connections of the rat brainstem sensory trigeminal nuclear complex (nV). Particular attention was paid to the following questions: do individual trigeminal neurons project to multiple targets via axon collaterals; and do primary afferent inputs to the various regions of nV arise from individual cells? Pairs of injections, using contrasting dyes, were made into the following target area combinations: ventrobasal thalamus-ipsilateral superior colliculus, cerebellum-contralateral thalamus, nucleus principalis of nV-contralateral thalamus, and nucleus principalis of nV-subnucleus caudalis of spinal nV. In general, numerous neurons throughout all subdivisions of nV and within the trigeminal ganglion were labeled by a single dye following the injections. In addition, many cells in a similar distribution were found to be doubly-labeled following such injection combination. These data demonstrate the existence of significant subpopulations of first- and second-order neurons that project to multiple targets via divergent axonal ramifications throughout the rat sensory trigeminal system.  相似文献   

7.
Relationships between the trigeminal component of blinking and the superior colliculus (SC) were studied in rats. To localize primary afferent eyelid projections in the sensory trigeminal complex, neuronal tracing experiments were performed as well as analysis of c-Fos protein expression after supraorbital (SO) nerve stimulation. Labelled nerve fibers were found to enter ventrally within the ipsilateral sensory trigeminal complex. Labelled boutons were observed at the junction of the principal nucleus (5P) and the pars oralis (5o) and in the pars caudalis (5c). The c-Fos immunoreactivity was observed in neurons located in the ipsilateral ventral parts of 5P, 5o, and the pars interpolaris (5i) and bilaterally in 5c. Injections in 5P, 5o, 5i, and 5c resulted in anterogradely labelled fibers, with a contralateral preponderance, within the intermediate and deeper SC layers. Injections in 5P or 5o showed anterogradely labelled nerve fibers, profusely terminating in small patches in the medial and central portions of SC layer 4. Subsequently, dense labelling was found in the lateral portion of SC layers 4-7, without patch-like organization. Injections in SC showed retrogradely labelled neurons predominantly within the contralateral part of the sensory trigeminal complex (28% in 5P, 20% in 5o, 50% in 5i, and 2% in 5c). Colocalization of the retrograde tracer after SC injections and c-Fos immunoreactivity in neurons demonstrated that some 5P, 5o, and 5i neurons receive SO nerve inputs and project to SC. This implies that intermediate and deeper SC layers receive sensory information from the eyelids and may be directly involved in the regulation of eye-eyelid coordination.  相似文献   

8.
Transganglionic transport of horseradish peroxidase (HRP) was used to study the patterns of termination of somatic afferent fibers innervating oral and facial structures within the principal nucleus (Vp), nucleus oralis (Vo), and nucleus interpolaris (Vi). The primary trigeminal afferent fibers that innervate the oral cavity supplied by the pterygopalatine, superior alveolar, lingual, buccal, and inferior alveolar branches, as well as the facial skin supplied by the frontal, corneal, zygomatic, infraorbital, auriculotemporal, mylohyoid, and mental branches, were traced in this experiment. The results show that trigeminal afferent nerves that innervate the oral cavity project mainly to the principal nucleus, the rostrodorsomedial part (Vo.r) and dorsomedial division (Vo.dm) of pars oralis, and the dorsomedial region of pars interpolaris, while an extensive overlap of projections is found in the Vo.r, Vo.dm, and rostral Vi. The central processes of fibers innervating the anterior face (i.e., mental, infraorbital, and frontal nerves) terminate in the ventral division of principalis (Vpv), caudal region pars oralis (Vo.c), and ventrolateral Vi, with the largest numbers of terminals being found in the Vpv and Vi. In contrast, the central projection patterns of the corneal, zygomatic, mylohyoid, and auriculotemporal afferents are different from those of other afferent nerves examined, and present a discrete projection to the trigeminal sensory nuclear complex (TSNC). The corneal, mylohyoid, and auriculotemporal afferents mainly project to the restricted regions of principalis and caudal Vi, while zygomatic afferent nerve fibers project to the caudal third of pars interpolaris. The typical somatotopic organization with the face of the mouth open inverted is represented in the rostrocaudal midlevels of the Vpv and caudal pars interpolaris. The Vpd receives topographical projection from primary afferent nerves that innervate the oral structure only, while this projection was organized in a complicated manner. The relationship between the functional segregation and the cytoarchitectonic differentiation of the TSNC is discussed, particularly with respect to this somatotopic organization, combined with the characteristics of projecting cells in the TSNC.  相似文献   

9.
Projections from physiologically identified jaw-muscle spindle afferents onto trigeminothalamic neurons were studied in the rat. Trigeminothalamic neurons were identified by means of retrograde transport of horseradish peroxidase from the ventroposteromedial nucleus of the thalamus. Labeled neurons were found contralaterally in the supratrigeminal region (Vsup), the trigeminal principal sensory nucleus, the ventrolateral part of the trigeminal subnucleus oralis, the spinal trigeminal subnuclei interpolaris and caudalis, the reticular formation, and an area ventral to the trigeminal motor nucleus (Vmo) and medial to the trigeminal principal sensory nucleus (AVM). Jaw-muscle spindle afferents were physiologically identified by their increased firing during stretehing of the jaw muscles and intracellularly injected with biotinamide. Axon collaterals and boutons from jaw-muscle spindle afferents were found in Vmo; Vsup; the dorsomedial part of the trigeminal principal sensory nucleus (Vpdm); the dorsomedial part of the spinal trigeminal subnuclei oralis, interpolaris (Vidm) and caudalis; the parvicellular reticular formation (PCRt); and the mesencephalic trigeminal nucleus. Trigeminothalamic neurons in Vsup, Vpdm, Vidm, PCRt, and AVM were associated with axon collaterals and boutons from intracellularly stained jaw-muscle spindle afferents. Trigeminothalamic neurons in Vsup, Vpdm, Vidm, and PCRt were closely apposed by one to 14 intracellularly labeled boutons from jaw-muscle spindle afferents, suggesting a powerful input to some trigeminothalamic neurons. These data demonstrate that muscle length and velocity feedback from jaw-muscle spindle afferents is projected to the contralateral thalamus via multiple regions of the trigeminal system and implicates these pathways in the projection of trigeminal proprioceptive information to the cerebral cortex. © 1995 Wiley-Liss, Inc.  相似文献   

10.
This study was undertaken to identify the trigeminal nuclear regions connected to the hypoglossal (XII) and facial (VII) motor nuclei in rats. Anterogradely transported tracers (biotinylated dextran amine, biocytin) were injected into the various subdivisions of the sensory trigeminal complex, and labeled fibers and terminals were searched for in the XII and VII. In a second series of experiments, injections of retrogradely transported tracers (biotinylated dextran amine, gold-horseradish peroxidase complex, fluoro-red, fluoro-green) were made into the XII and the VII, and labeled cells were searched for in the principal sensory trigeminal nucleus, and in the pars oralis, interpolaris, and caudalis of the spinal trigeminal nucleus. Trigeminohypoglossal projections were distributed throughout the ventral and dorsal region of the XII. Neurons projecting to the XII were found in all subdivisions of the sensory trigeminal complex with the greatest concentration in the dorsal part of each spinal subnucleus and exclusively in the dorsal part of the principal nucleus. Trigeminofacial projections reached all subdivisions of the VII, with a gradual decreasing density from lateral to medial cell groups. They mainly originated from the ventral part of the principal nucleus. In the spinal nucleus, most of the neurons projecting to the VII were in the dorsal part of the nucleus, but some were also found in its central and ventral parts. By using retrograde double labeling after injections of different tracers in the XII and VII on the same side, we examined whether neurons in the trigeminal complex project to both motor nuclei. These experiments demonstrate that in the spinal trigeminal nucleus, neurons located in the pars caudalis and pars interpolaris project by axon collaterals to XII and VII. J. Comp. Neurol. 415:91–104, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

11.
The cell bodies and central projections of neurons innervating the vibrissae follicles and adjacent skin in the rat were investigated by retrograde and transganglionic transport of HRP. The cell bodies of neurons innervating the vibrissa follicle via the deep vibrissa nerve (DVN) were the largest, followed by those innervating the follicle via the superficial vibrissa nerve (SVN). The smallest cell bodies were those innervating the intervibrissal skin. The DVN neurons terminated centrally as an almost uninterrupted column through the trigeminal sensory nuclear complex. The DVN projections to nucleus caudalis and C1 dorsal horn were entirely restricted to laminae III, IV, and V. Besides the projections to lamina V, the DVN projections were strictly localized somatotopically at all levels replicating the peripheral organization of the vibrissae. The SVNs projected sparsely to midlevels of the main sensory nucleus but not to nuclei oralis and interpolaris. The main SVN projections appeared in laminae I-III of nucleus caudalis. In addition, a small projection to lamina V was observed. The projections to laminae II and III were organized mediolaterally in a similar way as the DVN projections; those to laminae I and V were less restricted. The intervibrissal skin neurons projected sparsely to the caudal main sensory nucleus and to the border between nuclei oralis and interpolaris. The projections to nucleus caudalis were restricted to laminae I-III and V and were organized in a similar way as the SVN projections.  相似文献   

12.
Immunocytochemistry for calbindin (CA) and parvalbumin (PA) was combined with retrograde tracing from the thalamus, superior colliculus (SC), and cerebellum to define the ascending projections of neurons in the rat's trigeminal (V) brainstem complex that express immunoreactivity for these calcium binding proteins. Many PA-immunoreactive neurons were observed in trigeminal nucleus principalis (PrV). Many of these cells projected to thalamus and a few sent axons to SC. In ventral PrV, PA-immunoreactive neurons were arranged in a vibrissa-related pattern. A very small number of large CA-immunoreactive neurons were observed in dorsomedial PrV. None of these cells were labeled by our tracer deposits. Small neurons in V subnucleus oralis (SpO) were also immunoreactive for PA, but none were retrogradely labeled. A small percentage of the large neurons in SpO were CA-immunoreactive; many of these were retrogradely labeled by tracer injections in the thalamus and/or SC. In V subnucleus interpolaris (SpI), many small to medium sized cells were PA-positive and they were arrayed in a vibrissae-like pattern. None of these neurons were retrogradely labeled from any of the above-listed targets, but many were retrogradely labeled by tracer injections into ipsilateral PrV. SpI also contained many large CA-immunoreactive cells. Many of these projected to the thalamus and/or SC and some were also retrogradely labeled by tracer injections into ipsilateral PrV. In V subnucleus caudalis (SpC), very dark PA-immunoreactive neurons were located in the inner part of lamina II and less often in laminae I. Lightly labeled cells were located in the magnocellular laminae and formed vibrissa-related aggregates. None of these neurons were retrogradely labeled by our tracer injections. CA-immunoreactive cells were located throughout the depth of lamina II in SpC and smaller numbers were also visible in lamina I and layers III-V. A small percentage of the CA-positive cells in lamina I and in the magnocellular layers were retrogradely labeled from the thalamus. These data indicate that PA and CA antisera identify two cell populations in whisker-related regions of the V brainstem complex and that PA cells are somatotopically patterned in PrV, SpI, and SpC. These markers also distinguish two cell groups in superficial laminae of the medullary dorsal horn.  相似文献   

13.
Recent studies have demonstrated that a large number of spinal cord neurons convey somatosensory and visceral nociceptive information directly from cervical, lumbar, and sacral spinal cord segments to the hypothalamus. Because sensory information from head and orofacial structures is processed by all subnuclei of the trigeminal brainstem nuclear complex (TBNC) we hypothesized that all of them contain neurons that project directly to the hypothalamus. In the present study, we used the retrograde tracer Fluoro-Gold to examine this hypothesis. Fluoro-Gold injections that filled most of the hypothalamus on one side labeled approximately 1,000 neurons (best case = 1,048, mean = 718 ± 240) bilaterally (70% contralateral) within all trigeminal subnuclei and C1–2. Of these neurons, 86% were distributed caudal to the obex (22% in C2, 22% in C1, 23% in subnucleus caudalis, and 18% in the transition zone between subnuclei caudalis and interpolaris), and 14% rostral to the obex (6% in subnucleus interpolaris, 4% in subnucleus oralis, and 4% in subnucleus principalis). Caudal to the obex, most labeled neurons were found in laminae I–II and V and the paratrigeminal nucleus, and fewer neurons in laminae III–IV and X. The distribution of retrogradely labeled neurons in TBNC gray matter areas that receive monosynaptic input from trigeminal primary afferent fibers innervating extracranial orofacial structures (such as the cornea, nose, tongue, teeth, lips, vibrissae, and skin) and intracranial structures (such as the meninges and cerebral blood vessels) suggests that sensory and nociceptive information originating in these tissues could be transferred to the hypothalamus directly by this pathway. J. Comp. Neurol. 400:125–144, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
To determine whether the pattern of superior colliculus (SC) afferents seen in cat is generalizable to other mammalian species, HRP was injected into the SC of twenty hamsters (Mesocricetus auratus). After reaction with TMB, subcortical structures were examined for labeled perikarya. Although most subcortical afferents to SC were similar in cat and hamster, there were differences in auditory and somatosensory SC innervation. In hamster only two putatively auditory structures showed labeled cells, the external nucleus of inferior colliculus and nucleus of the brachium of the inferior colliculus, whereas in cat additional cells are reported in the dorsal cochlear nucleus, trapezoid and superior olivary nuclei, and nucleus of the lateral lemniscus. Again, in hamster the major trigeminal somatosensory input to SC is from spinal trigeminal nucleus caudalis whereas in cat trigeminal input is reported to be from the principalis and oralis portions of the trigeminal nucleus. Thus the hamster possesses a very restricted auditory input to and a different pattern of somatosensory innervation of the SC relative to the cat.  相似文献   

15.
Stimulation of one or several whiskers activates discrete foci throughout the trigeminal (V) neuraxis. These foci contribute to patterns, corresponding to the patterns of vibrissae, that have been directly related to aggregates of cells and axon terminals in the “barrel” cortex. Here, we combine high-resolution, 2-deoxyglucose (2DG) mapping and cytochrome oxidase (CO) staining to determine whether the known pattern of V primary afferent projections is sufficient to deduce the functional activation of their targets during exploratory behavior. Four adult hamsters had all of their large mystacial vibrissae trimmed acutely, except for C3 on the left, and B2 and D4 on the right; in two others, the left C3 and right A1 and E4 whiskers were spared. After fasting overnight, 2DG was injected and the animals behaved freely in the dark for 45 minutes. The brainstem, thalamus, and cortices were sectioned, then processed for both CO staining and 2DG autoradiography. Image-processing microscopy was used to separate the autoradiographic silver grains from the histochemical staining. CO patches were patterned in a whiskerlike fashion in the full rostrocaudal extent of V nucleus principalis and in caudal portions of spinal V subnuclei interpolaris and caudalis, but absent in subnucleus oralis. 2DG silver grains were densest above those CO patches in the pattern corresponding to the active whiskers. There were no consistent 2DG foci in subnuclei oralis or rostral caudalais. In these same cases, prominent 2DG labeling was restricted to the appropriate barrels in the contralateral cortex. Only one case, however, displayed a clear and appropriate region of heightened 2DG uptake in contralateral ventroposteromedial thalamus (VPM) and the adjacent part of the reticular thalamic nucleus. Patterns of increased glucose utilization with single whisker stimulation are well matched to the CO patterns that mirror distributions of neurons associated with a vibrissa in the V brainstem complex, thalamus, and cortex. Single whiskers are represented by relatively homogeneous longitudinal columns of 2DG labeling in the V brainstem nuclei. The columns are not continuous through the axial extent of the V brainstem complex; rather, they occur separately within principalis, interpolaris, and caudalis. While whisker columns were consistently labeled in interpolaris and caudalis in all animals, the labeling was increasingly variable in principalis, barrel cortex, and VPM, respectively. This suggests that the behaving animal can and does significantly modulate activity in this major, synaptically secure pathway. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Our recent findings have demonstrated that rodent models of closed head traumatic brain injury exhibit comprehensive evidence of progressive and enduring orofacial allodynias, a hypersensitive pain response induced by non-painful stimulation. These allodynias, tested using thermal hyperalgesia, correlated with changes in several known pain signaling receptors and molecules along the trigeminal pain pathway, espe-cially in the trigeminal nucleus caudalis. This study focused to extend our previous work to investigate the changes in monoamine neurotransmitter immunoreactivity changes in spinal trigeminal nucleus oralis, pars interpolaris and nucleus tractus solitaries following mild to moderate closed head traumatic brain injury, which are related to tactile allodynia, touch-pressure sensitivity, and visceral pain. Our results exhib-ited significant alterations in the excitatory monoamine, serotonin, in spinal trigeminal nucleus oralis and pars interpolaris which usually modulate tactile and mechanical sensitivity in addition to the thermal sensi-tivity. Moreover, we also detected a robust alteration in the expression of serotonin, and inhibitory molecule norepinephrine in the nucleus tractus solitaries, which might indicate the possibility of an alteration in visceral pain, and existence of other morbidities related to solitary nucleus dysfunction in this rodent model of mild to moderate closed head traumatic brain injury. Collectively, widespread changes in monoamine neurotransmitter may be related to orofacial allodynhias and headache after traumatic brain injury.  相似文献   

17.
Primary A-δ nociceptive neurons in the trigeminal ganglia of immobilized crotaline snakes were examined by intrasomal recording and injection of horseradish peroxidase in vivo. Thirty-four neurons supplying the oral mucosa or facial skin were identified as A-δ nociceptive neurons which responded exclusively to noxious mechanical stimuli and had a peripheral conduction velocity ranging from 2.6 to 15.4 m/s. These neurons were subdivided into a fast-conducting type (FC-type) and a slowly conducting type (SC-type). Neurons of both types had a receptive field limited to a single spot which responded to pin prick stimulus with a threshold of more than 5 g. The FC-type neurons had a narrow spike followed by a shorter after-hyperpolarization. In contrast, SC-type neurons exhibited a broad spike with a hump on the falling phase and a longer after-hyperpolarization. The diameters of the stem, central and peripheral axons of the FC-type neurons were significantly thicker than those of the SC-type neurons, but there was no statistical difference in the soma size of the two types. Central axons of both types of neurons were thinner than their stem and peripheral axons. Dichotomizing fibers of peripheral axons were observed within the ganglion on 3 neurons. Central axons of the FC-type neurons terminated ipsilaterally in the nucleus principalis, the subnucleus oralis, interpolaris and caudalis and the interstitial nucleus, whereas those of the SC-type neurons generally projected only to the caudal half of the subnucleus interpolaris, subnucleus caudalis and interstitial nucleus ipsilaterally. The present data showed for the first time the physiological and morphological heterogeneity of the primary trigeminal A-δ nociceptive neurons and revealed that the trigeminal nucleus principalis and all the subdivisions of the trigeminal descending nucleus are involved in nociception as relay nuclei, but the subnucleus caudalis and the caudal half subnucleus interpolaris are the essential relay sites of the primary nociceptive afferents supplying the oral mucosa and facial skin. The interstitial nucleus also appears to play an important role in orofacial nociception. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The method of transganglionic transport of horseradish peroxidase-wheat germ agglutinin conjugate (HRP-WGA) was used to determine the location within the monkey trigeminal ganglion of the primary afferent neurons that innervate the cornea, and the brainstem and spinal cord termination sites of these cells. In each of four animals. Gelfoam pledgets were saturated with 2% HRP-WGA in saline and applied to the scratched surface of the central cornea for 30 minutes. Postmortem examination of the corneal whole mounts revealed that the tracer solution remained confined to approximately the central one-fourth of the cornea with no spread into the peripheral cornea or limbus. Seventy-two to 96 hours after tracer application, 126-242 labeled cell bodies were observed in the medial region of the ipsilateral trigeminal ganglion. The majority of neurons were concentrated in an area of the ganglion that lay directly caudal to the entering fibers of the ophthalmic nerve, but smaller numbers of cells lay somewhat more laterally, near the region where the ophthalmic and maxillary nerves come together. A very small number of neurons in one animal innervated the cornea by sending their fibers into the maxillary nerve. HRP-WGA-labeled terminal fields were present to some extent in all four major rostrocaudal subdivisions of the ipsilateral trigeminal brainstem nuclear complex (TBNC), but the size of the terminal fields and the intensity of labeling differed markedly from one level of the TBNC to the next. Labeled fibers projected heavily to the transitional zone between caudal pars interpolaris and rostral pars caudalis (i.e., the "periobex" region of the TBNC) and moderately to the trigeminal main sensory nucleus, pars oralis, and caudal pars caudalis at the level of the pyramidal decussation. Remaining areas of the TBNC, including rostral pars interpolaris and the midlevel of pars caudalis, received few, if any, corneal afferent projections. Occasional labeled fibers were observed in the dorsal horn of C1 and in the rostral half of C2. It is hoped that data generated in the current investigation of nonhuman primates will contribute to a better understanding of the neural substrates that subserve corneal sensation and the blink reflex in humans.  相似文献   

19.
The central projections of five peripheral branches of the trigeminal nerve were investigated by the method of transganglionic transport of horseradish peroxidase (HRP). In separate animals, the corneal, supraorbital, infraorbital, mental, or inferior alveolar branches were transected and soaked in concentrated solutions of HRP. Forty-eight to 72 hours after surgery, the brainstem, upper cervical spinal cord, and trigeminal ganglia were perfusion-fixed and processed according to the tetramethylbenzidine technique. The results show that trigeminal primary afferent neurons which innervate the cornea project mainly to the levels of caudal pars interpolaris and caudal pars caudalis. In contrast, trigeminal primary afferent neurons whose peripheral processes course through the supraorbital, infraorbital, or mental nerves project most heavily to the trigeminal main sensory nucleus, pars interpolaris, and the rostrocaudal middle three-fifths of pars caudalis. Trigeminal primary afferent neurons which give origin to the inferior alveolar nerve project heavily and in approximately equal numbers of all rostrocaudal levels of the trigeminal brainstem nuclear complex (TBNC). A small number of fibers from each of the latter four cell populations project directly to the contralateral C1-C2 dorsal horn. A small number of fibers from each cell population studied end in the reticular formation immediately adjacent to the spinal nucleus of V. It is concluded that the cornea and facial skin regions of the cat are represented nonuniformly along the rostrocaudal length of the TBNC.  相似文献   

20.
Injections of cholera toxin B-chain conjugated to horseradish peroxidase into individual peripheral branches of the trigeminal nerve or into the trigeminal ganglion showed that an ascending trigeminal tract (TTA) terminated in distinct ventral and dorsal divisions of the principal sensory nucleus (PrVv and PrVd, respectively), and a descending tract (TTD) terminated within pars oralis, pars interpolaris, and pars caudalis divisions of the nucleus of TTD (nTTD) and within the dorsal horn of the first six cervical spinal segments. In PrVD, mandibular, ophthalmic, and maxillary projections were predominantly located dorsally, ventrally, and medially, respectively. In nTTD, mandibular projections lay dorsomedially, ophthalmic projections lay ventrolaterally, and maxillary projections lay in between. At caudal medullary and spinal levels, mandibular projections were situated medially, ophthalmic projections were situated laterally, and maxillary projections were situated centrally. The terminations within the dorsal horn were most dense in laminae III and IV and were least dense in lamina II, with laminae III-IV also receiving topographically organised contralateral projections. Extratrigeminal projections were mainly to the external cuneate nucleus by way of a lateral descending trigeminal tract (ITTD; Dubbeldam and Karten [1978] J. Comp. Neurol. 180:661–678) and to the region of the tract of Lissauer and lamina I of the dorsal horn. Other projections were to a region medial to the apex of pars interpolaris, to the nuclei ventrolateralis anterior (Vla) and presulcalis anterior (Pas) of the solitary complex, and sparsely to the lateral reticular formation (plexus of Horsley) ventral to TTD. No projections were seen to the trigeminal motor nuclei or to the cerebellum. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号