首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RASSF1A is a major tumor suppressor gene located at 3p21.3. We investigated the role of aberrant promoter region hypermethylation of RASSF1A in a large series of adult gliomas. RASSF1A was frequently methylated in both primary tumors (36/63; 57%) and tumor cell lines (7/7; 100%). Hypermethylation of RASSF1A in glioma cell lines correlated with loss of expression and treatment with a demethylating agent-reactivated RASSF1A gene expression. Furthermore, re-expression of RASSF1A suppressed the growth of glioma cell line H4 in vitro. Next, we investigated whether other members of the RASSF gene family were also inactivated by methylation. NORE1B and RASSF3 were not methylated in gliomas, while NORE1A and RASSF5/AD037 demonstrated methylation in glioma cell lines but not in primary tumors. We then investigated the methylation status of three other candidate 3p21.3 tumor suppressor genes. CACNA2D2 and SEMA3B were not frequently methylated, but the BLU gene located just centromeric to RASSF1 was frequently methylated in glioma cell lines (7/7) and in 80% (35/44) of glioma tumors. In these tumor cell lines, BLU expression was restored after treatment with a demethylating agent. Loss of BLU gene expression in glioma tumors correlated with BLU methylation. There was no association between RASSF1A and BLU methylation. RASSF1A methylation increased with tumor grade, while BLU methylation was seen at similar frequencies in all grades. Our data implicate RASSF1A and BLU promoter methylation in the pathogenesis of adult gliomas, while other RASSF family members and CACNA2D2 and SEMA3B appear to have only minor roles. In addition, RASSF1A and BLU methylation appear to be independent and specific events and not due to region-wide changes in DNA methylation.  相似文献   

3.
Renal cell carcinoma (RCC), the most common adult kidney neoplasm, is histopathologically heterogeneous, with most sporadic RCCs ( approximately 80%) classified as clear cell (CC) tumors. Chromosome 3p allele loss is the most frequent genetic alteration in RCC but is associated specifically with sporadic and hereditary forms of clear cell RCC (CC-RCC) and is not a feature of non-CC-RCC, such as papillary (chromophilic) RCC. The VHL tumor suppressor gene (TSG) maps to chromosome 3p25, and somatic inactivation of the VHL gene occurs in up to 70% of CC-RCC tumors and cell lines. However, VHL inactivation is not sufficient for CC-RCC tumorigenesis, and inactivation of 3p12-p21 TSG(s) appears to be necessary in CC-RCC irrespective of VHL gene inactivation status. Recently, we demonstrated that the candidate 3p21 TSG, RASSF1A, is hypermethylated in most small cell lung cancers. We have now investigated the role of RASSF1A inactivation in primary RCC tumors. RASSF1A promoter methylation was detected in 23% (32 of 138) of primary CC-RCC tumors. In CC-RCC cell lines, RASSF1A methylation was associated with silencing of RASSF1A expression and restoration of expression after treatment with 5'-azacytidine. The frequency of RASSF1A methylation was similar in CC-RCC with and without VHL gene inactivation (24% versus 21%), and there was no association between epigenetic silencing of the RASSF1A and VHL TSGs, because 0 of 6 tumors with VHL hypermethylation had RASSF1A methylation, and VHL was not methylated in 26 CC-RCCs with RASSF1A methylation. Although 3p allele loss has been reported rarely in papillary RCC, we identified RASSF1A methylation in 44% (12 of 27) of papillary RCCs analyzed. Thus: (a) inactivation of RASSF1A is a frequent event in both CC-RCC and papillary RCC tumors; (b) there is no relationship between epigenetic silencing of RASSF1A and VHL inactivation status in CC-RCC. Fifty-four CC-RCCs analyzed for RASSF1A methylation were informative for 3p21 allele loss, and 20% (7 of 35) with 3p21 allele loss demonstrated RASSF1A methylation. All informative CC-RCCs with 3p21 allele loss and no RASSF1A methylation also demonstrated allele losses at other regions of 3p so that tumorigenesis in these cases may result from: (a) haploinsufficiency of RASSF1A; (b) inactivation of other 3p21 TSGs; or (c) inactivation of 3p TSGs from outside of 3p21. RASSF1A is the first TSG to be inactivated frequently in both papillary and CC-RCCs. The finding of frequent epigenetic inactivation of RASSF1A in papillary RCCs despite previous studies reporting infrequent 3p21 allele loss in this tumor type illustrates how the systematic identification of all major human cancer genes will require detailed analysis of the cancer genome and epigenome.  相似文献   

4.
5.
6.
Non-small cell lung cancer frequently shows loss of heterozygosity of the chromosome 3p21.3 region and several genes such as RASSF1A, BLU, and SEMA3B have been identified as candidate tumor suppressor genes at this region since their downregulation and hypermethylation at their promoter regions were frequently detected in lung cancer. To determine whether these three genes are simultaneously inactivated during lung cancer development, we studied 138 primary non-small cell lung cancers for the promoter methylation status of these genes and allelic loss of the chromosome 3p21.3 region. We found promoter hypermethylation at 32% in RASSF1A, 30% in BLU, and 47% in SEMA3B. Allelic loss of 3p21.3 was detected in 54 (58%) of 93 informative tumors. Despite the weak association of methylation status among these three genes, there was no correlation between the methylation status of each gene and loss of heterozygosity. We also studied possible genes downstream of RASSF1A in 16 primary non-small cell lung cancers and found that the expressions of SM22 and SPARC were significantly downregulated in RASSF1A-hypermethylated tumors. Our results showed that, while candidate tumor suppressor genes at this locus can be simultaneously inactivated by epigenetic alterations, loss of heterozygosity without any hypermethylation of the three genes can also occur in some cases, suggesting that just one allelic loss might also be sufficient for the inactivation of any of these genes for lung cancer development.  相似文献   

7.
The human Ras association domain family 1A (RASSF1A) gene, recently isolated from the lung and breast tumor suppressor locus 3p21.3, is highly methylated in primary lung, breast, nasopharyngeal and other tumors, and re-expression of RASSF1A suppresses the growth of several types of cancer cells. Epigenetic inactivation of RASSF1A by promoter hypermethylation is also important in the development of several human cancers. The methylation status of the promoter region of RASSF1A was analysed in primary brain tumors and glioma cell lines by methylation-specific polymerase chain reaction. In primary brain tumors, 25 of 46 (54.3%) gliomas and five of five (100%) medulloblastomas showed RASSF1A methylation. In benign tumors, only one of 10 (10%) schwannomas and two of 12 (16.7%) meningiomas showed RASSF1A methylation. The RASSF1A promoter region was methylated in all four glioma cell lines. RASSF1A was re-expressed in all methylated cell lines after treatment with the demethylating agent 5-aza-2'-deoxycytidine. Methylation of the promoter CpG islands of the RASSF1A may play an important role in the pathogenesis of glioma and medulloblastoma.  相似文献   

8.
Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma   总被引:16,自引:0,他引:16  
Lee MG  Kim HY  Byun DS  Lee SJ  Lee CH  Kim JI  Chang SG  Chi SG 《Cancer research》2001,61(18):6688-6692
  相似文献   

9.
10.
Testicular germ cell tumours (TGCTs) are histologically heterogeneous neoplasms with variable malignant potential. Previously, we demonstrated frequent 3p allele loss in TGCTs, and recently we and others have shown that the 3p21.3 RASSF1A tumour suppressor gene (TSG) is frequently inactivated by promoter hypermethylation in a wide range of cancers including lung, breast, kidney and neuroblastoma. In order to investigate the role of epigenetic events in the pathogenesis of TGCTs, we analysed the promoter methylation status of RASSF1A and nine other genes that may be epigenetically inactivated in cancer (p16(INK4A), APC, MGMT, GSTP1, DAPK, CDH1, CDH13, RARbeta and FHIT) in 24 primary TGCTs (28 histologically distinct components). RASSF1A methylation was detected in four of 10 (40%) seminomas and 15 of 18 (83%) nonseminoma TGCT (NSTGCT) components (P=0.0346). None of the other nine candidate genes were methylated in seminomas, but MGMT (44%), APC (29%) and FHIT (29%) were frequently methylated in NSTGCTs. Furthermore, in two mixed germ cell tumours, the NSTGCT component for one demonstrated RASSF1A, APC and CDH13 promoter methylation, but the seminoma component was unmethylated for all genes analysed. In the second mixed germ cell tumour, the NSTGCT component was methylated for RASSF1A and MGMT, while the seminoma component was methylated only for RASSF1A. In all, 61% NSTGCT components but no seminoma samples demonstrated promoter methylation at two or more genes (P=0.0016). These findings are consistent with a multistep model for TGCT pathogenesis in which RASSF1A methylation occurs early in tumorigenesis and additional epigenetic events characterize progression from seminoma to NSTGCTs.  相似文献   

11.
Gallbladder carcinoma (GBC) is a highly malignant neoplasm that represents the leading cause of death for cancer in Chilean females. There is limited information about the molecular abnormalities involved in its pathogenesis. We have identified a number of molecular changes in GBC, including frequent allelic losses at chromosome 3p regions. Four distinct 3p sites (3p12, 3p14.2, 3p21.3 and 3p22-24) with frequent and early allelic losses in the sequential pathogenesis of this neoplasm have been detected. We investigated epigenetic and genetic abnormalities in GBC affecting 6 candidate tumor suppressor genes (TSG) located in chromosome 3p, including DUTT1 (3p12), FHIT (3p14.2), BLU, RASSF1A, SEMA3B and hMLH1 (3p21.3). DNA extracted from frozen tissue obtained from 50 surgical resected GBCs was examined for gene promoter methylation using MSP (methylation-specific PCR) technique after bisulfite treatment in all 6 genes. In addition, we performed PCR-based mutation examination using SSCP in FHIT and RASSF1A genes and loss of heterozygosity (LOH) analysis using microdissected tissue in a subset of tumors for the 3p21.3 region with 8 microsatellite markers. A very high frequency of GBC methylation was detected in SEMA3B (46/50, 92%) and FHIT (33/50, 66%), intermediate incidences in BLU (13/50, 26%) and DUTT1 (11/50, 22%) and very low frequencies in RASSF1A (4/50, 8%) and hMLH1 (2/50, 4%). Allelic loss at 3p21.3 was found in nearly half of the GBCs examined. We conclude that epigenetic inactivation by abnormal promoter methylation is a frequent event in chromosome 3p candidate TSGs in GBC pathogenesis, especially affecting genes SEMA3B (3p21.3) and FHIT (3p14.2).  相似文献   

12.
3p21 is an important locus harbouring critical tumour suppressor genes (TSG), which are implicated in the pathogenesis of multiple tumours, including oesophageal carcinoma. RASSF1A is a 3p21.3 candidate TSG frequently inactivated by promoter methylation in multiple tumours. We investigated RASSF1A promoter methylation and gene expression in Chinese oesophageal squamous cell carcinoma (ESCC) to compare it to data from Japanese patients. Methylation-specific PCR (MSP) showed that RASSF1A was partially methylated in 3/7 (43%) cell lines; 22/64 (34%) primary tumours and 3/64 (5%) corresponding non-tumour samples; and was not methylated in 2 immortalized normal oesophageal epithelial cell lines and 6 normal oesophageal epithelium samples. Bisulfite genome sequencing confirmed the MSP results. Promoter hypermethylation correlated well with RASSF1A mRNA down-regulation. Treatment of cell lines with 5-aza-2'-deoxycytidine activated RASSF1A mRNA expression along with promoter demethylation. RASSF1A hypermethylation in the Chinese cohort was much lower than in a published report of Japanese ESCC patients (52%) and cell lines (74%). Our own analysis of Japanese ESCC cell lines for direct comparison also detected a high frequency of RASSF1A hypermethylation (8/10; 80%) and high levels of hypermethylation at each CpG site. No significant association between RASSF1A hypermethylation and histological differentiation (p=0.953), tumour staging (p=0.117), or survival (p=0.7571) was found in Chinese ESCC, unlike the results of Japanese patients. The incidence of oesophageal cancer shows marked variation by geographic area and ethnic group; it is almost three times higher in China than in Japan, indicating possible different pathogenetic mechanisms. Our results show that RASSF1A hypermethylation in ESCC has epidemiological/ethnic differences, and suggest that Chinese ESCC may result from different pathogenetic mechanisms.  相似文献   

13.
Previously we analysed overlapping homozygous deletions in lung and breast tumours/tumour lines and defined a small region of 120 kb (part of LCTSGR1) at 3p21.3 that contained putative lung and breast cancer tumour suppressor gene(s) (TSG). Eight genes including RASSF1 were isolated from the minimal region. However, extensive mutation analysis in lung tumours and tumour lines revealed only rare inactivating mutations. Recently, de novo methylation at a CpG island associated with isoform A of RASSF1 (RASSF1A) was reported in lung tumours and tumour lines. To investigate RASSF1A as a candidate TSG for various cancers, we investigated: (a) RASSF1A methylation status in a large series of primary tumour and tumour lines; (b) chromosome 3p allele loss in lung tumours and (c) RASSF1 mutation analysis in breast tumours. RASSF1A promoter region CpG island methylation was detected in 72% of SCLC, 34% of NSCLC, 9% of breast, 10% of ovarian and 0% of primary cervical tumours and in 72% SCLC, 36% NSCLC, 80% of breast and 40% of ovarian tumour lines. In view of the lower frequency of RASSF1 methylation in primary breast cancers we proceeded to RASSF1 mutation analysis in 40 breast cancers. No mutations were detected, but six single nucleotide polymorphisms were identified. Twenty of 26 SCLC tumours with 3p21.3 allelic loss had RASSF1A methylation, while only six out of 22 NSCLC with 3p21.3 allele loss had RASSF1A methylation (P=0.0012), one out of five ovarian and none out of six cervical tumours with 3p21.3 loss had RASSF1A methylation. These results suggest that (a) RASSF1A inactivation by two hits (methylation and loss) is a critical step in SCLC tumourigenesis and (b) RASSF1A inactivation is of lesser importance in NSCLC, breast, ovarian and cervical cancers in which other genes within LCTSGR1 are likely to be implicated.  相似文献   

14.
15.
The 3p21.3 tumour suppressor gene (TSG) RASSF1A is inactivated predominantly by promoter methylation and rarely by somatic mutations. Recently we demonstrated that epigenetic inactivation of RASSF1A is frequent in both clear cell and papillary adult renal cell carcinomas (even though 3p21.3 allele loss is rare in papillary tumours). Wilms' tumour is the most common childhood kidney tumour, but relatively little is known about its molecular pathogenesis. Thus TSGs such as WT1, p16(CDKN2a) and p53 are inactivated in only a minority of cases. In view of the involvement of RASSF1A in adult renal cancers we investigated RASSF1A as a candidate Wilms' TSG. We detected RASSF1A hypermethylation in 21 of 39 (54%) primary Wilms' tumours. 3p21.3 allele loss was not detected in nine informative Wilms' tumours (five with RASSF1A methylation). In contrast to RASSF1A, only a minority (10.3%) of Wilms' tumours demonstrated p16 promoter methylation. As chromosome 3p allele loss is frequent in colorectal cancer, we proceeded to investigate RASSF1A promoter methylation in colorectal cancer and detected RASSF1A methylation in 80% (4/5) colorectal cancer cell lines and 45% (13/29) primary colorectal cancers. There was no correlation between RASSF1A and p16 methylation in colorectal cancer. We have demonstrated that RASSF1A inactivation is the most frequent genetic or epigenetic event yet reported in Wilms' tumourigenesis and that allelotyping studies may fail to identify regions containing important TSGs.  相似文献   

16.
We report that homeodomain-only protein (HOP) is expressed in the suprabasal layer of normal upper aerodigestive tract epithelium and expression strongly decreases in hypopharyngeal carcinoma. Interestingly, HOP has very recently been shown to be a tumour suppressor involved in differentiation, suggesting that HOP may have a similar role in head and neck squamous cell carcinoma (HNSSC).  相似文献   

17.
PURPOSE: Chromosome 3p is deleted frequently in various types of human cancers, including lung cancer. Recently, the RASSF1A gene was isolated from the 3p21.3 region homozygously deleted in lung and breast cancer cell lines, and it was shown to be inactivated by hypermethylation of the promoter region in lung cancers. In this study, we investigated the pathogenetic and clinicopathological significances of RASSF1A methylation in the development and/or progression of lung adenocarcinoma. EXPERIMENTAL DESIGN: Association of RASSF1A methylation with clinicopathological features, allelic imbalance at 3p21.3, p53 mutations, and K-ras mutations was examined in 110 stage I lung adenocarcinomas. RESULTS: Thirty-five of 110 (32%) tumors showed RASSF1A methylation. RASSF1A methylation was dominantly detected in tumors with vascular invasion (P = 0.0242) or pleural involvement (P = 0.0305), and was observed more frequently in poorly differentiated tumors than in well (P = 0.0005) or moderately (P = 0.0835) differentiated tumors. Furthermore, RASSF1A methylation correlated with adverse survival by univariate analysis (P = 0.0368; log-rank test) as well as multivariate analysis (P = 0.032,; risk ratio 2.357; 95% confidence interval, 1.075-5.169). The correlation between RASSF1A methylation and allelic imbalance at 3p21.3 was significant (P = 0.0005), whereas the correlation between RASSF1A methylation and p53 mutation was borderline (P = 0.0842). However, there was no correlation or inverse correlation between RASSF1A methylation and K-ras mutation (P = 0.2193). CONCLUSIONS: These results indicated that epigenetic inactivation of RASSF1A plays an important role in the progression of lung adenocarcinoma, and that RASSF1A hypermethylation appears to be a useful molecular marker for the prognosis of patients with stage I lung adenocarcinoma.  相似文献   

18.
19.
目的:研究鼻咽鳞癌组织中的抑癌基因RASSF1A的表达及其基因启动子区异常甲基化的情况.并分析DNA异常甲基化与鼻咽鳞癌临床病理因素之间的关系.方法:利用RT-PCR和MS-PCR的方法,分析38例鼻咽鳞癌组织标本、10例鼻咽炎性组织标本、4例正常鼻咽黏膜组织标本、两种鼻咽癌细胞株中RASSF1A基因的表达和其基因启动子区异常甲基化的情况.采用甲基化抑制剂5-Aza-CdR处理鼻咽癌细胞株,观察RASSF1A重新表达的情况.结果:38例鼻咽癌组织标本和两种细胞株的RASSF1A基因表达显著低于对照组(P<0.05);71.05 %的鼻咽癌标本及两种鼻咽癌细胞株发生异常甲基化;甲基化与年龄、性别、临床分期和颈部淋巴结转移无相关性(P>0.05),与RASSF1A基因表达和肿瘤分化程度有关(P<0.05);用5-Aza-CdR处理的低表达RASSF1A基因的鼻咽癌细胞株,RASSF1A基因表达上调.结论:鼻咽癌患者肿瘤组织中存在RASSFIA基因的表达下调现象,基因转录启动区的异常甲基化是导致鼻咽癌组织中RASSF1A基因表达下调的主要原因.  相似文献   

20.
Promoter hypermethylation of tumor suppressor genes (TSGs) is a common feature of primary cancer cells. However, to date the somatic epigenetic events that occur in head and neck squamous cell carcinoma (HNSCC) tumorigenesis have not been well-defined. In the present study, we analyzed the promoter methylation status of the genes mutL homolog 1 (MLH1), Ras-association domain family member 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in 23 HNSCC samples, three control tissues and one HNSCC cell line (UM-SCC 33) using methylation-specific PCR (MSP). The expression of the three proteins was quantified by semi-quantitative immunohistochemical analysis. The cell line was treated with the demethylating agent 5-azacytidine (5-Aza) and the methylation status after 5-Aza treatment was analyzed by MSP and DNA sequencing. Proliferation was determined by Alamar blue staining. We found that the MGMT promoter in 57% of the analyzed primary tumor samples and in the cell line was hypermethylated. The MLH promoter was found to be methylated in one out of 23 (4%) tumor samples while in the examined cell line the MLH promoter was unmethylated. The RASSF1A promoter showed methylation in 13% of the tumor samples and in the cell line. MGMT expression in the group of tumor samples with a hypermethylated promoter was statistically significantly lower compared to the group of tumors with no measured hypermethylation of the MGMT promoter. After treatment of the cell line with the demethylating agent 5-Aza no demethylation of the methylated MGMT and RASSF1A genes were determined by MSP. DNA sequencing verified the MSP results, however, increased numbers of unmethylated CpG islands in the promoter region of MGMT and RASSF1A were observed. Proliferation was significantly (p<0.05) reduced after treatment with 5-Aza. In summary, we have shown promoter hypermethylation of the tumor suppressor genes MGMT and RASSF1A in HNSCC, suggesting that this epigenetic inactivation of TSGs may play a role in the development of HNSCC. 5-Aza application resulted in partial demethylation of the MGMT and RASSF1A TSGs and reduced proliferation of the tumor cells suggesting further evaluation of 5-Aza for HNSCC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号