首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of Physical Gap Sizes at Human Telomeres   总被引:6,自引:1,他引:5       下载免费PDF全文
Genome-wide physical and genetic mapping efforts have not yet fully addressed the problem of closure at the telomeric ends of human chromosomes. Targeted efforts at cloning human and mouse telomeres have succeeded in identifying unique sequences at most telomeres, but gap sizes between these telomere clones and the distal markers on integrated genetic/physical maps remain largely unknown. As telomeric regions are known to be the most gene-rich regions of the human genome, filling these gaps should have a high priority in completion of the Human Genome Project. We reported previously a first generation set of unique sequence probes for human telomeric regions. Of 41 human telomere regions, 33 were represented by unique clones with a known distance (1 Mb, thus defining the physical mapping task for filling telomeric gaps.  相似文献   

2.
Completion of genetic and physical maps requires markers from the ends (telomeres) of every human chromosome. We have searched for short tandem repeats (microsatellites) in cosmid and P1 clones and generated 661 sequence-tagged sites (STS) from the terminal 300 kb of 31 human chromosome ends. PCR assays were successfully designed for 58 microsatellites and mapped both genetically and on radiation hybrids (RHs) to confirm their telomeric location. Sequence analysis revealed marked variation in sequence composition, consistent with the hypothesis that even very highly GC-rich chromosome bands (the T bands) are not homogenous. The STSs that we have generated will be a necessary resource for the construction of physical maps of these complex regions of the genome.  相似文献   

3.
The distribution of telomeric repeats was analyzed by fluorescence in situ hybridization in 15 species of arvicoline rodents, included in three different genera: Chionomys, Arvicola, and Microtus. The results demonstrated that in most or the analyzed species, telomeric sequences are present, in addition to normal telomeres localization, as large blocks in pericentromeric regions. The number, localization, and degree of amplification of telomeric sequences blocks varied with the karyotype and the morphology of the chromosomes. Also, in some cases telomeric amplification at non-pericentromeric regions is described. The interstitial telomeric sequences are evolutionary modern and have rapidly colonized and spread in pericentromeric regions of chromosomes by different mechanisms and probably independently in each species. Additionally, we colocalized telomeric repeats and the satellite DNA Msat-160 (also located in pericentromeric regions) in three species and cloned telomeric repeats in one of them. Finally, we discuss about the possible origin and implication of telomeric repeats in the high rate of karyotypic evolution reported for this rodent group.  相似文献   

4.
Telomeres, nucleoprotein complexes at chromosome ends, protect chromosomes against end-to-end fusion. Previous in vitro studies in human fibroblast models indicated that telomere dysfunction results in chromosome instability. Loss of telomere function can result either from critical shortening of telomeric DNA or from loss of distinct telomere-capping proteins. It is less clear whether telomere dysfunction has an important role in human cancer development in vivo. Acute myeloid leukemia (AML) is a good model to study mechanisms that generate chromosome instability in human cancer development because distinct groups of AML are characterized either by aberrations that theoretically could result from telomere dysfunction (terminal deletions, gains/losses of chromosome parts, nonreciprocal translocations), or aberrations that are unlikely to result from telomere dysfunction (e.g., reciprocal translocations or inversions). Here we demonstrate that AML with multiple chromosome aberrations that theoretically could result from telomere dysfunction is invariably characterized by critically short telomeres. Short telomeres in this group are not associated with low telomerase activity or decreased expression of essential telomeric capping proteins TRF2 and POT1. In contrast, telomerase activity levels are significantly higher in AML with short telomeres. Notably, short telomeres in the presence of high telomerase may relate to significantly higher expression of TRF1, a negative regulator of telomere length. Our observations suggest that, consistent with previous in vitro fibroblast models, age-related critical telomere shortening may have a role in generating chromosome instability in human AML development.  相似文献   

5.
6.
7.
Short blocks of telomeric-like DNA (Interstitial Telomeric Sequences, ITSs) are found far from chromosome ends. We addressed the question as to how such sequences arise by comparing the loci of 10 human ITSs with their genomic orthologs in 12 primate species. The ITSs did not derive from expansion of pre-existing TTAGGG units, as described for other microsatellites, but appeared suddenly during evolution. Nine insertion events were dated along the primate evolutionary tree, the dates ranging between 40 and 6 million years ago. Sequence comparisons suggest that in each case the block of (TTAGGG)n DNA arose as a result of double-strand break repair. In fact, ancestral sequences were either interrupted precisely by the tract of telomeric-like repeats or showed the typical modifications observed at double-strand break repair sites such as short deletions, addition of random sequences, or duplications. Similar conclusions were drawn from the analysis of a chimpanzee-specific ITS. We propose that telomeric sequences were inserted by the capture of a telomeric DNA fragment at the break site or by the telomerase enzyme. Our conclusions indicate that human ITSs are relics of ancient breakage rather than fragile sites themselves, as previously suggested.  相似文献   

8.
Chromosome termini of most eukaryotes end in tracks of short tandemly repeated GC-rich sequences, the composition of which varies among different groups of organisms. Plant species predominantly contain (TTTAGGG)n repeats at their telomeres. However, a few plant species, including members of Alliaceae and Aloe spp. (Asphodelaceae) were found to lack such Arabidopsis-type (T3AG3)n telomeric repeats. Recently, it has been proposed that the lack of T3AG3 telomeric repeat sequences extends to all species forming the Asparagales clade. Here, we analysed the composition of Aloe telomeres by single-primer PCR and fluorescence in-situ hybridization (FISH) with directly labelled Arabidopsis-type (TTTAGGG)28–43 DNA probe, and with vertebrate-type (TTAGGG)33–50 DNA and a (C3TA2)3 peptide nucleic acid (PNA) probe. It was found that Nicotiana tabacum contained Arabidopsis-type telomeric repeats, while Aloe telomeres lacked the corresponding FISH signals. Surprisingly, FISH with the highly specific vertebrate-type (C3TA2)3 PNA probe resulted in strong T2AG3-specific FISH signals at the ends of chromosomes of both Aloe and Nicotiana tabacum, suggesting the presence of T2AG3 telomeric repeats in these species. FISH with a long (TTAGGG)33–50 DNA probe also highlighted Aloe chromosome ends, while this probe failed to reveal FISH signals on tobacco chromosomes. These results indicate the presence of vertebrate-like telomeric sequences at the telomeres of Aloe spp. chromosomes. However, single-primer PCR with (T2AG3)5 primers failed to amplify such sequences in Aloe, which could indicate a low copy number of T2AG3 repeats at the chromosome ends and/or their co-orientation and interspersion with other repeat types. Our results suggest that telomeres of plant species, which were thought to lack GC-rich repeats, may in fact contain variant repeat types. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Using in situ hybridisation, we identified interstitial telomeric sequences in seven chromosomal translocations present in normal and in syndromic subjects. Telomeric sequences were also found at the centromeric ends of a 4p and a 4q caused by centric fission of one chromosome 4. We found that rearrangements leading to interstitial telomeric sequences were of three types: (1) termino-terminal rearrangements with fusion of the telomeres of two chromosomes, of which we report one case; (2) rearrangements in which an acentric fragment of one chromosome fuses to the telomere of another chromosome. We describe four cases of Prader-Willi syndrome with the 15q1-qter transposed to the telomeric repeats of different recipient chromosomes; (3) telomere-centromere rearrangements in which telomeric sequences of one chromosome fuse with the centromere of another chromosome. We describe two examples of these rearrangements in which not only telomeric sequences but also remnants of alphoid sequences were found at the fusion point. Instability at the fusion point of the derivative chromosome was found in the Prader-Willi translocations but we were unable to correlate this instability with culture conditions. The two subjects with the termino-terminal rearrangement and the centric fission respectively have normal phenotypes. The two patients with telomere-centromere fusions were unbalanced for the short arm of an acrocentric chromosome and had failure to thrive; one of them also had dysmorphic facies. We postulate that these phenotypes could be the result of uniparental disomy.  相似文献   

10.
The distribution of the telomeric sequence (TTAGGG)n was studied in chromosomes of Micoureus demerarae (2n=14), a South American marsupial, by fluorescence in-situ hybridization (FISH). The telomeric repeat sequence was present at both ends of all chromosomes, but also various interstitial telomeric sequences (ITS) were detected in the pericentromeric heterochromatic regions. Intraspecific differences in the number of ITS (2 to 8) were observed without intraindividual variation. The presence of telomere-like sequences in the same regions of constitutive heterochromatin suggest that these segments are not necessarily remnants of true telomeres resulting from chromosome rearrangements but could be part of the satellite DNA.  相似文献   

11.
Sorex araneus and Sorex granarius are sibling species within the Sorex araneus group with karyotypes composed of almost identical chromosome arms. S. granarius has a largely acrocentric karyotype, while, in S. araneus, various of these acrocentrics have combined together by Robertsonian (Rb) fusions to form metacentrics, with the numbers and types of metacentrics differing between chromosomal races. Our studies on telomeric sequences in S. araneus and S. granarius revealed differences between chromosomes and between species. In S. araneus (the Novosibirsk race), hybridization signals were present on the telomeres of all the chromosomes after FISH with a PCR-generated telomeric probe. In addition, hybridization signals were observed at high frequencies in the pericentric regions of some but not all metacentrics formed by Rb fusion. There were fewer signals on those metacentrics formed earlier in the evolution of S. araneus. This suggests that S. araneus chromosomes retain at least some telomeric repeats during Rb fusion, but that these repeats are lost or modified over time. These results are critical for the interpretation of the well-studied hybrid zones between chromosomal races of S. araneus, given that Rb fission has been postulated in such hybrid zones and that the likelihood of Rb fission will relate to presence/absence of telomeric sequences at the centromeres of metacentrics. In S. granarius, there were strong signals at the proximal (centromeric) telomeres of the acrocentrics after FISH with a DNA telomeric probe. FISH with a PNA telomeric probe on S. granarius acrocentrics showed that the proximal telomeres were 213 kb on average, while the length of the distal telomeres was 3.8 kb on average. Two-colour FISH, using a telomeric DNA probe and a microdissected probe generated from the pericentric regions of the S. granarius chromosomes a and b, revealed regions on distinct chromatin fibres where telomeric and microdissected probes were colocalized or localized sequentially. The proximal telomeres of S. granarius are highly unusual both in their large size and their heterogeneous structure relative to the telomeres of other mammals.  相似文献   

12.
Jumping translocations (JT) have been defined as nonreciprocal translocations involving a same donor chromosome arm or chromosome segment onto two or more recipient chromosomes in different cell lines in the same patient, leading to a mosaic karyotype. This definition has been expanded to also include extra copies of a same donor segment on different recipient chromosomes in a single clone. Six patients with multiple myeloma and JT involving chromosome arm 1q were identified among 37 patients presenting with chromosome 1 abnormalities. All six patients had an advanced disease and a short survival. The literature review allowed us to identify 24 additional patients with JT. Chromosomes 16 and 19 were the recipients in 11 (45.8%) and 6 (25%) of these 24 patients, respectively. Breakpoints on the recipient chromosomes were pericentromeric in 46.2% and telomeric in 40.4% of the breakpoints recorded. Since telomeres are made of (TTAGGG)n tandem DNA repeats that are also found in the pericentromeric heterochromatic regions (interstital telomeric sequences), it is presumed that jumping translocations arise through illegimate recombination between telomere repeat sequences and interstitial telomeric sequences.  相似文献   

13.
Short tandem DNA repeats and telomerase compose the telomere structure in the vast majority of eukaryotic organisms. However, such a conserved organisation has not been found in dipterans. While telomeric DNA in Drosophila is composed of specific retrotransposons, complex terminal tandem repeats are present in chromosomes of Anopheles and chironomid species. In the sciarid Rhynchosciara americana, short repeats (16 and 22 bp long) tandemly arrayed seem to reach chromosome ends. Moreover, in situ hybridisation data using homopolymeric RNA probes suggested in this species the existence of a third putative chromosome end repeat enriched with (dA).(dT) homopolymers. In this work, chromosome micro-dissection and PCR primed by homopolymeric primers were employed to clone these repeats. Named T-14 and 93 % AT-rich, the repetitive unit is 14 bp long and appears organised in tandem arrays. It is localised in five non-centromeric ends and in four interstitial bands of R. americana chromosomes. To date, T-14 is the shortest repeat that has been characterised in chromosome ends of dipterans. As observed for short tandem repeats identified previously in chromosome ends of R. americana, the T-14 probe hybridised to bridges connecting non-homologous polytene chromosome ends, indicative of close association of T-14 repeats with the very end of the chromosomes. The results of this work suggest that R. americana represents an additional example of organism provided with more than one DNA sequence that is able to reach chromosome termini.  相似文献   

14.
Human telomeres are composed of tandem arrays of TTAGGG repeats with many variant repeats at the proximal ends. Comparison of the interspersion of variant and TTAGGG repeats between alleles can be used to study telomere instability, but the difficulty in identifying chromosome-specific sequences close to the start of autosomal telomeres has hampered such investigations. A chromosome end, including a telomere and adjacent sequence, that is polymorphic for its presence or absence in unrelated individuals has been identified. The telomere-adjacent DNA shows strong homology (92-99%) to sequences, including two expressed sequence tags, that are usually located in subterminal regions of human chromosomes but not adjacent to telomeres. Since this chromosome end arose, it has relocated at least once. In Caucasians, it forms the telomere of approximately 6% of 16q and 2% of 16p chromosome arms. The mechanism of relocation is unknown but must have involved the telomere-adjacent DNA rather than the telomere itself, as copies on 16p and 16q share the same telomere-adjacent sequence. The interspersion patterns of TTAGGG with TGAGGG, TTGGGG and non-amplifying repeat sequences revealed extensive allelic variation, such that 47 different alleles were observed among the 50 alleles mapped. Closely related alleles differ by small changes in copy number at blocks of adjacent like repeats, as seen at the Xp/Yp pseudoautosomal telomere. Such differences are compatible with a model in which the majority of mutations arise by intra-allelic mechanisms, in individuals hemizygous for a single copy of the chromosome end.  相似文献   

15.
The course of chromosome evolution in small apes is still not clear, though painting analyses have opened the way for elucidating the puzzle. Even the C-banding pattern of the lar-group of gibbons (the genus Hylobates) is not clarified yet, although our previous studies suggested that lar-group gibbons have a unique C-banding pattern. We therefore made observations to establish C-banded karyotypes of the agile gibbons included in the lar-group. The data were compared with those of siamangs (the genus Symphalangus), which carry distinctive C-bands, to determine the chromosomal patterns in each group. C-banded chromosomes of agile gibbons showed several terminal, interstitial and paracentric bands, whose patterns are specific for each chromosome, whereas the C-bands of siamangs were located only at the terminal and centromeric regions in most chromosomes. Moreover, the C-bands of agile gibbons and siamangs were shown to be G+C-rich and A+T-rich DNA, respectively, by DAPI/C-band sequential staining. Additionally, PRINS labelling with a telomere primer revealed that agile gibbons have telomeric DNA only at chromosome ends where there is no C-band (non-telomeric heterochromatin), whereas the telomeric DNA of siamangs is located in the terminal C-banded regions (telomeric heterochromatin). Although the evolutionary mechanisms in small apes are still unknown, C-banding patterns and distribution of telomeric DNA sequences should provide valuable data to deduce the evolutionary pathways of small apes.  相似文献   

16.
TheArabidopsis-type telomeric repeats (5-TTTAGGG-3) are highly conserved. In most families of different plant phyla they represent the basic sequence of telomeres that stabilize and protect the chromosome termini. The results presented here show that Alliaceae and some related liliaceous species have no tandemly repeated TTTAGGG sequences. Instead, their chromosomes reveal highly repetitive satellite and/or rDNA sequences at the very ends. These apparently substitute the original plant telomeric sequences in Alliaceae. Both sequence types are very active in homologous recombination and may contribute to the stabilization of chromosome termini via compensation of replication-mediated shortening.Accepted for publication by M. Schmid  相似文献   

17.
The course of chromosome evolution in small apes is still not clear, though painting analyses have opened the way for elucidating the puzzle. Even the C-banding pattern of the lar-group of gibbons (the genus Hylobates) is not clarified yet, although our previous studies suggested that lar-group gibbons have a unique C-banding pattern. We therefore made observations to establish C-banded karyotypes of the agile gibbons included in the lar-group. The data were compared with those of siamangs (the genus Symphalangus), which carry distinctive C-bands, to determine the chromosomal patterns in each group. C-banded chromosomes of agile gibbons showed several terminal, interstitial and paracentric bands, whose patterns are specific for each chromosome, whereas the C-bands of siamangs were located only at the terminal and centromeric regions in most chromosomes. Moreover, the C-bands of agile gibbons and siamangs were shown to be G+C-rich and A+T-rich DNA, respectively, by DAPI/C-band sequential staining. Additionally, PRINS labelling with a telomere primer revealed that agile gibbons have telomeric DNA only at chromosome ends where there is no C-band (non-telomeric heterochromatin), whereas the telomeric DNA of siamangs is located in the terminal C-banded regions (telomeric heterochromatin). Although the evolutionary mechanisms in small apes are still unknown, C-banding patterns and distribution of telomeric DNA sequences should provide valuable data to deduce the evolutionary pathways of small apes.  相似文献   

18.
19.
The issue of telomeric sequences on deleted chromosomes and double minutes (dmin) was investigated by examining the cell line HL-60 with fluorescence in situ hybridization using a human plasmid DNA sequence with 800 bp TTAGGG repeats. This cell line showed telomeric sequences on the deleted short arms of chromosomes 9 and 10, with the results suggesting that so-called terminal deletion may be, in fact, an interstitial deletion, or that telomeric sequences may be synthesized by telomerase after deletion. On the other hand, numerous dmin showed no evidence of hybridization with the telomeric probe. This suggests that the characteristic unequal distribution of dmin during mitosis may result from the lack of not only centromeres but also telomeres.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号