首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Marfan syndrome is an autosomal dominant condition, with manifestations mainly in the skeletal, ocular, and cardiovascular systems. The disorder is caused by mutations in fibrillin-1 gene (FBN1). The majority of these are family-specific point mutations, with a small number being predicted to cause exon-skipping. To date, there have only been five reports of in-frame exon deletions in FBN1, with the largest of these spanning three exons. Mosaicism is rarely recorded and has only been reported in the unaffected, or mildly affected, parents of probands. Here, we report on the clinical histories of two children with exon deletions in FBN1. Both have severe Marfan syndrome with significant signs in infancy. One patient has a deletion of exon 33, which has not previously been reported. The other has the largest reported deletion, which spans 37 exons, and also represents the first reported case of mosaicism in a patient with Marfan syndrome.  相似文献   

3.
A child and his father had the skeletal and cardiovascular manifestations of Marfan syndrome due to a heterozygous G+5 --> T transversion in intron 37 of the FBN1 gene. Cultured dermal fibroblasts preferentially used an alternative splice site in exon 37 that resulted in the loss of the 3' 48 nucleotides of this exon. The translational reading frame was maintained with deletion of lysine 1568 to threonine 1582 and splitting of the codons for glycine 1567 and serine 1583 to yield GCC for alanine. The deletion removed two cysteine residues as well as a potential N-linked oligosaccharide attachment site from the '8-cysteine' domain encoded by exons 37 and 38.  相似文献   

4.
It is now well established that defects in fibrillin-1 (FBN1) cause the variable and pleiotropic features of Marfan syndrome (MFS) and, at the most severe end of its clinical spectrum, neonatal Marfan syndrome (nMFS). Patients with nMFS have mitral and tricuspid valve involvement and aortic root dilatation, and die of congestive heart failure, often in the first year of life. Although mutations in classical MFS have been observed along the entire length of the FBN1 mRNA, mutations in nMFS appear to cluster in a relatively small region of FBN1, approximately between exons 24 and 34. Here we describe the appearance of two FBN1 mutations in a single allele of an infant with nMFS. The changes were within six bases of each other in exon 26. One was a T3212G transversion resulting in an I1071S amino acid substitution and the second was an A3219T transversion resulting in an E1073D amino acid substitution. This is the first reported double mutant allele in FBN1.  相似文献   

5.
《Genetics in medicine》2015,17(3):177-187
PurposeMarfan syndrome is a systemic disorder that typically involves FBN1 mutations and cardiovascular manifestations. We investigated FBN1 genotype–phenotype correlations with aortic events (aortic dissection and prophylactic aortic surgery) in patients with Marfan syndrome.MethodsGenotype and phenotype information from probands (n = 179) with an FBN1 pathogenic or likely pathogenic variant were assessed.ResultsA higher frequency of truncating or splicing FBN1 variants was observed in Ghent criteria–positive patients with an aortic event (n = 34) as compared with all other probands (n = 145) without a reported aortic event (79 vs. 39%; P < 0.0001), as well as Ghent criteria–positive probands (n = 54) without an aortic event (79 vs. 48%; P = 0.0039). Most probands with an early aortic event had a truncating or splicing variant (100% (n = 12) and 95% (n = 21) of patients younger than 30 and 40 years old, respectively). Aortic events occurred at a younger median age in patients with truncating/splicing variants (29 years) as compared with those with missense variants (51 years). A trend toward a higher frequency of truncating/splicing variants in patients with aortic dissection (n = 21) versus prophylactic surgery (n = 13) (85.7 vs. 69.3%; not significant) was observed.ConclusionThese aortic event– and age-associated findings may have important implications for the management of Marfan syndrome patients with FBN1 truncating and splicing variants.  相似文献   

6.
7.
Mutations in fibrillin‐1 (FBN1) cause a wide spectrum of disorders, including Marfan syndrome, which have in common defects in fibrillin‐1 microfibrils. Ectopia lentis and myopia are frequently observed ocular manifestations of Marfan syndrome. Glaucoma is also associated with Marfan syndrome, though the form of glaucoma has not been well‐characterized. In this report, ocular examination of a patient diagnosed with Marfan syndrome based on family history and aortic dilatation was performed, including measurement of facility of aqueous humor outflow by tonography. The patient did not have ectopia lentis at the age of 42 years. Based on optic nerve appearance, reduced outflow facility, elevated IOP with open angles and clear signs of pigment dispersion, the patient was diagnosed with pigmentary glaucoma. The patient was heterozygous for a novel truncating mutation in FBN1, p.Leu72Ter. Histology of normal human eyes revealed abundant expression of elastic fibers and fibrillin‐1 in aqueous humor outflow structures. This is the first report of a patient with Marfan syndrome that is caused by a confirmed FBN1 mutation with associated pigmentary glaucoma. In addition to identifying a novel mutation of FBN1 and broadening the spectrum of associated ocular phenotypes in Marfan syndrome, our findings suggest that pigmentary glaucoma may involve defects in fibrillin‐1 microfibrils. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Marfan syndrome (MFS) results from heterozygous mutations in FBN1. However, genetic analyses of deoxyribonucleic acid (DNA) from approximately 10-30% of MFS patients who meet diagnostic criteria do not reveal an identifiable FBN1 mutation. In a patient who met the diagnostic criteria for MFS, bidirectional DNA sequencing of exons and intron-exon boundaries of FBN1 failed to reveal a mutation. Assessment of the FBN1 message in dermal fibroblasts from the patient revealed insertion of a pseudoexon between exons 63 and 64. Sequencing of intron 63 identified a point mutation, IVS63+373, located near the middle of intron 63 of FBN1 that created a donor splice site in intron 63, leading to inclusion of a 93-bp fragment of intronic sequence in the FBN1 message. Identification of a novel pseudoexon mutation in FBN1, in association with a clinical diagnosis of MFS, confirms that cryptic mutations that are missed by the current DNA-based diagnostic methods have a causative role.  相似文献   

9.
Osteosarcoma is a malignant neoplasm of mesenchymal origin that is presumed to arise from osteoblasts. Considered a rare tumor, approximately 1000 cases of osteosarcoma are diagnosed in the United States each year, and osteosarcoma of the foot is rarer still. Marfan syndrome (MFS) is a rare genetic disorder that affects 1 in 5000 individuals and is caused by mutations in the fibrillin 1 (FBN1) gene. MFS phenotype affects several body systems, including soft connective tissue and bone. Here we report, for the first time, an individual with MFS that was treated for osteosarcoma. Surgically resected tissue was used to initiate an osteosarcoma cell line (PSU-OS-M) that exhibits attachment-independent growth and loss of contact inhibition in vitro. Genomic DNA was isolated from the tumor cells, and primers that anneal to intronic regions were used to amplify and sequence all 65 coding exons of the FBN1 gene. A two base pair insertion that results in a novel premature termination codon (PTC) was found in exon 52. Protein from the normal allele is detectable in PSU-OS-M cell-conditioned medium, but protein from the mutant allele was not detectable. Immunofluorescent microscopy demonstrates that PSU-OS-M cells can assemble fibrillin 1 microfibrils in culture, and fibronectin assembly is normal. As such, the PSU-OS-M cell line is to our knowledge the first oncogenically transformed cell line with a mutant fibrillin gene and may serve as a useful tool for studying molecular mechanisms of MFS and nonsense-mediated decay.  相似文献   

10.

Background  

Mutations in the fibrillin -1 gene (FBN1) cause Marfan syndrome (MFS), an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion.  相似文献   

11.
《Genetics in medicine》2016,18(1):98-102
PurposeThe diagnostic criteria of Marfan syndrome (MFS) highlight the importance of a FBN1 mutation test in diagnosing MFS. As genetic sequencing becomes better, cheaper, and more accessible, the expected increase in the number of genetic tests will become evident, resulting in numerous genetic variants that need to be evaluated for disease-causing effects based on database information. The aim of this study was to evaluate genetic variants in four databases and review the relevant literature.MethodsWe assessed background data on 23 common variants registered in ESP6500 and classified as causing MFS in the Human Gene Mutation Database (HGMD). We evaluated data in four variant databases (HGMD, UMD-FBN1, ClinVar, and UniProt) according to the diagnostic criteria for MFS and compared the results with the classification of each variant in the four databases.ResultsNone of the 23 variants was clearly associated with MFS, even though all classifications in the databases stated otherwise.ConclusionA genetic diagnosis of MFS cannot reliably be based on current variant databases because they contain incorrectly interpreted conclusions on variants. Variants must be evaluated by time-consuming review of the background material in the databases and by combining these data with expert knowledge on MFS. This is a major problem because we expect even more genetic test results in the near future as a result of the reduced cost and process time for next-generation sequencing.  相似文献   

12.
A phenotype of an individual is resulted from an interaction among variants in several genes. Advanced molecular technologies allow us to identify more patients with mutations in more than one genes. Here, we studied a Thai woman with combined clinical features of Marfan (MFS) and Beals (BS) syndromes including frontal bossing, enophthalmos, myopia, the crumpled appearance to the top of the pinnae, midface hypoplasia, high arched palate, dermal stretch marks, aortic enlargement, mitral valve prolapse and regurgitation, aortic root dilatation, and progressive scoliosis. The aortic root enlargement was progressive to a diameter of 7.2 cm requiring an aortic root replacement at the age of 8 years. At her last visit when she was 19 years old, she had moderate aortic regurgitation. Exome sequencing revealed that she carried the c.3159C > G (p.Cys1053Trp) in exon 26 of FBN1 and c.2638G > A (p. Gly880Ser) in exon 20 of FBN2. The variant in FBN1 was de novo, while that in FBN2 was inherited from her unaffected mother. Both genes encode for fibrillins, which are essential for elastic fibers and can form the heterotypic microfibrils. Two defective fibrillins may synergistically worsen cardiovascular manifestations seen in our patient. In this study, we identified the fourth patient with both MFS and BS, carrying mutations in both FBN1 and FBN2.  相似文献   

13.
We report 9 new mutations in German patients presenting with classical Marfan syndrome. All mutations occur in exons with calcium‐binding (cb) epidermal growth factor‐like (EGF) domains. Five mutations are missense involving exons 12, 27, 30, 44, and 52 with the resultant substitution of cysteine by phenylalanine (C504F), cysteine by tyrosine (C1129Y), tyrosine by cysteine (Y1261C), cysteine by serine (C1833S), and cysteine by tyrosine (C2142Y), respectively. The other four mutations are single base deletions in exons 39, 43, 48, and 58, at nucleotide A4826, C5311, T6018, and A7291, respectively, each resulting in frameshift with premature termination. Four mutations were detected in sporadic cases and are likely to be de novo. Hum Mutat 14:181, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
Marfan syndrome (MFS; MIM #154700) is a connective tissue disorder characterized by cardiovascular, skeletal, and ocular abnormalities. The fibrillin-1 gene (FBN1; MIM no. 134797) on chromosome 15 was revealed to be the cause of Marfan syndrome. To date over 137 types of FBN1 mutations have been reported. In this study, two novel mutations and a recurrent de-novo mutation were identified in patients with MFS by means of single-strand conformational polymorphism (SSCP) analysis. The two novel mutations are a 4-bp deletion at nucleotide 2820-2823 and a G-to-T transversion at nucleotide 1421 (C474F), located on exon 23 and exon 11, respectively. A previously reported mutation at the splicing donor site of intron 2 (IVS2 G + 1A), which is predicted to cause exon skipping, was identified in a sporadic patient with classical MFS. Received: November 1, 1999 / Accepted: November 9, 1999  相似文献   

15.
16.
Marfan syndrome (MFS) is a disorder of the extracellular matrix caused by mutations in the gene encoding fibrillin-1 (FBN1). Recent studies have illustrated the variability in disease severity and clinical manifestations of MFS. Useful genotype-phenotype correlations have been slow to emerge. We screened 57 unrelated patients with MFS or a Marfan-like phenotype using a combination of SSCP and/or DHPLC. We detected 49 different FBN1 mutations, 30 (62%) of which were novel. The mutations comprised 38 substitutions (78%), 10 deletions (20%), and one duplication (2%). There were 28 missense (57%), nine frameshift (18%), eight splice site (16%), and four nonsense mutations (8 %). Genotype-phenotype analysis revealed that patients with an identified FBN1 mutation were more likely to have ectopia lentis and cardiovascular complications compared to those without an identifiable mutation (relative risks of 4.6 and 1.9, respectively). Ectopia lentis was also found to be more prevalent in patients whose mutations involved a cysteine substitution (relative risk 1.6) and less prevalent in those with premature termination mutations (relative risk 0.4). In our hands, we achieved 93% mutation detection for DHPLC analysis of patients who fulfilled the Ghent criteria. Further analysis of detailed clinical information and mutation data may help to anticipate the clinical consequences of specific FBN1 mutations.  相似文献   

17.
18.
《Genetics in medicine》2021,23(5):865-871
PurposeIndividuals with mosaic pathogenic variants in the FBN1 gene are mainly described in the course of familial screening. In the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more than 5,000 Marfan syndrome (MFS) probands.MethodsNext-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored a mosaic pathogenic variant in the FBN1 gene.ResultsThese five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations.ConclusionThis underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant calling analysis.  相似文献   

19.
Fibrillin-1 gene ( FBN1 ) mutations cause Marfan syndrome (MFS), an inherited connective tissue disorder with autosomal dominant transmission. Major clinical manifestations affect cardiovascular and skeletal apparatuses and ocular and central nervous systems. We analyzed FBN1 gene in 99 patients referred to our Center for Marfan Syndrome and Related Disorders (University of Florence, Florence, Italy): 85 were affected by MFS and 14 by other fibrillinopathies type I. We identified mutations in 80 patients. Among the 77 different mutational events, 46 had not been previously reported. They are represented by 49 missense (61%), 1 silent (1%), 13 nonsense (16%), 6 donor splice site mutations (8%), 8 small deletions (10%), and 3 small duplications (4%). The majority of missense mutations were within the calcium-binding epidermal growth factor-like domains. We found preferential associations between The Cys-missense mutations and ectopia lentis and premature termination codon mutations and skeletal manifestations. In contrast to what reported in literature, the cardiovascular system is severely affected also in patients carrying mutations in exons 1–10 and 59–65. In conclusion, we were able to detect FBN1 mutations in 88% of patients with MFS and in 36% of patients with other fibrillinopathies type I, confirming that FBN1 mutations are good predictors of classic MFS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号