首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathogenesis of chronic obstructive pulmonary disease (COPD) is related to a chronic innate and adaptive inflammatory immune response to inhaled toxic particles and gases, primarily as a result of the tobacco smoking habit. This inflammatory immune process develops in the lungs of everyone that smokes, and there is an association between the extent and severity of this tissue response and the severity of airflow limitation present in the fraction of the smoking population that develops COPD. This infiltration of inflammatory immune cells into the lung tissue is inextricably linked to a tissue repair and remodeling process that enlarges the bronchial mucus glands, thickens the walls and narrows the lumen of conducting airways <2 mm in diameter. A multivariate analysis has shown that thickening of the walls of the small conducting airways and occlusion of their lumen by inflammatory exudates containing mucus explains more of the variance in the association between FEV1 decline and histology in COPD than the infiltration of the tissue by any inflammatory cell type. Emphysematous destruction of the gas exchanging tissue also contributes to the airflow limitation by reducing the elastic recoil pressure available to drive air out of the lung during forced expiration. This tissue destruction begins in the respiratory bronchioles in very close proximity to the small conducting airways that become the major site of obstruction in COPD. The mechanism(s) that allow small airways to thicken in such close proximity to lung tissue undergoing emphysematous destruction remain a puzzle that needs to be solved. As the accumulation of tissue responsible for thickening the small conducting airways is a very different pathological process from the emphysematous destruction of surrounding gas exchanging tissue, we need a better understanding of the pathogenesis of both processes and better methods of separating their relative contribution to airflow limitation in individuals to adequately prevent and treat COPD.  相似文献   

2.
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation in both the airways causing airway obstruction and the lung tissues causing emphysema. The disease is induced by inhalation of noxious gasses and particulate matter resulting in a chronic persistent inflammatory response in the lung, and the extent of the inflammatory reaction correlates with the severity of the disease. This chronic inflammatory response in the lung is also associated with a significant systemic inflammatory response with downstream adverse clinical health effects. The systemic response in COPD is associated with mortality, specifically cardiovascular mortality. This review describes the nature of the systemic inflammatory response in COPD and the clinical manifestations associated with the systemic response, with a focus on the potential mechanisms for these adverse health effects.  相似文献   

3.
Hogg JC 《Lancet》2004,364(9435):709-721
The airflow limitation that defines chronic obstructive pulmonary disease (COPD) is the result of a prolonged time constant for lung emptying, caused by increased resistance of the small conducting airways and increased compliance of the lung as a result of emphysematous destruction. These lesions are associated with a chronic innate and adaptive inflammatory immune response of the host to a lifetime exposure to inhaled toxic gases and particles. Processes contributing to obstruction in the small conducting airways include disruption of the epithelial barrier, interference with mucociliary clearance apparatus that results in accumulation of inflammatory mucous exudates in the small airway lumen, infiltration of the airway walls by inflammatory cells, and deposition of connective tissue in the airway wall. This remodelling and repair thickens the airway walls, reduces lumen calibre, and restricts the normal increase in calibre produced by lung inflation. Emphysematous lung destruction is associated with an infiltration of the same type of inflammatory cells found in the airways. The centrilobular pattern of emphysematous destruction is most closely associated with cigarette smoking, and although it is initially focused on respiratory bronchioles, separate lesions coalesce to destroy large volumes of lung tissue. The panacinar pattern of emphysema is characterised by a more even involvement of the acinus and is associated with alpha1 antitrypsin deficiency. The technology needed to diagnose and quantitate the individual small airway and emphysema phenotypes present in people with COPD is being developed, and should prove helpful in the assessment of therapeutic interventions designed to modify the progress of either phenotype.  相似文献   

4.
Previous studies have shown an increased number of inflammatory cells and, in particular, CD8+ve cells in the airways of smokers with chronic obstructive pulmonary disease (COPD). In this study we investigated whether a similar inflammatory process is also present in the lungs, and particularly in lung parenchyma and pulmonary arteries. We examined surgical specimens from three groups of subjects undergoing lung resection for localized pulmonary lesions: nonsmokers (n = 8), asymptomatic smokers with normal lung function (n = 6), and smokers with COPD (n = 10). Alveolar walls and pulmonary arteries were examined with immunohistochemical methods to identify neutrophils, eosinophils, mast cells, macrophages, and CD4+ve and CD8+ve cells. Smokers with COPD had an increased number of CD8+ve cells in both lung parenchyma (p < 0.05) and pulmonary arteries (p < 0.001) as compared with nonsmokers. CD8+ve cells were also increased in pulmonary arteries of smokers with COPD as compared with smokers with normal lung function (p < 0.01). Other inflammatory cells were no different among the three groups. The number of CD8+ve cells in both lung parenchyma and pulmonary arteries was significantly correlated with the degree of airflow limitation in smokers. These results show that an inflammatory process similar to that present in the conducting airways is also present in lung parenchyma and pulmonary arteries of smokers with COPD.  相似文献   

5.
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation, that is not fully reversible, and that is associated with an abnormal inflammatory response of the airways and lungs to noxious particles and gases. The airflow limitation is caused by increased resistance of the small conducting airways and by decreased elastic recoil forces of the lung due to emphysematous destruction of the lung parenchyma. In vivo animal models can help to unravel the molecular and cellular mechanisms underlying the pathogenesis of COPD. Mice represent the most favored animal species with regard to the study of (both innate and adaptive) immune mechanisms, since they offer the opportunity to manipulate gene expression. Several experimental approaches are applied in order to mimic the different traits of COPD in these murine models. Firstly, the tracheal instillation of tissue-degrading enzymes induces emphysema-like lesions in the lung parenchyma, adding further proof to the protease-antiprotease imbalance hypothesis. Secondly, the inhalation of noxious stimuli, including tobacco smoke, sulfur dioxide, nitrogen dioxide, or oxidants such as ozone, may also lead to COPD-like lesions in mice, depending on concentration, duration of exposure and strainspecific genetic susceptibility. Thirdly, in transgenic mice, a specific gene is either overexpressed (non-specific or organ-specific) or selectively depleted (constitutively or conditionally). The study of these transgenic mice, either per se or in combination with the above mentioned experimental approaches (e.g. the inhalation of tobacco smoke), can offer valuable information on both the physiological function of the gene of interest as well as the pathophysiological mechanisms of diseases with complex traits such as COPD.  相似文献   

6.
Chronic obstructive pulmonary disease (COPD) is a syndrome of progressive airflow limitation caused by an abnormal inflammatory reaction of the airways and lung parenchyma. It stems from chronic tobacco smoking, and indoor air pollution, and bronchospasm is the predominant cause of the symptoms. The condition is the result of environmental insult and host reaction that is likely to be genetically predetermined. Chronic obstructive pulmonary disease exhibits expiratory airflow limitation due to abnormalities in the airways and/or lung parenchyma. The disease begins with an asymptomatic phase and onset of the symptomatic phase develops with a fall in forced expiratory volume in one second (FEV1) below 70% of the predicted value. There is reduction in diffusing capacity, hypoxaemia and alveolar hypoventilation. However, it is intriguing why only a fraction of smokers develop clinically relevant COPD.  相似文献   

7.
Chronic obstructive pulmonary disease (COPD) is characterized and defined by limitation of expiratory airflow. This can result from several types of anatomical lesions, including loss of lung elastic recoil and fibrosis and narrowing of small airways. Inflammation, edema, and secretions also contribute variably to airflow limitation. Smoking can cause COPD through several mechanisms. First, smoke is a powerful inducer of an inflammatory response. Inflammatory mediators, including oxidants and proteases, are believed to play a major role in causing lung damage. Smoke can also alter lung repair responses in several ways. Inhibition of repair may lead to tissue destruction that characterizes emphysema, whereas abnormal repair can lead to the peribronchiolar fibrosis that causes airflow limitation in small airways. Genetic factors likely play a major role and probably account for much of the heterogeneity susceptibility to smoke and other factors. Many factors may play a role, but to date, only alpha-1 protease inhibitor deficiency has been unambiguously identified. Exposures other than cigarette smoke can contribute to the development of COPD. Inflammation of the lower respiratory tract that results from asthma or other chronic disorders may also contribute to the development of fixed airway obstruction. COPD is not only a disease of the lungs but is also a systemic inflammatory disorder. Muscular weakness, increased risk for atherosclerotic vascular disease, depression, osteoporosis, and abnormalities in fluids and electrolyte balance may all be consequences of COPD. Advances in understanding the pathogenesis of COPD have the potential for identifying new therapeutic targets that could alter the natural history of this devastating disorder.  相似文献   

8.
While the pathogenesis of chronic obstructive pulmonary disease (COPD) is incompletely understood, chronic inflammation is a major factor. In fact, the inflammatory response is abnormal, with CD8+ T-cells, CD68+ macrophages, and neutrophils predominating in the conducting airways, lung parenchyma, and pulmonary vasculature. Elevated levels of the second messenger cAMP can inhibit some inflammatory processes. Theophylline has long been used in treating asthma; it causes bronchodilation by inhibiting cyclic nucleotide phosphodiesterase (PDE), which inactivates cAMP. By inhibiting PDE, theophylline increases cAMP, inhibiting inflammation and relaxing airway smooth muscle. Rather than one PDE, there are now known to be more than 50, with differing activities, substrate preferences, and tissue distributions. Thus, the possibility exists of selectively inhibiting only the enzyme(s) in the tissue(s) of interest. PDE 4 is the primary cAMP-hydrolyzing enzyme in inflammatory and immune cells (macrophages, eosinophils, neutrophils). Inhibiting PDE 4 in these cells leads to increased cAMP levels, down-regulating the inflammatory response. Because PDE 4 is also expressed in airway smooth muscle and, in vitro, PDE 4 inhibitors relax lung smooth muscle, selective PDE 4 inhibitors are being developed for treating COPD. Clinical studies have been conducted with PDE 4 inhibitors; this review concerns those reported to date.  相似文献   

9.
Park JW  Ryter SW  Choi AM 《COPD》2007,4(4):347-353
Chronic obstructive pulmonary disease (COPD) is a highly prevalent airway disease characterized by an abnormal inflammatory response of the lungs to noxious particles and gases. Cigarette smoking remains a major risk factor in COPD development. Accumulating evidence suggests that apoptosis, a regulated form of cell death, may play an important role in COPD pathogenesis. Increased numbers of apoptotic cells can be detected in lung tissue and airways of human subjects with COPD, relative to normal lungs or those from smokers without COPD. Alveolar wall destruction associated with emphysema development, may involve increased apoptosis of alveolar structural cells. Several intervention-induced apoptotic models (e.g., cigarette smoke, vascular-endothelial growth factor inhibition, and interferon-gamma) cause emphysematous changes in vitro and in vivo. Increased apoptosis in COPD can also imply defects in the normal physiological clearance of apoptotic cells. Additional factors that relate to perpetuation of the pathogenesis of COPD, including protease/antiprotease imbalance, inflammation and oxidative stress, may mutually promote apoptosis or contribute to impaired clearance of apoptotic cells. Given that cigarette smoking is the most common cause of COPD, identification of the pathways of cigarette smoke-induced apoptosis may further the understanding of COPD pathogenesis. However, apoptosis rate is not diminished after cessation of cigarette smoking, indicating that other mechanisms perpetuate apoptosis in COPD. Therefore, understanding functional relationships between apoptosis and protease/antiprotease imbalance, inflammation, oxidative stress and other factors potentially involved in COPD pathogenesis may uncover crucial therapeutic targets.  相似文献   

10.
Pathology and pathophysiology of chronic obstructive pulmonary disease   总被引:4,自引:0,他引:4  
A variety of pathological changes have been observed in the central airways, peripheral airways and lung parenchyma of patients with chronic obstructive pulmonary disease (COPD). The characteristic changes in the central airways include inflammatory cellular infiltration into the airway wall and mucous gland enlargement. In the peripheral airways, various morphological changes are observed, including mucous plugging, epithelial abnormalities, inflammatory cellular infiltrates, fibrosis and distortion; these changes lead to airway narrowing. In the lung parenchyma, emphysema defined as alveolar destruction and airspace enlargement is present. Although the major sites of airflow limitation in patients with COPD are most likely the peripheral airways, lesions in both the peripheral airways and the lung parenchyma contribute to chronic airflow limitations.  相似文献   

11.
New concepts in the pathobiology of chronic obstructive pulmonary disease   总被引:6,自引:0,他引:6  
Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal persistent inflammatory response to cigarette smoke. This noxious insult leads to emphysema and airway remodeling, manifested by squamous and mucous metaplasia of the epithelium, smooth muscle hypertrophy, and airway wall fibrosis. These pathologic abnormalities interact synergistically to cause progressive airflow obstruction. Although it has been accepted that the spectrum of COPD is vast, the reasons for the development of different phenotypes from the same exposure to cigarette smoke have not been determined. Furthermore, it is becoming increasingly clear that airways disease and emphysema often coexist in many patients, even with a clear clinical phenotype of either emphysema or chronic bronchitis. Recent studies have focused on the nature of the inflammatory response to cigarette smoke, the inflammatory cell lines responsible for COPD pathogenesis, and new biomarkers for disease activity and progression. New cytokines are being discovered, and the complex interactions among them are being unraveled. The inflammatory biomarker that has received the most attention is C-reactive protein, but new ones that have caught our attention are interleukin (IL)-6, tumor necrosis factor-alpha, IL-8, and IL-10. Further research should focus on how these new concepts in lung inflammation interact to cause the various aspects of COPD pathology.  相似文献   

12.
This review describes, in some detail, the normal structure of the small airways, how this structure is achieved during the development of the bronchial tree from embryogenesis to adulthood, and how the structure determines the function of the airways at different ages and in disease. We then describe the structural abnormalities in small airways in chronic obstructive pulmonary disease (COPD) and their relationship with the disordered pulmonary function found in this disease, as an example of the mechanisms leading to airflow limitation in diseased airways. We address the pathology of small airways in different stages of COPD, summarizing the structural abnormalities associated with the progressive deterioration of pulmonary function from smokers with normal lung function to smokers with severe COPD. The importance of the elastic recoil in the normal and abnormal function of the airways is also highlighted.  相似文献   

13.
PURPOSE OF REVIEW: Chronic obstructive pulmonary disease (COPD) is a disease state characterized by airflow limitation that is usually progressive. In addition, an abnormal inflammatory response of the lungs to noxious particles or gases can be seen throughout the airways, parenchyma, and pulmonary vasculature. So far, anti-inflammatory medications (eg, inhaled corticosteroids) have failed to show a major effect on the decline of lung function in COPD patients. Novel anti-inflammatory therapies such as selective phosphodiesterase 4 (PDE4) inhibitors are in clinical development. Their potential role in the management of COPD is described in this review. RECENT FINDINGS: Some of the selective PDE4 inhibitors have demonstrated in vitro and in vivo anti-inflammatory activity on cells commonly linked to airway inflammation in COPD, such as neutrophils. While these agents seem to offer only a modest improvement in lung function compared with other bronchodilators, their anti-inflammatory effects appear to provide some substantial benefits in reducing exacerbations and improving health-related quality of life. SUMMARY: Based on the available data, the second generation of selective PDE4 inhibitors will likely provide additional therapeutic options for the management of COPD. These agents may become an important tool in the treatment of this disease, since they target three important components of COPD: airway obstruction, inflammation, and structural changes.  相似文献   

14.
Both chronic obstructive pulmonary disease (COPD) and lung cancer are major causes of death worldwide. In most cases this reflects cigarette smoke exposure which is able to induce an inflammatory response in the airways of smokers. Indeed, COPD is characterized by lower airway inflammation, and importantly, the presence of COPD is by far the greatest risk factor for lung cancer amongst smokers. Cigarette smoke induces the release of many inflammatory mediators and growth factors including TGF-β, EGFR, IL-1, IL-8 and G-CSF through oxidative stress pathways and this inflammation may persist for decades after smoking cessation. Mucus production is also increased by these inflammatory mediators, further linking airway inflammation to an important mechanism of lung cancer. A greater understanding of the molecular and cellular pathobiology that distinguishes smokers with lung cancer from smokers with and without COPD is needed to unravel the complex molecular interactions between COPD and lung cancer. By understanding the common signalling pathways involved in COPD and lung cancer the hope is that treatments will be developed that not only treat the underlying disease process in COPD, but also reduce the currently high risk of developing lung cancer in these patients.  相似文献   

15.
COPD: current therapeutic interventions and future approaches.   总被引:14,自引:0,他引:14  
Although long-acting bronchodilators have been an important advance for the management of chronic obstructive pulmonary disease (COPD), these drugs do not deal with the underlying inflammatory process. No currently available treatments reduce the progression of COPD or suppress the inflammation in small airways and lung parenchyma. Several new treatments that target the inflammatory process are now in clinical development. Some therapies, such as chemokine antagonists, are directed against the influx of inflammatory cells into the airways and lung parenchyma that occurs in COPD, whereas others target inflammatory cytokines such as tumour necrosis factor-alpha. Broad spectrum anti-inflammatory drugs are now in phase III development for COPD, and include phosphodiesterase-4 inhibitors. Other drugs that inhibit cell signalling include inhibitors of p38 mitogen-activated protein kinase, nuclear factor-kappaB and phosphoinositide-3 kinase-gamma. More specific approaches are to give antioxidants, inhibitors of inducible nitric oxide synthase and leukotriene B(4) antagonists. Other treatments have the potential to combat mucus hypersecretion, and there is also a search for serine proteinase and matrix metalloproteinase inhibitors to prevent lung destruction and the development of emphysema. More research is needed to understand the cellular and molecular mechanisms of chronic obstructive pulmonary disease and to develop biomarkers and monitoring techniques to aid the development of new therapies.  相似文献   

16.
Bronchial asthma and chronic obstructive pulmonary disease (COPD) are increasing common diseases. The major pathogenesis of both illnesses is chronic inflammation. However, the inflammatory pattern is distinct in each disease. In asthmatic airways, activated mast cells/eosinophils and T helper 2 lymphocytes (Th2) are predominant. In contrast, macrophages and neutrophils are important in COPD airways/lung. Although nitric oxide (NO) hyperproduction due to inducible NO synthase (iNOS) is observed in asthma and COPD, nitrotyro- sine formation via the reaction between NO and O2- in addition to the myeloperoxidase-mediated pathway. These distinct inflammatory patterns in both diseases seem to cause pathological differences in asthma and COPD.  相似文献   

17.
18.
Chronic obstructive pulmonary disease (COPD), which is increasing in prevalence and a leading cause of death worldwide, is characterised by an 'abnormal' inflammatory response. There is a predominance of CD8(+) T cells, CD68(+) macrophages and, in exacerbations-neutrophils, in both conducting airways and lung parenchyma. Smoking is the most common etiological factor leading to COPD and smoking cessation is the most effective approach to the management of COPD, but it does not resolve the underlying inflammation of COPD, which persists, even in ex-smokers. The presence of mucosal inflammation serves as the rationale for anti-inflammatory therapy. However, while there are reductions in the numbers of mast cells following treatment with inhaled steroids, CD8(+), CD68(+) cells and neutrophils are refractory to such treatment, highlighting a need for additional, more targeted interventions. Phosphodiesterase 4 (PDE4) inhibitors are a promising and novel drug class that have potent activity against several key components of the inflammatory process in COPD. A recently published study has shown that the selective PDE4 inhibitor, cilomilast, reduces the numbers of bronchial mucosal CD8(+) and CD68(+) cells and neutrophils. This review focuses on the nature of the inflammation in COPD and considers how selective PDE4 inhibitors may optimize and advance our treatment of this chronic condition.  相似文献   

19.
Chronic obstructive pulmonary disease (COPD) is characterized by a persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. From a pathological point of view, COPD is characterized by two distinct and frequently coexisting aspects: small airway abnormalities and parenchymal destruction (or emphysema). When pathological changes are localized in lung parenchyma, they will contribute to airflow limitation by reducing the elastic recoil of the lung through parenchymal destruction, as well as by reducing the elastic load applied to the airways through destruction of alveolar attachments. Conversely, when pathological changes involve the small airways, they will contribute to airflow limitation by narrowing and obliterating the lumen and by actively constricting the airways, therefore increasing the resistance. In this article we will review the structural abnormalities in small airways and their relationship with the disordered pulmonary function in COPD, in the attempt to disentangle the mechanisms contributing to the development and progression of airflow limitation in smokers. We will start by describing the normal structure of the small airways, and then observe the main pathological alterations that accumulate in this site and how they parallel pulmonary function derangement.  相似文献   

20.
The structural changes in airways and alveoli that characterize chronic obstructive pulmonary disease (COPD) result from an abnormal and persistent inflammatory reaction to inhaled noxious particles or gases, notably tobacco smoke. This remodeling of the lung leads to irreversible airflow obstruction. However, COPD should be viewed by clinicians as a treatable condition, since most patients with COPD have an additional reversible component related to increased bronchomotor tone. The use of bronchodilators, especially anticholinergics and beta2-agonists, results in a reduction in airway smooth muscle tone and airflow resistance; this translates into marked improvement in significant clinical outcomes such as dyspnea, quality of life, and exercise capacity. An increasing amount of evidence supports the idea that long-acting agents have more significant impact in these parameters than the short-acting preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号