首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunological characterization of Escherichia coli O157:H7 intimin gamma1.   总被引:3,自引:0,他引:3  
Portions of the intimin genes of Escherichia coli O157:H7 strain E319 and of the enteropathogenic E. coli O127:H6 strain E2348/69 were amplified by PCR and cloned into pET-28a+ expression vectors. The entire 934 amino acids (aa) of E. coli O157:H7 intimin, the C-terminal 306 aa of E. coli O157:H7 intimin, and the C-terminal 311 aa of E. coli O127:H6 intimin were expressed as proteins fused with a six-histidine residue tag (six-His tag) in pET-28a+. Rabbit antisera raised against the six-His tag-full-length E. coli O157:H7 intimin protein fusion cross-reacted in slot and Western blots with outer membrane protein preparations from the majority of enterohemorrhagic and enteropathogenic E. coli serotypes which have the intimin gene. The E. coli strains tested included isolates from humans and animals which produce intimin types alpha (O serogroups 86, 127, and 142), beta1 (O serogroups 5, 26, 46, 69, 111, 126, and 128), gamma 1 (O serogroups 55, 145, and 157), gamma 2 (O serogroups 111 and 103), and epsilon (O serogroup 103) and a nontypeable intimin (O serogroup 80), results based on intimin type-specific PCR assays. Rabbit antisera raised against the E. coli O157:H7 C-terminal fusion protein were much more intimin type-specific than those raised against the full-length intimin fusion protein, but some cross-reaction with other intimin types was also observed for these antisera. In contrast, the monoclonal antibody Intgamma1.C11, raised against the C-terminal E. coli O157 intimin, reacted only with preparations from intimin gamma 1-producing E. coli strains such as E. coli O157:H7.  相似文献   

2.
For enterohemorrhagic Escherichia coli (EHEC) O157:H7 to adhere tightly to the intestinal epithelium and produce attach and efface (A/E) lesions, the organism must express the adhesin intimin and insert the bacterially encoded translocated intimin receptor Tir into the plasma membrane of the host enterocyte. Additionally, some reports based on tissue culture experiments indicate that intimin has affinity for the eucaryotic proteins nucleolin and beta1 integrin. To address the potential biological relevance of these eucaryotic proteins in the infection process in vivo, we sought to compare the proximity of Tir, nucleolin, and beta1 integrin to regions of EHEC O157:H7 attachment in intestinal sections from three different inoculated animals: piglets, neonatal calves, and mice. Piglets and neonatal calves were chosen because intimin-mediated adherence of EHEC O157:H7 and subsequent A/E lesion formation occur at high levels in these animals. Mice were selected because of their ease of manipulation but only after we first demonstrated that in competition with the normal mouse gut flora, an EHEC O157:H7 strain with a nonpolar deletion in the intimin gene was cleared faster than strains that produced wild-type or hybrid intimin. In all three animal species, we noted immunostained Tir beneath and stained nucleolin closely associated with adherent bacteria in intestinal sections. We also observed immunostained beta1 integrin clustered at locations of bacterial adherence in porcine and bovine tissue. These findings indicate that nucleolin and beta1 integrin are present on the luminal surface of intestinal epithelia and are potentially accessible as receptors for intimin during EHEC O157:H7 infection.  相似文献   

3.
Cattle are important reservoirs of enterohemorrhagic Escherichia coli (EHEC) O157:H7 that cause disease in humans. Both dairy and beef cattle are asymptomatically and sporadically infected with EHEC. Our long-term goal is to develop an effective vaccine to prevent cattle from becoming infected and transmitting EHEC O157:H7 to humans. We used passive immunization of neonatal piglets (as a surrogate model) to determine if antibodies against EHEC O157 adhesin (intimin(O157)) inhibit EHEC colonization. Pregnant swine (dams) with serum anti-intimin titers of < or =100 were vaccinated twice with purified intimin(O157) or sham-vaccinated with sterile buffer. Intimin(O157)-specific antibody titers in colostrum and serum of dams were increased after parenteral vaccination with intimin(O157). Neonatal piglets were allowed to suckle vaccinated or sham-vaccinated dams for up to 8 h before they were inoculated with 10(6) CFU of a Shiga toxin-negative (for humane reasons) strain of EHEC O157:H7. Piglets were necropsied at 2 to 10 days after inoculation, and intestinal samples were collected for determination of bacteriological counts and histopathological analysis. Piglets that ingested colostrum containing intimin(O157)-specific antibodies from vaccinated dams, but not those nursing sham-vaccinated dams, were protected from EHEC O157:H7 colonization and intestinal damage. These results establish intimin(O157) as a viable candidate for an EHEC O157:H7 antitransmission vaccine.  相似文献   

4.
Intimin facilitates intestinal colonization by enterohemorrhagic Escherichia coli O157:H7; however, the importance of intimin binding to its translocated receptor (Tir) as opposed to cellular coreceptors is unknown. The intimin-Tir interaction is needed for optimal actin assembly under adherent bacteria in vitro, a process which requires the Tir-cytoskeleton coupling protein (TccP/EspF(U)) in E. coli O157:H7. Here we report that E. coli O157:H7 tir mutants are at least as attenuated as isogenic eae mutants in calves and lambs, implying that the role of intimin in the colonization of reservoir hosts can be explained largely by its binding to Tir. Mutation of tccP uncoupled actin assembly from the intimin-Tir-mediated adherence of E. coli O157:H7 in vitro but did not impair intestinal colonization in calves and lambs, implying that pedestal formation may not be necessary for persistence. However, an E. coli O157:H7 tccP mutant induced typical attaching and effacing lesions in a bovine ligated ileal loop model of infection, suggesting that TccP-independent mechanisms of actin assembly may operate in vivo.  相似文献   

5.
Enterohemorrhagic Escherichia coli (EHEC) strains require intimin to induce attaching and effacing (A/E) lesions in newborn piglets. Infection of newborn calves with intimin-positive or intimin-negative EHEC O157:H7 demonstrated that intimin is needed for colonization, A/E lesions, and disease in cattle. These results suggest that experiments to determine if intimin-based vaccines reduce O157:H7 levels in cattle are warranted.  相似文献   

6.
Shiga toxin (Stx)-positive Escherichia coli O157:H7 readily colonize and persist in specific-pathogen-free (SPF) chicks, and we have shown that an Stx-negative E. coli O157:H7 isolate (NCTC12900) readily colonizes SPF chicks for up to 169 days after oral inoculation at 1 day of age. However, the role of intimin in the persistent colonization of poultry remains unclear. Thus, to investigate the role of intimin and flagella, which is a known factor in the persistence of non-O157 E. coli in poultry, isogenic single- and double-intimin and aflagellar mutants were constructed in E. coli O157:H7 isolate NCTC12900. These mutants were used to inoculate (10(5) CFU) 1-day-old SPF chicks. In general, significant attenuation of the aflagellate and intimin-aflagellate mutants, but not the intimin mutant, was noted at similar time points between 22 and 92 days after inoculation. The intimin-deficient mutant was still being shed at the end of the experiment, which was 211 days after inoculation, 84 days more than the wild type. Shedding of the aflagellar and intimin-aflagellar mutants ceased 99 and 113 days after inoculation, respectively. Histological analysis of gastrointestinal tissues from inoculated birds gave no evidence for true microcolony formation by NCTC12900 or intimin and aflagellar mutants to epithelial cells. However, NCTC12900 mutant derivatives associated with the mucosa were observed as individual cells and/or as large aggregates. Association with luminal contents was also noted. These data suggest that O157 organisms do not require intimin for the persistent colonization of chickens, whereas flagella do play a role in this process.  相似文献   

7.
Intimin, Tir, and EspA proteins are expressed by attaching-effacing Escherichia coli, which include enteropathogenic and enterohemorrhagic E. coli pathotypes. EspA proteins are part of the type three secretion system needle complex that delivers Tir to the host epithelial cell, while surface arrayed intimin docks the bacterium to the translocated Tir. This intimate attachment leads to attaching and effacing lesions. Recombinant forms of these effector proteins from enterohemorrhagic E. coli O157:H7 were produced by using E. coli expression vectors. Binding of intimin and Tir fragments in enzyme-linked immunosorbent assay (ELISAs) demonstrated the interaction of intimin fragments containing the C-terminal 282 or 188 amino acids to a Tir fragment containing amino acid residues 258 to 361. Recombinant intimin and EspA proteins were used to elicit immune responses in rabbits and immune phage-display antibody libraries were produced. Screening of these immune libraries by conventional phage-antibody panning and colony filter screening produced a panel of antibodies with specificity for EspA or intimin. Antibodies recognizing different C-terminal epitopes on intimin bound specifically to the gamma intimin of O157:H7 and not to other classes of intimin. Antibodies recognizing EspA from E. coli O157 also recognized the protein from the eae-deficient O157 mutant DM3 and from E. coli O111. Anti-intimin antibodies were also produced as fusion proteins coupled to the reporter molecule alkaline phosphatase, allowing the one-step detection of gamma intimin. The isolated recombinant monoclonal antibodies were functional in a range of assay formats, including ELISA, Western blotting, and dot blots, thus demonstrating their diagnostic potential.  相似文献   

8.
We compared the magnitude and duration of fecal shedding of wild-type Escherichia coli O157:H7 to that of an isogenic intimin mutant in young adult cattle and sheep. In both ruminant species, wild-type E. coli O157:H7 was shed in greater numbers and for a longer duration than was the intimin mutant.  相似文献   

9.
A total of 514 Shiga toxin-producing Escherichia coli (STEC) isolates from diarrheic and healthy cattle in Spain were characterized in this study. PCR showed that 101 (20%) isolates carried stx(1) genes, 278 (54%) possessed stx(2) genes, and 135 (26%) possessed both stx(1) and stx(2). Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 326 (63%) and in 151 (29%) of the isolates, respectively. STEC isolates belonged to 66 O serogroups and 113 O:H serotypes (including 23 new serotypes). However, 67% were of one of these 15 serogroups (O2, O4, O8, O20, O22, O26, O77, O91, O105, O113, O116, O157, O171, O174, and OX177) and 52% of the isolates belonged to only 10 serotypes (O4:H4, O20:H19, O22:H8, O26:H11, O77:H41, O105:H18, O113:H21, O157:H7, O171:H2, and ONT:H19). Although the 514 STEC isolates belonged to 164 different seropathotypes (associations between serotypes and virulence genes), only 12 accounted for 43% of isolates. Seropathotype O157:H7 stx(2) eae-gamma1 ehxA (46 isolates) was the most common, followed by O157:H7 stx(1) stx(2) eae-gamma1 ehxA (34 isolates), O113:H21 stx(2) (25 isolates), O22:H8 stx(1) stx(2) ehxA (15 isolates), O26:H11 stx(1) eae-beta1 ehxA (14 isolates), and O77:H41 stx(2) ehxA (14 isolates). Forty-one (22 of serotype O26:H11) isolates had intimin beta1, 82 O157:H7 isolates possessed intimin gamma1, three O111:H- isolates had intimin type gamma2, one O49:H- strain showed intimin type delta, 13 (six of serotype O103:H2) isolates had intimin type epsilon and eight (four of serotype O156:H-) isolates had intimin zeta. We have identified a new variant of the eae intimin gene designated xi (xi) in two isolates of serotype O80:H-. The majority (85%) of bovine STEC isolates belonged to serotypes previously found for human STEC organisms and 54% to serotypes associated with STEC organisms isolated from patients with hemolytic uremic syndrome. Thus, this study confirms that cattle are a major reservoir of STEC strains pathogenic for humans.  相似文献   

10.
Antiserum raised against intimin from enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 has been shown previously by our laboratory to inhibit adherence of this strain to HEp-2 cells. In the present study, we sought to identify the region(s) of intimin important for the effect of anti-intimin antisera on EHEC adherence and to determine whether antisera raised against intimin from an O157:H7 strain could reduce adherence of other strains. Compared to preimmune serum controls, polyclonal sera raised against the histidine-tagged intimin protein RIHisEae (intimin(O157)) or against His-tagged C-terminal fragments of intimin from strain 86-24 reduced adherence of this strain. Furthermore, an antibody fraction purified from the anti-RIHisEae serum that contained antibodies to the C-terminal third of intimin, the putative receptor-binding domain, also reduced adherence of strain 86-24, but a purified fraction containing antibodies to the N-terminal two-thirds of intimin did not inhibit adherence. The polyclonal anti-intimin(O157) serum raised against RIHisEae inhibited, to different degrees, the adherence of another O157:H7 strain, an EHEC O55:H7 strain, one of two independent EHEC O111:NM isolates tested, and one of two EHEC O26:H11 strains tested. Adherence of the other O26:H11 and O111:NM strains and an EPEC O127:H6 strain was not reduced. Finally, immunoblot analysis indicated a correlation between the antigenic divergence in the C-terminal third of intimins from different strains and the capacity of anti-intimin(O157) antiserum to reduce adherence of heterologous strains. Taken together, these data suggest that intimin(O157) could be used as an immunogen to elicit adherence-blocking antibodies against O157:H7 strains and closely-related EHEC.  相似文献   

11.
Among bovine fecal and recto-anal mucosal swab samples cultured in our laboratory for Escherichia coli O157:H7, we frequently isolated E. coli organisms that were phenotypically similar to the O157:H7 serotype as non-sorbitol fermenting and negative for beta-glucuronidase activity but serotyped O nontypeable:H25 (ONT:H25). This study determined the prevalence and virulence properties of the E. coli ONT:H25 isolates. Among dairy and feedlot cattle (n = 170) sampled in Washington, Idaho, and Alberta, Canada, the percentage of animals culture positive for E. coli ONT:H25 ranged from 7.5% to 22.5%, compared to the prevalence of E. coli O157:H7 that ranged from 0% to 15%. A longitudinal 8-month study of dairy heifers (n = 40) showed that 0 to 15% of the heifers were culture positive for E. coli O157:H7, while 15 to 22.5% of the animals were culture positive for E. coli ONT:H25. As determined by a multiplex PCR, the E. coli ONT:H25 isolates carried a combination of virulence genes characteristic of the enterohemorrhagic E. coli, including intimin, translocated intimin receptor, Stx2, and hemolysin (eae-beta, tir, stx(2vh-a), and hly). E. coli ONT:H25 isolates from diverse geographic locations and over time were fingerprinted by separating XbaI-restricted chromosomal DNA by pulsed-field gel electrophoresis (PFGE) separation. Two strains of E. coli ONT:H25 were highly similar by PFGE pattern. Experimental inoculation of cattle showed that E. coli ONT:H25, like E. coli O157:H7, colonized the bovine recto-anal junction mucosa for more than 4 weeks following a single rectal application of bacteria.  相似文献   

12.
Escherichia coli O157:H7 is an important pathogen of humans. Cattle are most frequently identified as the primary source of infection, and therefore, reduction in E. coli O157:H7 prevalence in cattle by vaccination represents an attractive strategy for reducing the incidence of human disease. H7 flagella have been implicated in intestinal-epithelial colonization of E. coli O157:H7 and may represent a useful target for vaccination. In this study, calves were immunized either systemically with H7 flagellin by intramuscular injection or mucosally via the rectum with either H7 or H7 incorporated into poly(DL-lactide-co-glycolide) microparticles (PLG:H7). Systemic immunization resulted in high levels of flagellin-specific immunoglobulin G (IgG) and IgA in both serum and nasal secretions and detectable levels of both antibody isotypes in rectal secretions. Rectal administration of flagellin resulted in levels of rectal IgA similar to those by the intramuscular route but failed to induce any other antibody response, whereas rectal immunization with PLG:H7 failed to induce any H7-specific antibodies. Following subsequent oral challenge with E. coli O157:H7, reduced colonization rates and delayed peak bacterial shedding were observed in the intramuscularly immunized group compared to nonvaccinated calves, but no reduction in total bacterial shedding occurred. Rectal immunization with either H7 or PLG:H7 had no effect on subsequent bacterial colonization or shedding. Furthermore, purified H7-specific IgA and IgG from intramuscularly immunized calves were shown to reduce intestinal-epithelial binding in vitro. These results indicate that H7 flagellin may be a useful component in a systemic vaccine to reduce E. coli O157:H7 colonization in cattle.  相似文献   

13.
The human pathogen Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening sequelae and transiently colonizes healthy cattle at the terminal rectal mucosa. This study analyzed virulence factors important for the clinical manifestations of human E. coli O157:H7 infection for their contribution to the persistence of E. coli in cattle. The colonizing ability of E. coli O157:H7 was compared with those of nonpathogenic E. coli K-12 and isogenic deletion mutants missing Shiga toxin (Stx), the adhesin intimin, its receptor Tir, hemolysin, or the approximately 92-kb pO157. Fully ruminant steers received a single rectal application of one E. coli strain so that effects of mucosal attachment and survival at the terminal rectum could be measured without the impact of bacterial passage through the entire gastrointestinal tract. Colonization was monitored by sensitive recto-anal junction mucosal swab culture. Nonpathogenic E. coli K-12 did not colonize as well as E. coli O157:H7 at the bovine terminal rectal mucosa. The E. coli O157:H7 best able to persist had intimin, Tir, and the pO157. Strains missing even one of these factors were recovered in lower numbers and were cleared faster than the wild type. In contrast, E. coli O157:H7 strains that were missing Stx or hemolysin colonized like the wild type. For these three strains, the number of bacteria increased between days 1 and 4 postapplication and then decreased slowly. In contrast, the numbers of noncolonizing strains (K-12, delta tir, and delta eae) decreased from the day of application. These patterns consistently predicted long-term colonization or clearance of the bacteria from the bovine terminal rectal mucosa.  相似文献   

14.
Although cattle develop humoral immune responses to Shiga-toxigenic (Stx+) Escherichia coli O157:H7, infections often result in long-term shedding of these human pathogenic bacteria. The objective of this study was to compare humoral and cellular immune responses to Stx+ and Stx- E. coli O157:H7. Three groups of calves were inoculated intrarumenally, twice in a 3-week interval, with different strains of E. coli: a Stx2-producing E. coli O157:H7 strain (Stx2+ O157), a Shiga toxin-negative E. coli O157:H7 strain (Stx- O157), or a nonpathogenic E. coli strain (control). Fecal shedding of Stx2+ O157 was significantly higher than that of Stx- O157 or the control. Three weeks after the second inoculation, all calves were challenged with Stx2+ O157. Following the challenge, levels of fecal shedding of Stx2+ O157 were similar in all three groups. Both groups inoculated with an O157 strain developed antibodies to O157 LPS. Calves initially inoculated with Stx- O157, but not those inoculated with Stx2+ O157, developed statistically significant lymphoproliferative responses to heat-killed Stx2+ O157. These results provide evidence that infections with STEC can suppress the development of specific cellular immune responses in cattle, a finding that will need to be addressed in designing vaccines against E. coli O157:H7 infections in cattle.  相似文献   

15.
Cattle are an important reservoir of Shiga toxin-producing enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains, foodborne pathogens that cause hemorrhagic colitis and hemolytic uremic syndrome in humans. EHEC O157:H7 strains are not pathogenic in calves >3 weeks old. Our objective was to determine if EHEC O157:H7 strains are pathogenic in neonatal calves. Calves <36 h old inoculated with EHEC O157:H7 developed diarrhea and enterocolitis with attaching and effacing (A/E) lesions in both the large and small intestines by 18 h postinoculation. The severity of diarrhea and inflammation, and also the frequency and extent of A/E lesions, increased by 3 days postinoculation. We conclude that EHEC O157:H7 strains are pathogenic in neonatal calves. The neonatal calf model is relevant for studying the pathogenesis of EHEC O157:H7 infections in cattle. It should also be useful for identifying ways to reduce EHEC O157:H7 infections in cattle and thus reduce the risk of EHEC O157:H7 disease in humans.  相似文献   

16.
Enrichment and direct (nonenrichment) rectoanal mucosal swab (RAMS) culture techniques were developed and compared to traditional fecal culture for the detection of Escherichia coli O157:H7 in experimentally infected and naturally infected cattle. Holstein steers (n = 16) orally dosed with E. coli O157:H7 were sampled after bacterial colonization starting 15 days postinoculation. Enrichment RAMS cultures (70.31% positive) were more sensitive than enrichment fecal cultures with 10 g of feces (46.88% positive) at detecting E. coli O157:H7 (P < 0.01). Holstein bull calves (n = 15) were experimentally exposed to E. coli O157:H7 by penning them with E. coli O157:H7-positive calves. Prior to bacterial colonization (1 to 14 days postexposure), enriched fecal cultures were more sensitive at detecting E. coli O157:H7 than enriched RAMS cultures (P < 0.01). However, after colonization (40 or more days postexposure), the opposite was true and RAMS culture was more sensitive than fecal culture (P < 0.05). Among naturally infected heifers, enriched RAMS or fecal cultures were equally sensitive (P = 0.5), but direct RAMS cultures were more sensitive than either direct or enriched fecal cultures at detecting E. coli O157:H7 (P < 0.01), with 25 of 144, 4 of 144, and 10 of 108 samples, respectively, being culture positive. For both experimentally and naturally infected cattle, RAMS culture predicted the duration of infection. Cattle transiently shedding E. coli O157:H7 for <1 week were positive by fecal culture only and not by RAMS culture, whereas colonized animals (which were culture positive for an average of 26 days) were positive early on by RAMS culture. RAMS culture more directly measured the relationship between cattle and E. coli O157:H7 infection than fecal culture.  相似文献   

17.
Shiga toxin-producing Escherchia coli (STEC) comprises a group of attaching and effacing (A/E) enteric pathogens of animals and humans. Natural and experimental infection of calves with STEC may result in acute enteritis or subclinical infection, depending on serotype- and host-specific factors. To quantify intestinal secretory and inflammatory responses to STEC in the bovine intestine, serotypes that are associated with human disease (O103:H2 and O157:H7) were introduced into ligated mid-ileal loops in gnotobiotic and conventional calves, and fluid accumulation and recruitment of radiolabeled neutrophils were measured after 12 h. STEC serotype O103:H2, but not serotype O157:H7, elicited strong enteropathogenic responses. To determine if the inflammatory response to STEC O103:H2 in calves requires Shiga toxin 1 or intimate bacterial attachment to the intestinal epithelium, defined mutations were made in the stx1, eae, and tir genes. Our data indicate that some STEC induce intestinal inflammatory responses in calves by a mechanism that is independent of A/E-lesion formation, intimin, or Shiga toxin 1. This may have implications for strategies to reduce STEC carriage in cattle.  相似文献   

18.
We examined 1,266 fecal specimens from healthy cattle during the investigations of two sporadic cases of hemolytic uremic syndrome associated with raw milk consumption and an outbreak of gastroenteritis and hemolytic uremic syndrome caused by Escherichia coli serotype O157:H7. We collected specimens from heifers, calves, and adult cows on 22 farms, in a stockyard, and in a packing house. We also collected 3 raw hamburger specimens from a restaurant and 23 raw milk samples from two farms. All specimens were examined for E. coli O157:H7 by using sorbitol-MacConkey agar, H immobilization, O157 agglutination, and tissue culture cytotoxicity. E. coli O157:H7 was isolated from 16 heifers or calves and 1 adult cow on 22 farms, 1 stockyard calf, 2 beef specimens, and 1 raw milk sample. Selected fecal specimens were also examined for the presence of other Shiga-like-toxin-producing E. coli (SLTEC) by testing polymyxin B extracts of colony sweeps and then testing individual colonies for toxin production. SLTEC other than O157 was isolated from 8 of 10 farms investigated and from the stockyard; 8% of adult cows and 19% of heifers and calves were positive for SLTEC. Several animals were positive for SLTEC by colony sweep only. This investigation demonstrates that dairy cattle are a reservoir of E. coli O157:H7 and other SLTEC.  相似文献   

19.
Intimin, the product of the eaeA gene in enterohemorrhagic Escherichia coli O157:H7 (EHEC), is required for intimate adherence of these organisms to tissue culture cells and formation of the attaching and effacing lesion in the gnotobiotic pig. Because of the importance of intimin in the pathogenesis of EHEC O157:H7 infection in this animal model, we began a structure-function analysis of EaeA. For this purpose, we constructed amino-terminal fusions of the intimin protein with six histidine residues to form two independent fusions. The longer fusion, RIHisEae, contained 900 of the 935 predicted amino acids and included all but the extreme amino terminus. The second fusion, RVHdHisEae, consisted of the carboxyl two-thirds of the protein. Purified extracts of either construct enhanced binding of wild-type 86-24 to HEp-2 cells and conferred HEp-2 cell adherence on 86-24eaeDelta10, an eaeA deletion mutant, and B2F1, an EHEC O91:1-121 eaeA mutant strain. When 86-24eaeDelta10 was transformed with either of the plasmids encoding the intimin fusion proteins, the transformant behaved like the wild-type parent strain and displayed localized adherence to HEp-2 cells, with positive fluorescent-actin staining. In addition, polyclonal antisera raised against RIHisEae reacted with both fusion constructs and recognized an outer membrane protein of the same mass as intimin (97 kDa) in EHEC and enteropathogenic E. coli but not E. coli K-12. The intimin-specific antisera also blocked adherence of EHEC to HEp-2 cells. Thus, intimin (i) is a 97-kDa outer membrane protein in EHEC that serves as a requisite adhesin for attachment of the bacteria to epithelial cells, even when the protein is truncated by one-third at its amino terminus and (ii) can be added exogenously to specifically facilitate HEp-2 cell adherence of EHEC but not E. coli K-12.  相似文献   

20.
Escherichia coli O157:H7 causes bloody diarrhea and potentially fatal systemic sequelae in humans. Cattle are most frequently identified as the primary source of infection, and E. coli O157:H7 generally colonizes the gastrointestinal tracts of cattle without causing disease. In this study, persistence and tropism were assessed for four different E. coli O157:H7 strains. Experimentally infected calves shed the organism for at least 14 days prior to necropsy. For the majority of these animals, as well as for a naturally colonized animal obtained from a commercial beef farm, the highest numbers of E. coli O157:H7 were found in the feces, with negative or significantly lower levels detected in lumen contents taken from the gastrointestinal tract. Detailed examination demonstrated that in these individuals the majority of tissue-associated bacteria were adherent to mucosal epithelium within a defined region extending up to 5 cm proximally from the recto-anal junction. The tissue targeted by E. coli O157:H7 was characterized by a high density of lymphoid follicles. Microcolonies of the bacterium were readily detected on the epithelium of this region by immunofluorescence microscopy. As a consequence of this specific distribution, E. coli O157:H7 was present predominantly on the surface of the fecal stool. In contrast, other E. coli serotypes were present at consistent levels throughout the large intestine and were equally distributed in the stool. This is a novel tropism that may enhance dissemination both between animals and from animals to humans. The accessibility of this site may facilitate simple intervention strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号