首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the many palmoplantar keratoderma (PPK) conditions, only Papillon-Lefèvre syndrome (PLS) and Haim-Munk syndrome (HMS) are associated with premature periodontal destruction. Although both PLS and HMS share the cardinal features of PPK and severe periodontitis, a number of additional findings are reported in HMS including arachnodactyly, acro-osteolysis, atrophic changes of the nails, and a radiographic deformity of the fingers. While PLS cases have been identified throughout the world, HMS has only been described among descendants of a religious isolate originally from Cochin, India. Parental consanguinity is a characteristic of many cases of both conditions. Although autosomal recessive transmission of PLS is evident, a more "complex" autosomal recessive pattern of inheritance with phenotypic influences from a closely linked modifying locus has been hypothesised for HMS. Recently, mutations of the cathepsin C gene have been identified as the underlying genetic defect in PLS. To determine if a cathepsin C mutation is also responsible for HMS, we sequenced the gene in affected and unaffected subjects from the Cochin isolate in which both the PLS and HMS phenotypes appear. Here we report identification of a mutation of cathepsin C (exon 6, 2127A--> G) that changes a highly conserved amino acid in the cathepsin C peptide. This mutation segregates with HMS in four nuclear families. Additionally, the existence of a shared common haplotype for genetic loci flanking the cathepsin C gene suggests that affected subjects descended from the Cochin isolate are homozygous for a mutation inherited "identical by descent" from a common ancestor. This finding supports simple autosomal recessive inheritance for HMS in these families. We also report a mutation of the same exon 6 CTSC codon (2126C-->T) in a Turkish family with classical PLS. These findings provide evidence that PLS and HMS are allelic variants of cathepsin C gene mutations.  相似文献   

2.
We describe a mutation and haplotype analysis of Papillon-Lefèvre syndrome probands that provides evidence of a founder effect for four separate cathepsin C mutations. A total of 25 different cathepsin C mutations have been reported in 32 families with Papillon-Lefèvre syndrome (PLS) and associated conditions. A characteristic of these findings is the diversity of different cathepsin C mutations that have been identified. To evaluate the generality of cathepsin C mutations, PLS probands representative of five reportedly unrelated Saudi Arabian families were evaluated by mutational and haplotype analyses. Sequence analysis identified two cathepsin C gene mutations: a novel exon 7 G300D mutation was found in the proband from one family, while probands from four families shared a common R272P mutation in exon 6. The R272P mutation has been previously reported in two other non-Saudi families. The presence of the R272P mutation in probands from these four Saudi families makes this the most frequently reported cathepsin C mutation. To distinguish between the presence of a possible founder effect or a mutational hot spot for the R272P mutation, we performed haplotype analysis using six novel DNA polymorphisms that span a 165 kb interval containing the cathepsin C gene. Results of haplotype analysis for genetic polymorphisms within and flanking the cathepsin C gene are consistent with inheritance of the R272P mutation "identical by descent" from a common ancestor in these four Saudi families. Haplotype analysis of multiple PLS probands homozygous for other cathepsin C mutations (W249X, Q286X, and T153I) also supports inheritance of each of these mutations from common ancestors. These data suggest that four of the more frequently reported cathepsin C mutations have been inherited from common ancestors and provide the first direct evidence for a founder effect for cathepsin C gene mutations in PLS. Identification of these six short tandem repeat polymorphisms that span the cathepsin C gene will permit haplotype analyses to determine other founder haplotypes of cathepsin C mutations in additional PLS families.


Keywords: Papillon-Lefèvre syndrome; cathepsin C; founder effect; chromosome 11q14  相似文献   

3.
Papillon-Lefèvre syndrome (PLS) is a rare autosomal recessive disease that involves severe periodontitis and hyperkeratosis of the hand palms and foot soles. Recently it was found that PLS patients carry loss-of-function mutations in the gene encoding cathepsin C (CTSC). In the present study we have analyzed the CTSC gene in two unrelated families with PLS. In the first non-consanguineous family, mutation analysis revealed the previously reported c.815G>C/p.R272P mutation. The second consanguineous family displayed a c.1213C>A mutation which resulted in the novel mutation p.H405N and is the first mutation described in the active site of the enzyme. The PLS patients had, next to the absence of cathepsin C activity in polymorphonuclear leukocytes (PMNs), no activity of the three serine proteinases elastase, cathepsin G and proteinase 3. Serine proteinases are supposed to be important in both the innate and adaptive immune systems. Their absence in PLS patients could explain the inadequate defense to periodontal infection.  相似文献   

4.

Background

PLS is a rare autosomal recessive disorder characterized by early onset periodontopathia and palmar plantar keratosis. PLS is caused by mutations in the cathepsin C (CTSC) gene. Dipeptidyl-peptidase I encoded by the CTSC gene removes dipeptides from the amino-terminus of protein substrates and mainly plays an immune and inflammatory role. Several mutations have been reported in this gene in patients from several ethnic groups. We report here mutation analysis of the CTSC gene in three Indian families with PLS.

Methods

Peripheral blood samples were obtained from individuals belonging to three Indian families with PLS for genomic DNA isolation. Exon-specific intronic primers were used to amplify DNA samples from individuals. PCR products were subsequently sequenced to detect mutations. PCR-SCCP and ASOH analyses were used to determine if mutations were present in normal control individuals.

Results

All patients from three families had a classic PLS phenotype, which included palmoplantar keratosis and early-onset severe periodontitis. Sequence analysis of the CTSC gene showed three novel nonsense mutations (viz., p.Q49X, p.Q69X and p.Y304X) in homozygous state in affected individuals from these Indian families.

Conclusions

This study reported three novel nonsense mutations in three Indian families. These novel nonsense mutations are predicted to produce truncated dipeptidyl-peptidase I causing PLS phenotype in these families. A review of the literature along with three novel mutations reported here showed that the total number of mutations in the CTSC gene described to date is 41 with 17 mutations being located in exon 7.
  相似文献   

5.
Papillon-Lefèvre syndrome (PLS) is an inherited human disorder characterised by premature destruction of the periodontium of the deciduous and permanent teeth, palmoplantar hyperkeratosis, and increased susceptibility to bacterial infections during the first years of life. In this paper two PLS families have been studied. Family 1 presents a novel homozygous mutation (880T>C) in exon 6 causing Y294H amino acid substitution. Family 2 shows a previously described non-sense homozygous punctual change (72C>A) that introduces a termination codon at the extracellular domain of the protein (C24X).  相似文献   

6.
Papillon-Lefèvre syndrome (PLS) is an autosomal recessive disorder characterised by palmoplantar hyperkeratosis and severe early onset periodontitis that results in the premature loss of the primary and secondary dentitions. A major gene locus for PLS has been mapped to a 2.8 cM interval on chromosome 11q14. Correlation of physical and genetic maps of this interval indicate it includes at least 40 ESTs and six known genes including the lysosomal protease cathepsin C gene (CTSC). The CTSC message is expressed at high levels in a variety of immune cells including polymorphonuclear leucocytes, macrophages, and their precursors. By RT-PCR, we found CTSC is also expressed in epithelial regions commonly affected by PLS, including the palms, soles, knees, and oral keratinised gingiva. The 4.7 kb CTSC gene consists of two exons. Sequence analysis of CTSC from subjects affected with PLS from five consanguineous Turkish families identified four different mutations. An exon 1 nonsense mutation (856C-->T) introduces a premature stop codon at amino acid 286. Three exon 2 mutations were identified, including a single nucleotide deletion (2692delA) of codon 349 introducing a frameshift and premature termination codon, a 2 bp deletion (2673-2674delCT) that results in introduction of a stop codon at amino acid 343, and a G-->A substitution in codon 429 (2931G-->A) introducing a premature termination codon. All PLS patients were homozygous for cathepsin C mutations inherited from a common ancestor. Parents and sibs heterozygous for cathepsin C mutations do not show either the palmoplantar hyperkeratosis or severe early onset periodontitis characteristic of PLS. A more complete understanding of the functional physiology of cathepsin C carries significant implications for understanding normal and abnormal skin development and periodontal disease susceptibility.  相似文献   

7.
We have previously reported that loss-of-function mutations in the cathepsin C gene (CTSC) result in Papillon-Lefèvre syndrome, an autosomal recessive condition characterized by palmoplantar keratosis and early-onset, severe periodontitis. Others have also reported CTSC mutations in patients with severe prepubertal periodontitis, but without any skin manifestations. The possible role of CTSC variants in more common types of non-mendelian, early-onset, severe periodontitis ("aggressive periodontitis") has not been investigated. In this study, we have investigated the role of CTSC in all three conditions. We demonstrate that PLS is genetically homogeneous and the mutation spectrum that includes three novel mutations (c.386T>A/p.V129E, c.935A>G/p.Q312R, and c.1235A>G/p.Y412C) in 21 PLS families (including eight from our previous study) provides an insight into structure-function relationships of CTSC. Our data also suggest that a complete loss-of-function appears to be necessary for the manifestation of the phenotype, making it unlikely that weak CTSC mutations are a cause of aggressive periodontitis. This was confirmed by analyses of the CTSC activity in 30 subjects with aggressive periodontitis and age-sex matched controls, which demonstrated that there was no significant difference between these two groups (1,728.7 +/- SD 576.8 micro moles/mg/min vs. 1,678.7 +/- SD 527.2 micro moles/mg/min, respectively, p = 0.73). CTSC mutations were detected in only one of two families with prepubertal periodontitis; these did not form a separate functional class with respect to those observed in classical PLS. The affected individuals in the other prepubertal periodontitis family not only lacked CTSC mutations, but in addition did not share the haplotypes at the CTSC locus. These data suggest that prepubertal periodontitis is a genetically heterogeneous disease that, in some families, just represents a partially penetrant PLS.  相似文献   

8.
Papillon-Lefèvre syndrome (PLS) is an autosomal recessive palmoplantar keratoderma caused by cathepsin C (CTSC) gene mutations. This study reports CTSC mutational and enzyme analyses in a consanguineous Brazilian family with PLS, representing the first enzymatic analysis of a Brazilian kinship with PLS. This family segregates a novel PLS-related mutation, p.W185X, that is associated with a complete loss of enzymatic activity.  相似文献   

9.
AIM: To analyse the microflora of subgingival plaque from patients with Papillon-Lefévre syndrome (PLS), which is a very rare disease characterised by palmar-plantar hyperkeratosis with precocious periodontal destruction. METHODS: Bacterial isolates were identified using a combination of commercial identification kits, traditional laboratory tests, and gas liquid chromatography. Some isolates were also subjected to partial 16S rDNA sequencing. Plaque samples were also assayed for the presence of Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans in a quantitative enzyme linked immunosorbent assay (ELISA) using monoclonal antibodies. RESULTS: The culture results showed that most isolates were capnophilic and facultatively anaerobic species-mainly Capnocytophaga spp and Streptococcus spp. The latter included S. constellatus, S. oralis, and S. sanguis. Other facultative bacteria belonged to the genera gemella, kingella, leuconostoc, and stomatococcus. The aerobic bacteria isolated were species of neisseria and bacillus. Anaerobic species included Prevotella intermedia, P. melaninogenica, and P. nigrescens, as well as Peptostreptococcus spp. ELISA detected P gingivalis in one patient in all sites sampled, whereas A. actinomycetemcomitans was detected in only one site from the other patient. Prevotella intermedia was present in low numbers. CONCLUSIONS: Patients with PLS have a very complex subgingival flora including recognised periodontal pathogens. However, no particular periodontopathogen is invariably associated with PLS.  相似文献   

10.
Papillon Lefèvre syndrome (PLS) is an autosomal recessive disorder characterized by palmoplantar hyperkeratosis and severe periodontitis. The disease is caused by mutations in the cathepsin C gene (CTSC) that maps to chromosome 11q14. CTSC gene mutations associated with PLS have been correlated with significantly decreased enzyme activity. Mutational analysis of the CTSC gene in three North American families segregating PLS identified four mutations, including a novel mutation p.G139R. All mutations were associated with dramatically reduced CTSC protease enzyme activity. A homozygous c.96T>G transversion resulting in a p.Y32X change was present in a Mexican PLS proband, while one Caucasian PLS proband was a compound heterozygote for the p.Y32X and p.R272P (c.815G>C) mutations. The other Caucasian PLS proband was a compound heterozygote for c.415G>A transition and c.1141delC mutations that resulted in a p.G139R and a frameshift and premature termination (p.L381fsX393), respectively. The c.415G>A was not present in more than 300 controls, suggesting it is not a CTSC polymorphism. Biochemical analysis demonstrated almost no detectable CTSC activity in leukocytes of all three probands. These mutations altered restriction enzyme sites in the highly conserved CTSC gene. Sequence analysis of CTSC exon 3 confirmed the previously reported p.T153I polymorphism in 4 of the 5 ethnically diverse populations studied.  相似文献   

11.
Hepatitis C virus (HCV) infection is a significant global health problem. Elevated hepatic iron concentration has often been found in patients with chronic hepatitis C, and this excess iron increases oxidative stress, which can accelerate the progression of fibrosis and may promote hepatic carcinogenesis. The current study aimed to determine the prevalence of C282Y (exchange of cysteine to tyrosine at amino acid 282) and H63D (exchange of histidine to aspartic acid at amino acid 63) in hereditary hemochromatosis gene (HFE) mutations among chronic HCV patients and to find whether elevation of serum iron indices is related to HFE gene mutations in patients with chronic hepatitis C. The study population was 80 chronic HCV patients divided into two groups: group I included 40 patients with serum iron overload, and group II included 40 patients without iron overload. HFE gene mutation was studied by PCR-restriction fragment length polymorphism (RFLP). The C282Y mutation was not found in any of the 80 patients, while the H63D mutation was present in 18.7 % of the entire study sample. Comparing the two studied groups, H63D mutation was found in 20 % of the iron overload group and 17.5 % of the non-iron overload group. Statistically, there was no significant difference between the two study groups. Regarding iron studies, results of the current study revealed no significant difference between chronic HCV patients with iron overload and those with normal iron profile regarding any of the HFE mutations. In conclusion, the current work emphasizes that the C282Y mutation is absent in our community, while H63D mutation presence does not differ greatly from other Caucasian races especially in Europe. The current study did not detect any effect of HFE mutation on increasing serum iron overload.  相似文献   

12.
Arribas M  Cabanillas L  Lázaro E 《Virology》2011,417(2):343-352
RNA virus replication takes place at a very high error rate, and additional increases in this parameter can produce the extinction of virus infectivity. Nevertheless, RNA viruses can adapt to conditions of increased mutagenesis, which demonstrates that selection of beneficial mutations is also possible at higher-than-standard error rates. In this study we have analysed the evolutionary behaviour of bacteriophage Qβ populations when replication proceeds in the presence of the mutagenic nucleoside analogue 5-azacytidine (AZC). We have obtained a virus population with reduced capacity to accumulate mutations in the presence of AZC and able to avoid extinction under conditions that are lethal for the wild type virus. Adapted populations fix a substitution in the readthrough protein gene and incorporate several mutations in the replicase gene that, despite having selective value, remain polymorphic after a large number of transfers in the presence of AZC.  相似文献   

13.
14.
Papillon-Lefèvre syndrome (PLS) has recently been shown to be caused by mutations in the cathepsin C gene resulting in periodontal disease and palmoplantar keratosis. Thirteen different homozygous mutations have been characterised in PLS patients of different ethnic origin. In the present paper, a PLS patient is described who carries two novel mutations (706G>T and 872G>A) in the paternal and maternal chromosomes, respectively. This is the first compound patient described so far. In addition, a novel symptomless mutation (458C>T) in the cathepsin C gene is described in three homozygous individuals. Thus, not all mutations should be considered as a cause of disease, whether case studies or general population screening is performed. Another already described mutation that provoked the Haim-Munk syndrome (HMS) in Indian Jews has also been found to give rise to PLS in a Spanish family from Madrid. On the other hand, PLS patients are ameliorated by retinoids, which indicates that retinoids may be used as therapeutic agents in this immune system deficiency.  相似文献   

15.
16.
17.
Nevoid basal cell carcinoma syndrome (Gorlin syndrome) is a rare autosomal dominant disorder characterized by numerous basal cell carcinomas, keratocystic odontogenic tumors of the jaws, and diverse developmental defects. This disorder is associated with mutations in tumor suppressor gene Patched 1 (PTCH1). We present two patients with Gorlin syndrome, one sporadic and one familial. Clinical examination, radiological, and CT imaging, and mutation screening of PTCH1 gene were performed. Family members, as well as eleven healthy controls were included in the study. Both patients fulfilled the specific criteria for diagnosis of Gorlin syndrome. Molecular analysis of the first patient showed a novel frameshift mutation in exon 6 of PTCH1gene (c.903delT). Additionally, a somatic frameshift mutation in exon 21 (c.3524delT) along with germline mutation in exon 6 was detected in tumor-derived tissue sample of this patient. Analysis of the second patient, as well as two affected family members, revealed a novel nonsense germline mutation in exon 8 (c.1148 C>A).Nevoid basal cell carcinoma syndrome (NBCCS; Gorlin syndrome; MIM 109400) is a rare autosomal-dominant disorder with the prevalence ranging from 1/57 000 to 1/256 000 and a male-to-female ratio of 1:1 (1,2). It is characterized by a multiple basal cell carcinomas (BCCs), developmental and skeletal anomalies, keratocystic odontogenic tumors (KCOT) of the jaws, and a predisposition to a variety of other tumors (3). NBCCS may affect multiple organ systems, such as skin, skeletal system, genitourinary system, and central nervous system. It is caused by mutations in the Patched 1 (PTCH1) gene, a tumor suppressor gene involved in Sonic hedgehog (SHH) signaling pathway (4,5). Mutations of PTCH1 gene have also been associated with sporadic carcinomas, such as keratocystic odontogenic tumor (KCOT) (6), medulloblastoma (7), esophageal squamous cell carcinoma (8), and some benign tumors, such as ovarian and cardiac fibromas. To date, over 230 PTCH1 germline mutations associated with NBCCS have been reported (9), which are transmitted in an autosomal-dominant way with high penetrance and variable expressivity (10-12). We present two cases with Gorlin syndrome, one sporadic and one familial. Molecular diagnosis in patients and family members was established by molecular genetic analysis.  相似文献   

18.
Sjögren-Larsson syndrome (SLS) is a rare autosomal recessive disorder characterized by ichthyosis, spasticity and intellectual disability. The disease is caused by mutations in the ALDH3A2 gene that encodes fatty aldehyde dehydrogenase. We describe 7 Iranian SLS patients from 5 unrelated consanguineous families. Sequencing of ALDH3A2 identified 4 novel mutations, including a 26-bp deletion (c.25_50del), small in-frame deletion (c.370_372del; p.G124del), a termination (p.Q35Ter) and a missense mutation (p.Lys211Glu). Bacterial expression of the p.Lys211Glu and p.G124del mutations showed little or no detectable enzyme activity. Three of the patients exhibited an unusual neuro-regressive clinical course associated with seizures, which may reflect the presence of unidentified genetic or environmental modifiers in this consanguineous population. This cohort represents the largest group of Iranian patients with molecularly confirmed SLS and expands the mutational and clinical spectrum of this disease.  相似文献   

19.
Birt-Hogg-Dubé syndrome (BHDS), caused by germline mutations in the folliculin (FLCN) gene, predisposes individuals to develop fibrofolliculomas, pulmonary cysts, spontaneous pneumothoraces, and kidney cancer. The FLCN mutation detection rate by bidirectional DNA sequencing in the National Cancer Institute BHDS cohort was 88%. To determine if germline FLCN intragenic deletions/duplications were responsible for BHDS in families lacking FLCN sequence alterations, 23 individuals from 15 unrelated families with clinically confirmed BHDS but no sequence variations were analyzed by real-time quantitative PCR (RQ-PCR) using primers for all 14 exons. Multiplex ligation-dependent probe amplification (MLPA) assay and array-based comparative genomic hybridization (aCGH) were utilized to confirm and fine map the rearrangements. Long-range PCR followed by DNA sequencing was used to define the breakpoints. We identified six unique intragenic deletions in nine patients from six different BHDS families including four involving exon 1, one that spanned exons 2-5, and one that encompassed exons 7-14 of FLCN. Four of the six deletion breakpoints were mapped, revealing deletions ranging from 5688 to 9189 bp. In addition, one 1341 bp duplication, which included exons 10 and 11, was identified and mapped. This report confirms that large intragenic FLCN deletions can cause BHDS and documents the first large intragenic FLCN duplication in a BHDS patient. Additionally, we identified a deletion "hot spot" in the 5'-noncoding-exon 1 region that contains the putative FLCN promoter based on a luciferase reporter assay. RQ-PCR, MLPA and aCGH may be used for clinical molecular diagnosis of BHDS in patients who are FLCN mutation-negative by DNA sequencing.  相似文献   

20.
Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P<0.01). Overall, 20 of 23 sporadic patients with a COL2A1 mutation had either a cleft palate or retinal detachment with vitreous anomalies. The presence of vitreous anomalies, retinal tears or detachments, cleft palate and a positive family history were shown to be good indicators for a COL2A1 defect. In conclusion, we confirm that Stickler syndrome type 1 is predominantly caused by loss-of-function mutations in the COL2A1 gene as >90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with Stickler syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号