首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Polycystic kidney disease (PKD) is the most common genetic cause of renal failure in humans. Several proteins that are encoded by genes associated with PKD have recently been identified in primary cilia in renal tubular epithelia. These findings have suggested that abnormalities in cilia formation and function may play a role in the pathogenesis of PKD. To directly determine whether cilia are essential to maintain tubular integrity, we conditionally inactivated KIF3A, a subunit of kinesin-II that is essential for cilia formation, in renal epithelia. Constitutive inactivation of KIF3A produces abnormalities of left-right axis determination and embryonic lethality. Here we show that tissue-specific inactivation of KIF3A in renal tubular epithelial cells results in viable offspring with normal-appearing kidneys at birth. Cysts begin to develop in the kidney at postnatal day 5 and cause renal failure by postnatal day 21. The cyst epithelial cells lack primary cilia and exhibit increased proliferation and apoptosis, apical mislocalization of the epidermal growth factor receptor, increased expression of beta-catenin and c-Myc, and inhibition of p21(CIP1). These results demonstrate that the absence of renal cilia produces both the clinical and cell biological findings associated with PKD. Most generally, the phenotype of Kif3a mutant mice suggests a role for primary cilia in the maintenance of lumen-forming epithelial differentiation.  相似文献   

2.
3.
Cano DA  Sekine S  Hebrok M 《Gastroenterology》2006,131(6):1856-1869
BACKGROUND & AIMS: Defects in cilia formation or function have been implicated in several human genetic diseases, including polycystic kidney disease (PKD), Bardet-Biedl syndrome, and primary ciliary dyskinesia. Pancreatic lesions are found in approximately 10% of PKD patients, suggesting a connection between cilia defects and pancreatic pathologies. Here, we investigate the role of cilia in pancreas formation and function by analyzing mice that lack cilia in pancreatic cells. METHODS: Using Cre/lox technology, we conditionally inactivated Kif3a, the gene encoding for a subunit of the kinesin-2 complex that is essential for cilia formation, in pancreatic epithelia. Kif3a mice were studied by immunohistochemical and biochemical methods to assess the morphology and differentiation status of pancreatic cells. RESULTS: Tissue-specific loss of Kif3a in pancreatic cells resulted in severe pancreatic abnormalities including acinar-to-ductal metaplasia, fibrosis, and lipomatosis. Ductal metaplasia appears to be due to expansion of ductal cells rather than transdifferentiation of acinar cells. Cyst formation, aberrant ductal morphology, and extensive fibrosis associated with severe adhesion to adjacent organs were commonly observed in aged Kif3a mutant mice. Deletion of Kif3a using different pancreas-specific Cre strains suggests that these pancreatic phenotypes might be caused by the absence of cilia in ductal cells. Activation of transforming growth factor beta and Mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) pathways may play a role in these phenotypes. CONCLUSIONS: These results demonstrate that the absence of cilia in pancreatic cells produces pancreatic lesions that resemble those found in patients with chronic pancreatitis or cystic fibrosis.  相似文献   

4.
Glomerulocystic kidney is a heterogeneous group of conditions morphologically characterised by multiple cortical cysts apparently originated from a cystic dilation of the filtration space with atrophy of the glomerular tufts. We report a case of glomerulocystic kidney affecting a 13-year-old boy who underwent renal transplantation for end-stage renal disease following a haemolytic-uraemic syndrome diagnosed nine years ago. The absence of other stigmas (urinary obstruction, extrarenal congenital abnormalities and family history of cystic kidney disease) suggest that our observation is apparently a sporadic and acquired glomerulocystic kidney following a haemolytic-uraemic syndrome, an infrequent association previously reported only twice. Our histological and immunohistochemical findings suggest that the cysts in this rare condition are really of glomerular origin but the pathogenesis of cyst development remains unknown.  相似文献   

5.
Hepatocyte nuclear factor 1 beta (HNF1B) plays an important role in embryonic development, namely in the kidney, pancreas, liver, genital tract, and gut. Heterozygous germline mutations of HNF1B are associated with the renal cysts and diabetes syndrome (RCAD). Affected individuals may present a variety of renal developmental abnormalities and/or maturity-onset diabetes of the young (MODY).A Portuguese 19-month-old male infant was evaluated due to hypoplastic glomerulocystic kidney disease and renal dysfunction diagnosed in the neonatal period that progressed to stage 5 chronic renal disease during the first year of life. His mother was diagnosed with a solitary hypoplastic microcystic left kidney at age 20, with stage 2 chronic renal disease established at age 35, and presented bicornuate uterus, pancreatic atrophy, and gestational diabetes. DNA sequence analysis of HNF1B revealed a novel germline frameshift insertion (c.110_111insC or c.110dupC) in both the child and the mother. A review of the literature revealed a total of 106 different HNF1B mutations, in 236 mutation-positive families, comprising gross deletions (34%), missense mutations (31%), frameshift deletions or insertions (15%), nonsense mutations (11%), and splice-site mutations (8%).The study of this family with an unusual presentation of hypoplastic glomerulocystic kidney disease with neonatal renal dysfunction identified a previously unreported mutation of the HNF1B gene, thereby expanding the spectrum of known mutations associated with renal developmental disorders.  相似文献   

6.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation in the kidney, liver, and pancreas and is associated often with cardiovascular abnormalities such as hypertension, mitral valve prolapse, and intracranial aneurysms. It is caused by mutations in PKD1 or PKD2, encoding polycystin-1 and -2, which together form a cell surface nonselective cation ion channel. Pkd2-/- mice have cysts in the kidney and pancreas and defects in cardiac septation, whereas Pkd1(del34) -/- and Pkd1(L) -/- mice have cysts but no cardiac abnormalities, although vascular fragility was reported in the latter. Here we describe mice carrying a targeted mutation in Pkd1 (Pkd1(del17-21betageo)), which defines its expression pattern by using a lacZ reporter gene and may identify novel functions for polycystin-1. Although Pkd1(del17-21betageo) +/- adult mice develop renal and hepatic cysts, Pkd1(del17-21betageo) -/- embryos die at embryonic days 13.5-14.5 from a primary cardiovascular defect that includes double outflow right ventricle, disorganized myocardium, and abnormal atrio-ventricular septation. Skeletal development is also severely compromised. These abnormalities correlate with the major sites of Pkd1 expression. During nephrogenesis, Pkd1 is expressed in maturing tubular epithelial cells from embryonic day 15.5. This expression coincides with the onset of cyst formation in Pkd1(del34) -/-, Pkd1(L) -/-, and Pkd2-/- mice, supporting the hypothesis that polycystin-1 and polycystin-2 interact in vivo and that their failure to do so leads to abnormalities in tubule morphology and function.  相似文献   

7.
Driscoll JA  Bhalla S  Liapis H  Ibricevic A  Brody SL 《Chest》2008,133(5):1181-1188
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a common disease with several known extrarenal manifestations, although no known pulmonary features. The formation of renal cysts in ADPKD has been attributed to dysfunction of primary cilia and the primary cilia-related proteins polycystin-1 (in 85% of cases) and polycystin-2 in renal epithelial cells. The goals of this study were to characterize the normal expression of polycystin-1 in the motile cilia of airway epithelial cells and to evaluate lung structure in ADPKD patients. METHODS: Airway epithelium from non-ADPKD patients was immunostained to localize polycystin-1 expression, and lung tissue from ADPKD patients was examined for pathologic changes. CT scans from ADPKD patients (n = 95) and a control group of non-ADPKD chronic kidney disease patients (n = 95) were retrospectively reviewed for the presence of bronchiectasis using defined criteria. RESULTS: Immunostaining revealed polycystin-1 expression in the motile cilia of non-ADPKD airway epithelial cells. Lung tissue from one of five available ADPKD patient autopsies revealed histologic changes of bronchiectasis. Review of CT scans revealed a threefold-increased prevalence of bronchiectasis in the ADPKD group compared to the control group (37% vs 13%, p = 0.002). CONCLUSIONS: ADPKD patients demonstrate an increased prevalence of radiographic bronchiectasis, a previously unrecognized manifestation of the disease. This association suggests that patients with primary cilia-associated diseases may be at risk for airway disease.  相似文献   

8.
The differentiation of cilia is mediated by kinesin-driven transport. As the function of kinesins in vertebrate ciliogenesis is poorly characterized, we decided to determine the role of kinesin-2 family motors--heterotrimeric kinesin-II and the homodimeric Kif17 kinesin--in zebrafish cilia. We report that kif17 is largely dispensable for ciliogenesis; kif17 homozygous mutant animals are viable and display subtle morphological defects of olfactory cilia only. In contrast to that, the kif3b gene, encoding a heterotrimeric kinesin subunit, is necessary for cilia differentiation in most tissues, although exceptions exist, and include photoreceptors and a subset of hair cells. Cilia of these cell types persist even in kif3b/kif17 double mutants. Although we have not observed a functional redundancy of kif3b and kif17, kif17 is able to substitute for kif3b in some cilia. In contrast to kif3b/kif17 double mutants, simultaneous interference with kif3b and kif3c leads to the complete loss of photoreceptor and hair cell cilia, revealing redundancy of function. This is in agreement with the idea that Kif3b and Kif3c motor subunits form complexes with Kif3a, but not with each other. Interestingly, kif3b mutant photoreceptor cilia differentiate with a delay, suggesting that kif3c, although redundant with kif3b at later stages of differentiation, is not active early in photoreceptor ciliogenesis. Consistent with that, the overexpression of kif3c in kif3b mutants rescues early photoreceptor cilia defects. These data reveal unexpected diversity of functional relationships between vertebrate ciliary kinesins, and show that the repertoire of kinesin motors changes in some cilia during their differentiation.  相似文献   

9.
10.
Hepatic cysts are a major manifestation of autosomal dominant polycystic kidney disease. This study examined 239 autosomal dominant polycystic kidney disease patients and 189 unaffected family members to define the factors that influence the presence and severity of hepatic cysts. Autosomal dominant polycystic kidney disease patients with hepatic cysts were older than autosomal dominant polycystic kidney disease patients without such cysts (44.6 +/- 1.1 yr vs. 32.9 +/- 1.1 yr; p less than 0.0001). The number of hepatic cysts increased with age (r = 0.43; p less than 0.0001). Women were more likely to have massive hepatic cystic disease (greater than 15 cysts) than men (p less than 0.04). Women also had larger maximal cyst size (4.2 +/- 0.4 cm vs. 2.7 +/- 0.3 cm; p less than 0.004). Women with hepatic cysts were more likely to have been pregnant (p less than 0.001) and to have had more pregnancies (2.9 +/- 0.3 pregnancies vs. 1.6 +/- 0.2 pregnancies; p less than 0.0009). Kidney volume (p less than 0.0001), number of cysts (p less than 0.004), percentage of cystic parenchyma (p less than 0.001) and predominant cyst size (p less than 0.001) were greater and creatinine clearance was lower (64.5 +/- 3.1 ml/min/1.73 m2 vs. 94.5 +/- 3.4 ml/min/1.73 m2; p less than 0.001) in autosomal dominant polycystic kidney disease patients with hepatic cysts. By logistic regression, the frequency of hepatic cysts was related to increased age, increased severity of renal cystic disease and decreased creatinine clearance. Number and size of hepatic cysts correlated with the occurrence of pregnancy, female gender, increased age and severity of the renal lesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Dialysis dependency is one of the leading causes of morbidity and mortality in the world, and once end-stage renal disease develops, it cannot be reversed by currently available therapy. Although the administration of large dose of bone morphogenetic protein-7 (BMP-7) has been shown to repair established renal injuries and improves renal function, pathophysiological role of endogenous BMP-7 and regulatory mechanism of its activities remain elusive. Here we show that uterine sensitization-associated gene-1 (USAG-1), novel BMP antagonist abundantly expressed in the kidney, is the central negative regulator of BMP function in the kidney, and that mice lacking USAG-1 (USAG-1(-/-) mice) are resistant to kidney injuries. USAG-1(-/-) mice exhibited prolonged survival and preserved renal function in acute and chronic renal injuries. Renal BMP signaling, assessed by phosphorylation of Smad proteins, is significantly enhanced in USAG-1(-/-) mice during renal injury, indicating that the preservation of renal function is attributed to enhancement of endogenous BMP signaling. Furthermore, the administration of neutralizing antibody against BMP-7 abolished reno-protection in USAG-1(-/-) mice, indicating that USAG-1 plays a critical role in the modulation of reno-protective action of BMP, and that inhibition of USAG-1 will be promising means of development of novel treatment for kidney diseases.  相似文献   

12.
Ong AC  Wheatley DN 《Lancet》2003,361(9359):774-776
CONTEXT: "Cystic degeneration" of the kidneys was first described pathologically in 1841 and "polycystic kidneys" as a clinical syndrome in 1888. The heritable nature in some families was noted in 1899, and autosomal dominant and recessive patterns of inheritance of polycystic kidney disease (PKD) were later recognised. Autosomal dominant PKD is one of the most common human genetic diseases and results from mutations in PKD1 or PKD2. These genes encode two proteins, polycystin-1 and polycystin-2. STARTING POINT: Primary cilia are cellular organelles previously thought by some to be vestigial. New findings from several species, including algae, nematodes, and mice, implicate defects in structure or function of primary cilia as a possible common mechanism central to the development of some forms of recessive PKD. Two recent reports propose a causal link between ciliary dysfunction and autosomal dominant PKD. B Yoder and colleagues (J Am Soc Nephrol 2002; 13:2508-16) show that polycystin-1 and polycystin-2 are localised to primary cilia in cultured renal epithelial cells. S Nauli and colleagues (Nat Genet 2003; 33:129-37) show that polycystin-1 and polycystin-2 function as flow-sensitive mechanosensors in the same signal-transduction pathway. WHERE NEXT? Cystic epithelial cells show many altered cellular properties, including changes in proliferation, apoptosis, adhesion, differentiation, polarity, extracellular matrix synthesis, and fluid transport. The next important steps in PKD research will be to define the physiological roles of primary renal cilia and how defects in ciliary structure and function lead to the development of a cystic phenotype in different forms of PKD.  相似文献   

13.
The Notch3 receptor participates in the development and maturation of vessels. Mutations of Notch3 in humans are associated with defective regulation of cerebral blood flow. To investigate the role of Notch3 in the regulation of renal hemodynamics, we used mice lacking expression of the Notch3 gene (Notch3-/- mice). Bolus injections of norepinephrine and angiotensin II increased renal vascular resistance and decreased renal blood flow in a dose-dependent manner in wild-type mice. In sharp contrast, renal vascular resistance of Notch3-/- mice varied little after boluses of norepinephrine and angiotensin II. Inversely, bradykinin and prostacyclin relaxed renal vasculature in wild-type mice. Both vasodilators had a negligible effect on renal vascular resistance of Notch3-/- mice. Afferent arterioles freshly isolated from Notch3-/- mice displayed decreased thickness of vascular wall compared with wild -type mice and showed a deficient contractile response to angiotensin II. To examine the physiopathological consequences of the above-described deficiency, hypertension was induced by continuous infusion of angiotensin II. Angiotensin II gradually increased blood pressure in both strains, but this increase was lesser in the Notch3-/- mice. Despite this blunted systemic effect, Notch3-/- mice displayed high mortality rates (65%) attributed to heart failure. In the kidney, the surviving Notch3-/- mice showed focal structural alterations characteristic of nephroangiosclerosis. These data show that Notch3 is necessary for the adaptive response of the renal vasculature to vasoactive systems. A deficiency in the expression of Notch3 could have important physiopathological consequences in the adaptation of the cardiac and renal function to chronic increase of blood pressure.  相似文献   

14.
15.
The weight of evidence gathered from studies in humans with hereditary polycystic kidney disease (PKD)1 and PKD2 disorders, as well as from experimental animal models, indicates that cysts are primarily responsible for the decline in glomerular filtration rate that occurs fairly late in the course of the disease. The processes underlying this decline include anatomic disruption of glomerular filtration and urinary concentration mechanisms on a massive scale, coupled with compression and obstruction by cysts of adjacent nephrons in the cortex, medulla and papilla. Cysts prevent the drainage of urine from upstream tributaries, which leads to tubule atrophy and loss of functioning kidney parenchyma by mechanisms similar to those found in ureteral obstruction. Cyst-derived chemokines, cytokines and growth factors result in a progression to fibrosis that is comparable with the development of other progressive end-stage renal diseases. Treatment of renal cystic disorders early enough to prevent or reduce cyst formation or slow cyst growth, before the secondary changes become widespread, is a reasonable strategy to prolong the useful function of kidneys in patients with autosomal dominant polycystic kidney disease.  相似文献   

16.
Summary  Uromodulin (UMOD) malfunction has been found in a range of autosomal dominant tubulointerstitial nephropathies associated with hyperuricaemia, gouty arthritis, medullary cysts and renal failure—labelled as familial juvenile hyperuricaemic nephropathy, medullary cystic disease type 2 and glomerulocystic kidney disease. To gain knowledge of the spectrum of UMOD changes in various genetic diseases with renal involvement we examined urinary UMOD excretion and found significant quantitative and qualitative changes in 15 male patients at various clinical stages of Fabry disease. In untreated patients, the changes ranged from normal to a marked decrease, or even absence of urinary UMOD. This was accompanied frequently by the presence of aberrantly processed UMOD lacking the C-terminal part following the K432 residue. The abnormal patterns normalized in all patients on enzyme replacement therapy and in some patients on substrate reduction therapy. Immunohistochemical analysis of the affected kidney revealed abnormal UMOD localization in the thick ascending limb of Henle’s loop and the distal convoluted tubule, with UMOD expression inversely proportional to the degree of storage. Our observations warrant evaluation of tubular functions in Fabry disease and suggest UMOD as a potential biochemical marker of therapeutic response of the kidney to therapy. Extended comparative studies of UMOD expression in kidney specimens obtained during individual types of therapies are therefore of great interest. Competing interests: None declared References to electronic databases: Fabry disease: OMIM 301500. α-Galactosidase A: EC 3.2.1.22. Uromodulin, OMIM 191845.  相似文献   

17.
Hepatic cysts are a frequent manifestation of autosomal dominant polycystic kidney disease, but little is known about their functional characteristics. The goals of our study were to define the composition of hepatic cyst fluid and to determine whether hepatic cysts secrete in response to intravenously administered secretin. We percutaneously punctured five hepatic cysts and one proximal renal cyst from six subjects with autosomal dominant polycystic kidney disease and one solitary hepatic cyst from a subject without autosomal dominant polycystic kidney disease. Most fluids had an electrolyte composition similar to serum. Fluid from all hepatic cysts had glutamyltranspeptidase concentrations above those found in serum [( cyst]/[serum] = 4.93 +/- 5.92), contained secretory component (the epithelial receptor for polymeric IgA) and had glucose concentrations less than 15 mg/dl. Fluid from both hepatic and renal cysts of subjects with autosomal dominant polycystic kidney disease, but not from the subject with the solitary hepatic cyst, demonstrated extensive changes in the electrophoretic mobility of several serum proteins. Initial intracystic pressures ranged from 16 to 40 cm H2O, were reduced 57% to 97% after aspiration of a portion of cyst fluid and were held constant during the secretion study. Within 8 min of the intravenous administration of secretin, secretion of fluid increased in two of three hepatic cysts and in the renal cyst. The electrolyte composition of cyst fluids was not altered by secretin. These data suggest that hepatic cystic epithelium has functional characteristics of biliary epithelium and that secretion by both hepatic and renal cysts may be hormonally regulated.  相似文献   

18.
Na+/H+ exchanger regulatory factor (NHERF)-1 and NHERF-2, two structurally related protein adapters containing tandem PSD-95/Discs large/ZO-1 (PDZ) domains, were identified as essential factors for protein kinase A-mediated inhibition of the sodium-hydrogen exchanger, NHE3. NHERF-1 and NHERF-2 also bound other cellular targets including the sodium-phosphate cotransporter type IIa encoded by the NPT2 gene. Targeted disruption of the mouse NHERF-1 gene eliminated NHERF-1 expression in kidney and other tissues of the mutant mice without altering NHERF-2 levels in these tissues. NHERF-1 (+/-) and (-/-) male mice maintained normal blood electrolytes but showed increased urinary excretion of phosphate when compared with wild-type (+/+) animals. Although the overall levels of renal NHERF-1 targets, NHE3 and Npt2, were unchanged in the mutant mice, immunocytochemistry showed that the Npt2 protein was aberrantly localized at internal sites in the renal proximal tubule cells. The mislocalization of Npt2 paralleled a reduction in the transporter protein in renal brush-border membranes isolated from the mutant mice. In contrast, NHE3 was appropriately localized at the apical surface of proximal tubules in both wild-type and mutant mice. These data suggested that NHERF-1 played a unique role in the apical targeting and/or trafficking of Npt2 in the mammalian kidney, a function not shared by NHERF-2 or other renal PDZ proteins. Phosphate wasting seen in the NHERF-1(-/-) null mice provided a new experimental system for defining the role of PDZ adapters in the hormonal control of ion transport and renal disease.  相似文献   

19.

Background

Severe hypokalemia is known to cause muscle paralysis, and renal tubular acidosis is a recognized cause. Cystic disease of the kidney is associated with severe hypokalemia.

Case presentation

We report a 33-year-old male patient who presented with generalized limb weakness caused by severe hypokalemia due to renal tubular acidosis, who was found to have renal medullary cysts.

Conclusion

The association of cystic renal disease with hypokalemia, and the possible pathophysiological basis of the development of renal cysts in patients with severe hypokalemia, are discussed.  相似文献   

20.
The basic biochemical mechanisms underlying many heritable human polycystic diseases are unknown despite evidence that most cases are caused by mutations in members of several protein families, the most prominent being the polycystin gene family, whose products are found on the primary cilia, or due to mutations in posttranslational processing and transport. Inherited polycystic kidney disease, the most prevalent polycystic disease, currently affects approximately 500,000 people in the United States. Decreases in proteoglycans (PGs) have been found in tissues and cultured cells from patients who suffer from autosomal dominant polycystic kidney disease, and this PG decrease has been hypothesized to be responsible for cystogenesis. This is possible because alterations in PG concentrations would be predicted to disrupt many homeostatic mechanisms of growth, development, and metabolism. To test this hypothesis, we have generated mice lacking xylosyltransferase 2 (XylT2), an enzyme involved in PG biosynthesis. Here we show that inactivation of XylT2 results in a substantial reduction in PGs and a phenotype characteristic of many aspects of polycystic liver and kidney disease, including biliary epithelial cysts, renal tubule dilation, organ fibrosis, and basement membrane abnormalities. Our findings demonstrate that alterations in PG concentrations can occur due to loss of XylT2, and that reduced PGs can induce cyst development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号