首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Afferent connections to the lateral hypothalamic region in the rat were studied using horseradish peroxidase (HRP). HRP was injected iontophoretically by a parapharyngeal approach. After HRP injections into the lateral hypothalamic area, labeled cells were found mainly in the medial prefrontal and infralimbic cortices, lateral and dorsal septal nuclei, nucleus accumbens, bed nucleus of the stria terminalis, medial and lateral amygdaloid nuclei, lateral habenular nucleus, peripeduncular nucleus, ventral tegmental area, mesencephalic and pontine central gray, ventral nucleus of the lateral lemniscus, lateral parabrachial area, raphe nuclei and the nucleus locus coeruleus. Labeled cells following HRP injections into the lateral preoptic area were found mainly in the lateral and dorsal septal nuclei, nucleus accumbens, diagonal band, ventral part of the globus pallidus, bed nucleus of the stria terminalis, central amygdaloid nucleus, mesencephalic and pontine central gray, dorsal raphe nucleus, parabrachial area and the nucleus locus coeruleus. The intrahypothalamic connections were also discussed.  相似文献   

2.
The lateral preoptic and lateral hypothalamic regions contain the majority of the cell groups embedded in the fibre trajectories of the medial forebrain bundle on its course through the hypothalamus. Recent studies have extended considerably the parcellation of the lateral hypothalamic region, and, therefore, the need to emphasize new insights into the anatomical organisation of projections from the neurons of the lateral hypothalamic region. In the present study we describe the anatomical organisation of efferent projections from the lateral preoptic and lateral hypothalamic regions to the hypothalamic paraventricular nucleus (PVN) on the basis of retrograde- and anterograde-tracing techniques. Iontophoretic injections of the retrograde tracer, cholera toxin subunit B, into the PVN revealed that most hypothalamic nuclei project to the PVN. Within the lateral hypothalamic region, retrogradely labelled cells were concentrated in the intermediate hypothalamic area, the lateral hypothalamic area, and the perifornical nucleus, whereas fewer retrogradely labelled cells were found in the lateral preoptic area. To determine the distribution of terminating fibres in subnuclei of the heterogeneous PVN, iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin were delivered into distinct areas of the lateral hypothalamic region. Neurons of the intermediate hypothalamic area projected mainly to the PVN subnuclei, which contained parvicellular neuroendocrine cells. In contrast, neurons of the rostral and tuberal parts of the lateral hypothalamic area and the perifornical nucleus projected to the PVN subnuclei, which contained parvicellular neurons that send descending projections to preganglionic cell groups in the medulla and spinal cord. The perifornical nucleus was the only area within the lateral hypothalamic region that consistently innervated magnocellular perikarya of the PVN. Finally, all areas of the lateral hypothalamic region contributed substantially to fibres terminating in the perinuclear shell of the PVN. These results demonstrate that anatomically distinct areas of the lateral hypothalamic region have distinct projections to subnuclei of the PVN and further substantiate the view that the lateral hypothalamic region as well as the PVN constitute anatomically and functionally heterogeneous structures. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Effects of lateral vestibular nucleus (LVN) stimulation on neuronal activity in the rat lateral hypothalamic area (LHA), including specific glucose-sensitive neurons, were investigated by extracellular and intracellular recordings in vivo. Stimulation of the contralateral LVN evoked 3 types of response in 46% (111/240) of the neurons recorded extracellularly: long latency (38.1 +/- 23.6 ms) excitation (62/111, 56%), short latency (6.9 +/- 3.1 ms) excitation-inhibition (33/111, 30%), and inhibition with 20.1 +/- 11.1 ms latency (16/111, 14%). Glucose-sensitive neurons, which were identified by electrophoretic application of glucose, did not respond specifically to such stimulation. Neuronal activity was recorded intracellularly from 31 LHA neurons, of which 13 responded to LVN stimulation. Seven of the 13 neurons showed a long latency EPSP (10.4 +/- 5.5 ms) and the remaining 6 exhibited an EPSP-IPSP sequence with shorter latency (4.5 +/- 3.0 ms). The amplitude of these responses was graded with a change in stimulus intensity. The EPSPs of both types of response were considered to be polysynaptic because of shortening of latencies by higher current stimulation. Since the LHA is implicated in the regulation of autonomic nerve activity, the present results showing polysynaptic pathways from the LVN to the LHA suggest functional involvement of the LHA in vestibulo-autonomic responses.  相似文献   

4.
The objective of the present study was to identify the retinal ganglion cells projecting to the lateral hypothalamic area of the rat. The retinohypothalamic tract has been divided into a medial and a lateral component on anatomical and developmental grounds. The medial component projects to the suprachiasmatic nucleus and adjacent structures such as the anterior hypothalamic and retrochiasmatic areas. The lateral component terminates in the lateral hypothalamic area dorsal to the supraoptic nucleus. Injections of the retrograde tracer FluoroGold were made into the retinorecipient region of the lateral hypothalamic area and retinal whole mounts were immunohistochemically processed for retrogradely labeled retinal ganglion cells. With FluoroGold injections confined to the lateral hypothalamic area, retrogradely labeled retinal ganglion cells are located almost exclusively in the superior temporal quadrant of the retina. Their size and morphology indicates that they are a homogenous subset of type III cells, but a definitive classification would require a more complete fill of dendritic arbors than is available in our retrograde material. In contrast, injections involving fibers of passage in the optic tract, or centered in the medial terminal nucleus of the accessory optic system, label cells distributed across the entire retinal surface. Unlike the retinal ganglion cells projecting to the suprachiasmatic nucleus [Moore et al., J. Comp. Neurol., 352 (1995) 351–366], the cells labeled after restricted lateral hypothalamic injections are not distributed evenly across the retinal surface. The difference in location of the retinal ganglion cells projecting to the lateral hypothalamic area supports the view that this retinohypothalamic projection is anatomically and functionally distinct from the projection to the suprachiasmatic nucleus and adjacent medial hypothalamus.  相似文献   

5.
6.
Lateral hypothalamic lesions that produce aphagia reduce gastric retention and increase intestinal transit of a 10 ml liquid load in anesthetized rats. Ventromedial hypothalamic lesions which produce hyperphagia and obesity have the opposite effects. These results are apparent within minutes after lesioning as well as after postoperative stabilization of body weight (26--41 days). These data suggest that changes in gastrointestinal motor function(s) may contribute to the changes in food intake which follow hypothalamic damage.  相似文献   

7.
The secretion of many hormones, including oxytocin, vasopressin and growth hormone, is not constant but shows a day-night rhythm. The suprachiasmatic nucleus (SCN) is thought to generate most mammalian biological rhythms and previous studies have reported suprachiasmatic efferents to the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). We used in vivo extracellular electrophysiological techniques to show that the SCN also sends direct and indirect neural projections to the arcuate nucleus (ARC). This projection consisted of both excitatory and inhibitory components and may contribute to the entrainment of the rhythm in growth hormone secretion to the day-night cycle. Some SCN neurones appear to project to both the SON and the ARC. The SCN in turn receives excitatory and inhibitory inputs from the ARC and the peri-nuclear zone of the SON (peri-SON), which may provide feedback information, as well as allowing nonphotic entrainment of the SCN, for example, in response to feeding. Our data thus suggest extensive two-way connections between the SCN and its target nuclei which may contribute to the generation of day-night neuroendocrine rhythms. They also suggest the existence of indirect retinal projections to the ARC and PVN. We further investigated the retinal projection to the SCN. We were unable to demonstrate a significant difference in retinal input to those suprachiasmatic cells which had efferent projections to particular hypothalamic targets (SON and/or ARC), and those which did not.  相似文献   

8.
The efferent connections of the lateral hypothalamic area (LHA) have been analyzed in a series of 30 rat brains with injections of 3H-amino acids into different parts of the area and the surrounding regions. Our findings indicate that all parts of the LHA contribute ascending and descending fibers to the medial forebrain bundle, and also project medially to certain of the adjoining hypothalamic nuclei. All levels of the LHA appear to send some fibers to a continuous group of structures that extends from the medial septal-diagonal band complex rostrally, through the lateral preoptic and lateral hypothalamic areas to the mammillary complex and the ventral tegmental area caudally. In addition, it is evident that cells at different levels within the LHA may have differential projections. Thus, the anterior and lateral parts of the LHA also appear to project substantially to the anterior hypothalamic area, the ventromedial and dorsomedial hypothalamic nuclei, the parataenial and paraventricular nuclei of the thalamus, and the medial part of the lateral habenular nucleus. Similarly, cells in the tuberal and posterior parts of the LHA project to the central gray, the longest projections from the posterior region reaching as far caudally as the central tegmental field, the parabrachial nucleus, the locus coeruleus, and the superior central and dorsal nuclei of the raphe. Viewed as a whole, the LHA is therefore well-suited to integrate inputs from the limbic system and brainstem and to relay them on the one hand to the medial zone of the hypothalamus and on the other to virtually every structure closely associated with the medial forebrain bundle and to the nuclei of origin of the major ascending monoaminergic systems.  相似文献   

9.
The efferent projections of the centromedian and parafascicular (CM-Pf) thalamic nuclear complex were analyzed by the autoradiographic method. Our findings show that the CM-Pf complex projects in a topographic manner to specific regions of the rostral cortex. These fibers distribute primarily to cortical layers I and III; however, the projection to layer I is more extensive. Following an injection into the rostral portion of the CM-Pf complex, label is found within the lateral rostral cortex, particularly within the presylvian, anterior ectosylvian, and anterior lateral sulci, and within the rostral medial cortex where label is present within the cruciate and anterior splenial sulci and anterior cingulate gyrus. An injection into the caudal dorsal portion of the CM-Pf complex results in label within the more ventral portions of the rostral lateral cortex where it is present within the anterior sylvian gyrus, presylvian regions, and gyrus proreus; and within the rostral medial cortex, where it is present within the rostral cingulate gyrus, and within the cruciate sulcus, and an extensive region ventral to the cruciate sulcus which includes the anterior limbic area. Injections into the caudal ventral portion of the CM-Pf complex result in virtually no cortical label, although a few labeled fibers are found in the subcortical white matter. The subcortical projection from the CM-Pf complex terminates within the caudate nucleus, putamen, globus pallidus, subthalamic nucleus, zona incerta, fields of Forel, hypothalamus, thalamic reticular nucleus, and rostral intralaminar nuclei. Prominent silver grain aggregates are also present within the ventral lateral, ventral anterior, ventral medial, and lateral posterior nuclei, and ventrobasal complex. The aggregates in the thalamus appear to be fibers of passage, but whether these are also terminals cannot be determined with the techniques used in the present study.  相似文献   

10.
Recordings were made of neural activity in the medial to lateral region of the dorsal nucleus of the vagus in the medulla oblongata (NDV), and from the gastric branch of the vagal nerve (gastric vagus) in rats. Gastric acid secretion following lateral hypothalamic (LHA) stimulation was observed, and NDV neurons were identified by stimulation of the peripheral end of the gastric vagus. NDV-neurons responded to LHA stimulation with latencies of about 5 msec, and about 6.5 msec to the peripheral stimulation of the gastric vagus. Out of 274 NDV neurons, which were located by their spontaneous discharge, 186 (67.9%) responded to LHA stimulation. Gastric acid secretion (with either short or long latency) occurred in 8.6% (16/186) of these cases. These 16 neurons were considered to be ‘gastric secretory’ neurons and are discussed as such. The results imply that some LHA neurons, which are either concerned with or directly control gastric acid secretion, communicated by at least one path (probably polysynaptic) to the medulla oblongata and then via the vagus to the oxyntic cells of gastric glands.  相似文献   

11.
The projections of the dorsomedial hypothalamic nucleus in the rat   总被引:4,自引:1,他引:3  
The dorsomedial hypothalamic nucleus (DMH) output pathways are revealed by using autoradiographic tracing of tritium labeled Leucine and by the recently introduced Phaseolus vulgaris leuco-agglutinin immunocytochemical method. Terminal labeling appears in the dorsal motor nucleus of the vagus, nucleus ambiguus and in the parvocellular reticular formation at the lower medullary level. Mesencephalic labeling is found in the periaqueductal gray at the level of the oculomotor nucleus. In the hypothalamus labeled terminal boutons are identified in the lateral and ventromedial hypothalamic nuclei but also in the parvocellular paraventricular nucleus. Furthermore, the circumventricular organs are found to receive a dense DMH input, particularly the organum vasculosum of the lamina terminalis and the subfornical organ. These findings are discussed in relation to the dorsomedial nucleus involvement in the control of feeding and pancreatic hormone release. It appears that the DMH participates in this control via descending pathways to the preganglionic pancreas innervating neurons but also via a neuroendocrine route. The latter connection is indicated by terminal labeling in the parvocellular paraventricular nucleus in the area that contains the corticotropin-releasing factor positive cells.  相似文献   

12.
Afferents of the lateral (LH) and ventromedial (VMH) hypothalamic nuclei were studied with the horseradish peroxidase method. The aim was to investigate relations between these two centers presumed to be involved in the regulation of food intake. Special attempts were made to produce HRP injections limited to intranuclear dimensions, which was achieved by iontophoretic delivery of the tracer. The results indicate that LH and VMH do not maintain direct interconnections. Both nuclei, however, appear to have numerous afferents from the dorsomedial hypothalamic nucleus (DMH) in common, which led us to extend our analysis to the DMH. DMH injections of HRP resulted in retrograde labeling of somata in both LH and VMH, suggesting a reciprocal relationship of DMH with these latter nuclei. The possible significance of such a LH-DMH-VMH relationship in the food intake control circuitry is discussed. The other labeling of afferents resulting from HRP injections localized to LH, DMH and VMH is described and discussed as regards their morphological significance. A number of these connections confirm studies using anterograde transport techniques, but others have not been described before, including an extensive projection to the VMH from the mesencephalic perpendicular nucleus.  相似文献   

13.
Autoradiography was employed to investigate the efferent projections from the lateral hypothalamus in the guinea pig. Lateral hypothalamic axons were traced along the medial forebrain bundle in both ascending and descending directions. Anteriorly, the label was traced along the medial forebrain bundle in both ascending and descending directions. Anteriorly, the label was traced to the lateral preoptic area, diagonal band of Broca, and septal nuclei. Posterior projections included the ventral tegmental area of Tsai, central gray matter and the reticular formation throughout the brain stem. Laterally, the lateral hypothalamic efferents were found in the stria terminalis, amygdala and globus pallidus. Dorsally, the lateral hypothalamic axons projected to the midline nuclei of the thalamus and bilaterally to the lateral habenular nuclei. Projections to the medial hypothalamus included a labeled fiber bundle to the internal layer of the median eminence and to the posterior lobe of the pituitary gland. Labeled fibers and diffuse label were also found in some areas contralateral to the injection site.  相似文献   

14.
Gao Y  Ng YK  Lin JY  Ling EA 《Brain research》2000,859(2):969-368
Present results showed that interleukin-1 (IL-1), IL-6 and transforming growth factor-beta (TGF-beta) were constitutively expressed in the supraoptic and paraventricular nuclei of the rat hypothalamus. Immunoreactive cells were also detected, but to a lesser extent, in other parts of hypothalamus as well as in the cerebral cortex. In rats immunized with IgG, there was moderate increase in immunoreactivities of the cytokines. A notable feature, however, was the induction of the cytokine expression in the lateral hypothalamic area and the amygdaloid nuclear complex, suggesting that the neurons in these two areas are involved in possible immune regulation.  相似文献   

15.
Experiments were conducted to investigate the role of noradrenergic systems in the lateral hypothalamus area (LHA) in the water intake caused by injection of angiotensin II (ANG II) into the subfornical organ (SFO) in rats. Intracerebral microdialysis techniques were utilized to quantify the extracellular content of noradrenaline (NA) in the LHA. Microinjection of ANG II into the SFO significantly increased NA release in the LHA when water was not available for drinking. The increase in the release of NA in the LHA was significantly attenuated by water intake. In urethane-anesthetized rats, injections of ANG II into the SFO significantly enhanced the release of NA in the LHA that accompanied an elevation in mean arterial pressure (MAP). Intravenous administration of the -agonist metaraminol, on the other hand, significantly decreased the NA release in the LHA that accompanied an increase in MAP, suggesting that the enhanced NA release in the LHA caused by ANG II into the SFO may be not mediated by increasing in arterial pressure. These results show the involvement of the noradrenergic systems in the LHA in the dipsogenic response induced by angiotensinergic activation of the SFO.  相似文献   

16.
Afferent connections to the medial hypothalamic region in the rat were studied using horseradish peroxidase (HRP). HRP was injected iontophoretically by a parapharyngeal approach. After HRP injections into the ventromedial hypothalamic nucleus, labeled cells were found mainly in the medial and basolateral amygdaloid nuclei, subiculum, peripeduncular nucleus and the parabrachial area. Labeled cells following HRP injections into the dorsomedial hypothalamic nucleus were found mainly in the lateral septal nucleus, nucleus accumbens, bed nucleus of the stria terminalis, pontine central gray and the parabrachial area. HRP-labeled cells following the medial preoptic area injections were found mainly in the infralimbic cortex, lateral and medial septal nuclei, nucleus accumbens, diagonal band, bed nucleus of the stria terminalis, medial amygdaloid nucleus, subiculum, peripedunclar nucleus and the parabrachial area. The intrahypothalamic connections were also discussed.  相似文献   

17.
We have previously reported that some neurons in the anterior hypothalamic area (AHA) are tonically activated by endogenous angiotensins in rats and that activities of these AHA angiotensin II-sensitive neurons are enhanced in spontaneously hypertensive rats (SHR). Acetylcholine in the posterior hypothalamic nucleus (PHN) has been implicated in hypertension in SHR. It is suggested that there exist neuronal projections from the PHN to the AHA in rats. In this study, we examined whether cholinergic stimulation in the PHN activates AHA angiotensin II-sensitive neurons. Male Wistar rats were anesthetized and artificially ventilated. Extracellular potentials were recorded from single neurons in the AHA. Microinjection of carbachol, physostigmine and glutamate into the PHN caused an increase in firing rate of AHA angiotensin II-sensitive neurons in anesthetized rats. The carbachol-induced increase of firing rate was inhibited by pressure application of the AT1 receptor antagonist losartan onto AHA angiotensin II-sensitive neurons. The glutamate-induced increase of firing rate was also inhibited by the pressure application of losartan. PHN microinjections of carbachol and glutamate did not affect blood pressure in these anesthetized rats. In conscious rats, PHN microinjection of carbachol produced an increase of blood pressure and the carbachol-induced pressor response was inhibited by bilateral microinjections of losartan into the AHA. These findings indicate that cholinergic stimulation in the PHN activates AHA angiotensin II-sensitive neurons. It seems likely that the activation of AHA angiotensin II-sensitive neurons induced by PHN cholinergic stimulation is partly mediated via release of angiotensins at AHA angiotensin II-sensitive neuron levels.  相似文献   

18.
Twenty-eight subfornical organ (SFO) neurons in ovariectomized (OVX) female rats that were treated with propylene glycol (PG) vehicle and 26 SFO neurons in OVX female rats that were treated with estrogen benzoate (EB) were antidromically activated by electrical stimulation of the hypothalamic paraventricular nucleus (PVN) under urethane anesthesia. No significant differences were observed between the PG-treated and EB-treated OVX animals in the latency, conduction velocity, or threshold of antidromic activation. The mean spontaneous discharge rate was significantly lower in the EB-treated than in the PG-treated OVX animals. In both groups, the activity of the majority (86% in the PG-treated animals and 88% in the EB-treated animals) of identified SFO neurons were activated by microiontophoretic application of angiotensin II (ANG II). Electrical stimulation of the lateral hypothalamic area (LHA) increased the excitability of these ANG II-sensitive SFO neurons (58% in the PG-treated animals and 52% in the EB-treated animals). The excitatory response to either ANG II or LHA stimulation was blocked by microiontophoretic application of the ANG II antagonist saralasin (Sar), suggesting that the excitatory response to LHA stimulation may be mediated by angiotensinergic LHA projections to the SFO. The magnitude of excitatory response to either ANG II or the LHA stimulation was much greater in the PG-treated than in the EB-treated animals. These results suggest that estrogen decreases the responsiveness of SFO neurons projecting to the PVN to angiotensinergic inputs from the LHA.  相似文献   

19.
The efferent connections of the subthalamic nucleus of Luys (STN) in the rat were investigated with the aid of the anterograde autoradiographic and the retrograde horseradish peroxidase (HRP) tracer techniques.A small microelectrophoretic injection of tritiated proline and leucine centered in the STN (case RST-4) was found to label fibers directed mainly at 3 ipsilateral structures: the substantia nigra (chiefly the ventral portions of this pars reticulata), the entopeduncular nucleus and the globus pallidus (including the ventral pallidum). In addition to this major labeling pattern, much sparser labeling was seen in striatal, thalamic, hypothalamic, pretectal, tectal and reticular territories. In another series of experiments, microelectrophoretic HRP injections confined to the substantia nigra or the globus pallidus consistently resulted in retrograde labeling of neurons in the ipsilateral STN. On the other hand, HRP injections of the vontromedial portion of the midbrain tegmentum (including the red nucleus), the superior colliculus, the pretectal area or a midbrain region at the lateral border of the central gray substance resulted in retrograde labeling of cells in the zona incerta, but no labeled cells appeared in these cases in the ventrally adjacent STN. These HRP results, together with autoradiographic data obtained in control cases, suggest that the minor projections to territories other than the substantia nigra and the pallidal complex originate in the zona incerta or the cerebral cortex rather than in STN.  相似文献   

20.
ACTH-like immunoreactive structures were localized in rat hypothalamic arcuate nucleus using the unlabeled antibody, peroxidase-antiperoxidase method. At the ultrastructural level, immunoreactive presynaptic nerve terminals were observed forming symmetrical synaptic contacts with unlabeled dendrites and with ACTH-like immunoreactive perikarya. The results obtained are consistent with the hypothesis that ACTH in the brain acts as a synaptic regulator or transmitter, contributing not only to long projection pathways but also to a local circuit in the arcuate nucleus where ACTH cell bodies are localized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号