首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cordelier P  Strayer DS 《Gene therapy》2003,10(26):2153-2156
Constitutive expression of alpha(1)-antitrypsin (alpha(1)AT), a serine protease inhibitor, by a recombinant simian virus-40-based vector blocks both HIV gp160 and p55 processing, and so is a powerful inhibitor of HIV replication. To apply these findings more effectively in devising HIV therapies, we tested HIV LTR conditional promoter, to drive the expression of alpha(1)AT. SV[LTR](AT) was designed so that synthesis of human alpha(1)AT would be trans-activated by HIV infection. Cell lines and primary human lymphocytes were transduced with SV[LTR](AT) without selection and detectable toxicity. Responsiveness of alpha(1)AT expression to HIV Tat or HIV challenge was confirmed by Northern blotting, RT-PCR, cytofluorimetry and immunostaining. SV[LTR](AT)-transduced cells were protected from HIV-1(NL4-3) at a challenge dose of 0.04 MOI (T-cell lines) or 0.2 MOI (peripheral blood lymphocytes). Conditional expression of alpha(1)AT consistently protected T cells from HIV challenge as effectively as did constitutive expression. Combining the efficiency of rSV40 vectors with HIV-responsive expression of a highly effective anti-HIV therapeutic may be an effective approach to gene therapy of HIV replication.  相似文献   

2.
3.
HIV-1 proprotein processing as a target for gene therapy   总被引:1,自引:0,他引:1  
The central role of endoconvertases and HIV-1 protease (HIV-1 PR) in the processing of HIV proproteins makes the design of specific inhibitors important in anti-HIV gene therapy. Accordingly, we tested native alpha(1) antitrypsin (alpha(1)AT) delivered by a recombinant simian virus-40-based vector, SV(AT), as an inhibitor of HIV-1 proprotein maturation. Cell lines and primary human lymphocytes were transduced with SV(AT) without selection and detectable toxicity. Expression of alpha(1)AT was confirmed by Northern blotting, immunoprecipitation and immunostaining. SV(AT)-transduced cells showed no evidence of HIV-1-related cytopathic effects when challenged with high doses of HIV-1(NL4-3). As measured by HIV-1 p24 assay, SV(AT)-transduced cells were protected from HIV-1(NL4-3) at challenge dose of 40 000 TCID(50) (MOI = 0.04). In addition, peripheral blood lymphocytes treated with SV(AT) were protected from HIV doses challenge up to 40 000 TCID(50) (MOI = 0.04). By Western blot analyses, the delivered alpha(1)AT inhibited cellular processing of gp160 to gp120 and decreased HIV-1 virion gp120. SV(AT) inhibited processing of p55(Gag) as well. Furthermore, high levels of uncleaved p55(Gag) protein were detected in HIV virus particles recovered from SV(AT)-transduced cells lines and primary lymphocytes. Thus, delivering alpha(1)AT using SV(AT) to human lymphocytes strongly inhibits replication of HIV-1, most likely by inhibiting the activities both of the cellular serine proteases involved in processing gp160 and of the aspartyl protease, HIV-1 PR, which cleaves p55(Gag). alpha(1)AT delivered by SV(AT) may represent a novel and effective strategy for gene therapy to interfere with HIV replication, by blocking a stage in the virus replicative cycle that has until now been inaccessible to gene therapeutic intervention.  相似文献   

4.
《Molecular therapy》2003,7(6):801-810
Gene therapy to treat primary and secondary CNS diseases, including neuro-AIDS, has not yet been effective. New approaches to delivering therapeutic genes to the central nervous system are therefore required. Recombinant SV40 vectors (rSV40) transduce both dividing and quiescent cells efficiently, and so we tested them for their ability to deliver anti-HIV-1 transgenes to terminally differentiated human NT2-derived neurons (NT2-N). These vectors transduced>95% of immature as well as mature human neurons efficiently, without detectable toxicity and without requiring selection. rSV40 gene delivery was stable to retinoic acid-induced neuronal differentiation. The rSV40 vectors used in these studies, SV(RevM10) and SV(AT), respectively carried the cDNAs for RevM10, a trans-dominant mutant of HIV-1 Rev, and human α1-antitrypsin. As measured by HIV-1 p24 antigen assays and by immunostaining for gp120, NT2-N treated with these vectors strongly resisted challenge with different strains of HIV-1. Protection from HIV replication and HIV-induced cytotoxicity was conferred by SV(AT) and SV(RevM10) and remained constant throughout retinoic acid-induced neuronal differentiation and for the duration of these studies (≥11 weeks). rSV40 transduction of human neurons might therefore be a practicable approach to gene delivery for the treatment of CNS diseases, including neuro-AIDS.  相似文献   

5.
6.
Human immunodeficiency virus type 1 (HIV-1) encodes several proteins that are packaged into virus particles. Integrase (IN) is an essential retroviral enzyme, which has been a target for developing agents to inhibit virus replication. In previous studies, we showed that intracellular expression of single-chain variable antibody fragments (SFvs) that bind IN, delivered via retroviral expression vectors, provided resistance to productive HIV-1 infection in T-lymphocytic cells. In the current studies, we evaluated simian-virus 40 (SV40) as a delivery vehicle for anti-IN therapy of HIV-1 infection. Prior work suggested that delivery using SV40 might provide a high enough level of transduction that selection of transduced cells might be unnecessary. In these studies, an SV40 expression vector was developed to deliver SFv-IN (SV(Aw)). Expression of the SFv-IN was confirmed by Western blotting and immunofluorescence staining, which showed that > 90% of SupT1 T-lymphocytic cells treated with SV(Aw) expressed the SFv-IN protein without selection. When challenged, HIV-1 replication, as measured by HIV-1 p24 antigen expression and syncytium formation, was potently inhibited in cells expressing SV40-delivered SFv-IN. Levels of inhibition of HIV-1 infection achieved using this approach were comparable to those achieved using murine leukemia virus (MLV) as a transduction vector, the major difference being that transduction using SV40 did not require selection in culture whereas transduction with MLV did require selection. Therefore, the SV40 vector as gene delivery system represents a novel therapeutic strategy for gene therapy to target HIV-1 proteins and interfere with HIV-1 replication.  相似文献   

7.
Human immunodeficiency virus-1 (HIV-1) infection in the central nervous system (CNS) may lead to neuronal loss and progressively deteriorating CNS function: HIV-1 gene products, especially gp120, induce free radical-mediated apoptosis. Reactive oxygen species (ROS), are among the potential mediators of these effects. Neurons readily form ROS after gp120 exposure, and so might be protected from ROS-mediated injury by antioxidant enzymes such as Cu/Zn-superoxide dismutase (SOD1) and/or glutathione peroxidase (GPx1). Both enzymes detoxify oxygen free radicals. As they are highly efficient gene delivery vehicles for neurons, recombinant SV40-derived vectors were used for these studies. Cultured mature neurons derived from NT2 cells and primary fetal neurons were transduced with rSV40 vectors carrying human SOD1 and/or GPx1 cDNAs, then exposed to gp120. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. Transduction efficiency of both neuron populations was >95%, as assayed by immunostaining. Transgene expression was also ascertained by Western blotting and direct assays of enzyme activity. Gp120 induced apoptosis in a high percentage of unprotected NT2-N. Transduction with SV(SOD1) and SV(GPx1) before gp120 challenge reduced neuronal apoptosis by >90%. Even greater protection was seen in cells treated with both vectors in sequence. Given singly or in combination, they protect neuronal cells from HIV-1-gp120 induced apoptosis. We tested whether rSV40 s can deliver antioxidant enzymes to the CNS in vivo: intracerebral injection of SV(SOD1) or SV(GPx1) into the caudate putamen of rat brain yielded excellent transgene expression in neurons. In vivo transduction using SV(SOD1) also protected neurons from subsequent gp120-induced apoptosis after injection of both into the caudate putamen of rat brain. Thus, SOD1 and GPx1 can be delivered by SV40 vectors in vitro or in vivo. This approach may merit consideration for therapies in HIV-1-induced encephalopathy.  相似文献   

8.
Gene transfer to central nervous system (CNS) has been approached using various vectors. Recombinant SV40-derived vectors (rSV40s) transduce human neurons and microglia effectively in vitro and in rodent brains in vivo, so we tested rSV40s gene transfer to rhesus monkey CNS in vivo, to characterize the distribution, duration and safety of such gene delivery. We used rSV40s carrying HIV-1 RevM10 with a carboxyl-terminal AU1 epitope tag as a marker, and others with the antioxidant enzymes, Cu/Zn superoxide dismutase and glutathione peroxidase. Vectors were injected stereotaxically into the caudate nucleus. Transgene expression was studied at 1 and 6 months by immunostaining serial brain sections. After intraparenchymal administration, numerous transgene-expressing cells were seen, with a longitudinal extent of 20?mm. In neurons and, more rarely, microglial cells, transgene expression remained strong throughout the 6-month study period. Astrocytes and oligodendroglia were not transduced. No evidence of inflammation or tissue damage was observed. SV40-derived vectors may thus be useful for long-term gene expression in the monkey brain and, potentially, in the human brain.  相似文献   

9.
We used recombinant SV40 (rSV40)-derived vectors to deliver transgenes to human and simian hematopoietic progenitor cells in culture, and in vivo after transduction ex vivo. rSV40 are highly efficient vectors that are made in very high titers. They infect almost all cells, whether resting or dividing. Two rSV40s were used: SV(HBS), carrying hepatitis B surface antigen as a marker; and SV(Aw) carrying IN#33, a single chain Fv antibody against HIV-1 integrase. CD34+ cells derived from human fetal bone marrow (HFBM) and rhesus macaque bone marrow were transduced once with SV(HBS) without selection. On average 60% of colonies derived from transduced CD34+ cells carried and expressed HBsAg, as assessed by PCR and immunochemistry. Transgene carriage persisted following differentiation of transduced rhesus CD34+ cells into T lymphocytes. In an effort to increase the percentage of gene-marked cells, three sequential treatments of CD34+ cells were done using SV(Aw), without selection. Two weeks later, >95% of colonies expressed IN#33. Unselected SV(Aw)-transduced CD34+ cells from HFBM were transplanted into sublethally irradiated SCID mice. Bone marrow harvested 3 months later showed that >50% of bone marrow cells expressed IN#33. This is comparable with the percentage of human cells in these animals' bone marrow as judged by immunostaining for human CD45. The stability and longevity of transduction in this setting suggests that rSV40 vectors integrate into the cellular genome. This possibility was supported by finding that PCR of genomic DNA using primer pairs with one cellular and one viral primer yielded PCR products only in transduced, but not control, cells. These PCR products hybridized with an SV40 DNA fragment. Thus, rSV40 vectors transduce normal human and primate bone marrow progenitor cells effectively without selection, and maintain transgene expression in vivo following reimplantation. Such high efficiency transduction may be useful in treating diseases of CD34+ cells and their derivatives.  相似文献   

10.
The (-)-enantiomer of 2'-deoxy-3'-thiacytidine (3TC) was found to be a potent and selective inhibitor of human immunodeficiency virus types 1 (HIV-1) and 2 (HIV-2) in vitro. We determined its antiviral activity against a number of laboratory strains of HIV-1 and HIV-2 in a range of CD4-bearing lymphocyte cell lines (mean 50% inhibitory concentration [IC50] range, 4 nM to 0.67 microM). 3TC was also active against a range of HIV-1 strains in peripheral blood lymphocytes (mean IC50 range, 2.5 to 90 nM). The IC50 for cytotoxicity in seven lymphocyte cell cultures, including human peripheral blood lymphocytes, ranged from 0.5 to 6 mM. 3TC had no detectable antiviral activity against a range of other viruses or in cells chronically infected with HIV-1 or HIV-2. The effects of time of addition of the compound and varying the multiplicity of infection on the antiviral activity of 3TC were determined. The results showed that 3TC is a potent and selective inhibitor of HIV-1 and HIV-2 replication in vitro.  相似文献   

11.
The limited success of gene therapy as an approach to treating human disease largely reflects the limitations of the gene delivery vectors that have been used. Poor titers, low transduction efficiency, waning transgene expression and immunogenicity have remained obstacles in the field. As a consequence, much research in normal, immunocompetent animals has not demonstrated therapeutic levels of gene delivery, and results from most human clinical trials have been predictably discouraging. Recombinant gene transfer vectors derived from SV40 virus (rSV40) are potentially of great interest for those working in gene therapy, since these vectors are not subject to many of the problems that have limited gene delivery using other vector systems. rSV40 is made at a very high titer and infects - and so transduces - almost all nucleated cell types very efficiently, regardless of lineage or whether they are resting or dividing; they integrate and are not susceptible to transgene silencing; and they elicit no detectable immune response on the part of normal animals and so can be used to deliver multiple transgenes over time and in sequence. The recent development of 'gutless' rSV40 vectors has expanded the range of potential therapeutic transgenes that can be delivered with this system and added flexibility to the expression configurations that can be accommodated. All of these functional characteristics of SV40-derived vectors have their bases in the biology of SV40 and similar viruses, and have important implications for the potential utility of rSV40 vectors in gene therapeutics. Like all viral gene delivery systems, these vectors have their idiosyncrasies and limitations. They also allow gene delivery that bypasses many of the difficulties that have plagued the field from its inception.  相似文献   

12.
13.
14.
Chang LJ  Liu X  He J 《Gene therapy》2005,12(14):1133-1144
The high mutation rate of the human immunodeficiency virus (HIV) makes it difficult for any therapy employing a single anti-HIV targeting mechanism to sustain prolonged effect. In an attempt to explore novel therapy for AIDS, we developed and tested lentiviral small interfering RNA (siRNA) vectors targeting multiple highly conserved regions in the HIV type 1 (HIV-1) genome. The siRNA expression cassette was cloned into an extensively deleted HIV-1-derived lentiviral self-inactivating insulator (SIN) insulator [corrected] vector. Although some of the siRNAs targeting sites were also present in the helper construct of the vector system, the production of these lentiviral siRNA vectors were not significantly affected. When tested against different HIV-1 strains including pNL4-3 (subtype B), p89.6 (subtype B) and p90CF402.1.8 (subtype A/E recombinant), the siRNAs targeting conserved gag, pol, int and vpu, but not U3, nef or U5 regions, efficiently inhibited replication of all three viral strains. These lentiviral siRNA vectors also protected host cells from syncytium-forming macrophage- and T-cell-tropic HIV-1-induced cytotoxicity. Transduction of a long-term chronically infected human lymphoma cell line with lentiviral siRNAs resulted in stable inhibition of HIV-1 replication. Northern analysis showed that both genomic and subgenomic viral RNA species were downregulated. In addition, the viral RNA was inhibited in both the nuclear and cytoplasmic compartments of [corrected] chronically infected cells after prolonged passage, suggesting that [corrected] lentiviral siRNAs have a nuclear effect [corrected] Using these lentiviral siRNA [corrected] vectors, we further demonstrated reduced replication kinetics of HIV-1 in primary human peripheral blood lymphocytes. These results suggest that lentiviral siRNAs targeting multiple conserved HIV-1 sequences holds significant promise for the treatment of HIV-1 infections.  相似文献   

15.
Cytokines and HIV-1: interactions and clinical implications   总被引:11,自引:0,他引:11  
Cytokines play an important role in controlling the homoeostasis of the immune system. Infection with HIV results in dysregulation of the cytokine profile in vivo and in vitro. During the course of HIV-1 infection secretion of T-helper type 1 (Th1) cytokines, such as interleukin (IL)-2, and antiviral interferon (IFN)-gamma, is generally decreased, whereas production of T helper type 2 (Th2) cytokines, IL-4, IL-10, proinflammatory cytokines (IL-1, IL-6, IL-8) and tumour necrosis factor (TNF)-alpha, is increased. Such abnormal cytokine production contributes to the pathogenesis of the disease by impairing cell-mediated immunity. A number of cytokines have been shown to modulate in vitro HIV-1 infection and replication in both CD4 T lymphocytes and cells of macrophage lineage. HIV-inductive cytokines include: TNF-alpha, TNF-beta, IL-1 and IL-6, which stimulate HIV-1 replication in T cells and monocyte-derived macrophages (MDM), IL-2, IL-7 and IL-15, which upregulate HIV-1 in T cells, and macrophage-colony stimulating factor, which stimulates HIV-1 in MDM. HIV-suppressive cytokines include: IFN-alpha, IFN-beta and IL-16, which inhibit HIV-1 replication in T cells and MDM, and IL-10 and IL-13, which inhibit HIV-1 in MDM. Bifunctional cytokines such as IFN-gamma, IL-4 and granulocyte-macrophage colony-stimulating factor have been shown to have both inhibitory and stimulatory effects on HIV-1. The beta-chemokines, macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES are important inhibitors of macrophage-tropic strains of HIV-1, whereas the alpha-chemokine stromal-derived factor-1 suppresses infection of T-tropic strains of HIV-1. This review outlines the interactions between cytokines and HIV-1, and presents clinical applications of cytokine therapy combined with highly active antiretroviral therapy or vaccines.  相似文献   

16.
For gene delivery to be of use, a situation suitable for delivery of genetic material, a specific genetic construct to be delivered and the appropriate means to deliver it are required. Simian virus-40 (SV40) gene therapy vectors for gene transfer may be an important advance in the latter category. While other vectors are variably limited for example by immunogenicity, difficulties in production, restricted specificity, low titers, poor transduction efficiency, etc., recombinant viral vectors based on SV40 (rSV40) should not be similarly constrained. They are easily manipulated and produced at very high titer, stable, apparently lacking in immunogenicity, and capable of providing sustained high levels of transgene expression in almost any cell type, whether resting or dividing. The major limitation of SV40-derived vectors is packaging capacity, which restricts insert sizes. The rationale for developing SV40 as a gene therapy vector is reviewed, based on what is known of wild-type SV40. Studies with rSV40 gene transfer have focused mostly on hematopoietic progenitor cells (CD34+) and their derivatives, and on gene delivery to the liver. In both settings, in vitro and in vivo, SV40 has been very effective. It is therefore a highly promising gene delivery vehicle that may complement other vectors that are currently in use or that are being developed.  相似文献   

17.
18.
The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals.  相似文献   

19.
20.
We have previously identified two antiviral cytokines (interferon [IFN]-gamma and IFN-alpha/beta) that downregulate hepatitis B virus (HBV) replication in the liver of transgenic mice. The cytokine-inducible downstream events that inhibit HBV replication have not been identified. One possible factor is nitric oxide (NO), a pleiotropic free radical with antiviral activity that is produced in the liver by the inducible NO synthase (iNOS). To examine the role of NO in our model, we crossed transgenic mice that replicate HBV with mice that lack a functional iNOS. Importantly, iNOS-deficient mice were almost completely resistant to the noncytopathic inhibitory effect of HBV-specific cytotoxic T lymphocytes on viral replication, an effect that we have shown previously to depend on the intrahepatic induction of IFN-gamma. Conversely, iNOS-deficient mice were not resistant to the antiviral effect of IFN-alpha/beta induced by either polyinosinic-polycytidylic acid complex or by lymphocytic choriomeningitis virus (LCMV) infection. These results indicate that NO mediates the antiviral activity of IFN-gamma, whereas the antiviral activity of IFN-alpha/beta is NO independent. We also compared the relative sensitivity of LCMV to control by NO in these animals. Interestingly, LCMV replicated to higher levels in the liver of iNOS-deficient mice than control mice, indicating that NO controls LCMV replication in the liver, as well as HBV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号