首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AKT1 (V-akt murine thyoma viral oncogene homolog 1) is involved in intracellular signalling pathways postulated as of aetiological importance in schizophrenia. Markers in the AKT1 gene have also recently been associated with schizophrenia in two samples of European origin and in Japanese and Iranian samples. Aiming to replicate these findings, we examined ten SNPs spanning AKT1 in a UK case-control sample (schizophrenia cases n=673, controls n=716). These included all SNPs previously reported to be associated in European, Japanese and Iranian samples, alone or in haplotypes, as well as additional markers defined by the Haploview Tagger program (pair-wise tagging, minimum r(2)=0.8, minor allele frequency=0.02). We found no association with single markers (min p=0.17). We found weak evidence for association (p=0.04) with a four marker haplotype reported as significant in the original positive European sample of Emamian et al. [Emamian, E.S., Hall, D., Birnbaum, M.J., Karayiorgou, M., Gogos, J.A., 2004. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat. Genet. 36, 131-137] and also an overlapping three marker haplotype (p=0.016) that had previously been reported as significant in a Japanese sample. Nominal p-values for these haplotypes did not survive correction for multiple testing. Our study provides at best weak support for the hypothesis that AKT1 is a susceptibility gene for schizophrenia. Examination of our own data and those of other groups leads us to conclude that overall, the evidence for association of AKT1 as a susceptibility gene for schizophrenia is weakly positive, but not yet convincing.  相似文献   

2.
Several putative schizophrenia susceptibility genes have recently been identified. Significant associations between schizophrenia and neuregulin 1 (NRG1) and dysbindin (DTNBP1) were first reported in 2002 and studies in several populations have since independently reported positive associations to these gene regions. Further, both tentative functional and genetic data have implicated the role of AKT1 in the genetic background of this disorder. However, findings have not been consistent in all populations. We investigated the allelic diversity of these three genes NRG1, DTNBP1 and AKT1 in a representative nation-wide study sample of 441 Finnish schizophrenia families consisting of 865 affected individuals, in order to assess their role in one of the largest population-based study samples. DTNBP1 and AKT1 failed to show evidence of association, whereas two SNPs in the 3' region of the NRG1 gene yielded suggestive evidence of association (p=0.012 and p=0.048) in family-based association analyses. Thus, our study does not indicate that AKT1 or DTNBP1 play a role in the etiology of schizophrenia in the Finnish population. Furthermore, results do not support a major role for NRG1, but we cannot completely exclude a minor role of this gene in the Finnish population.  相似文献   

3.
BACKGROUND: Abnormality of the V-akt murine thymoma viral oncogene homologue 1 (AKT1) may be a predisposing factor in schizophrenia. Recent evidence supporting this hypothesis showed decreased AKT1 protein levels in patients with schizophrenia and significant association of AKT1 haplotypes according to the transmission disequilibrium test. METHODS: We provide the first replication of this evidence using a relatively large case-control sample (507 Japanese schizophrenia and 437 control subjects). We genotyped five single nucleotide polymorphisms (SNPs) from the original study and one additional SNP. RESULTS: We found a positive association with an SNP (SNP5) different from the original study's findings (SNP3) and also significance in the haplotypes constructed from the combination of SNP5. Linkage disequilibrium around SNP5 was complex and may produce this positive association. CONCLUSIONS: Our study provides support for the theory that AKT1 is a susceptibility gene for Japanese schizophrenia. Fine linkage disequilibrium mapping is required for a conclusive result.  相似文献   

4.
OBJECTIVE: The authors carried out a genetic association study of 14 schizophrenia candidate genes (RGS4, DISC1, DTNBP1, STX7, TAAR6, PPP3CC, NRG1, DRD2, HTR2A, DAOA, AKT1, CHRNA7, COMT, and ARVCF). This study tested the hypothesis of association of schizophrenia with common single nucleotide polymorphisms (SNPs) in these genes using the largest sample to date that has been collected with uniform clinical methods and the most comprehensive set of SNPs in each gene. METHOD: The sample included 1,870 cases (schizophrenia and schizoaffective disorder) and 2,002 screened comparison subjects (i.e. controls), all of European ancestry, with ancestral outliers excluded based on analysis of ancestry-informative markers. The authors genotyped 789 SNPs, including tags for most common SNPs in each gene, SNPs previously reported as associated, and SNPs located in functional domains of genes such as promoters, coding exons (including nonsynonymous SNPs), 3' untranslated regions, and conserved noncoding sequences. After extensive data cleaning, 648 SNPs were analyzed for association of single SNPs and of haplotypes. RESULTS: Neither experiment-wide nor gene-wide statistical significance was observed in the primary single-SNP analyses or in secondary analyses of haplotypes or of imputed genotypes for additional common HapMap SNPs. Results in SNPs previously reported as associated with schizophrenia were consistent with chance expectation, and four functional polymorphisms in COMT, DRD2, and HTR2A did not produce nominally significant evidence to support previous evidence for association. CONCLUSIONS: It is unlikely that common SNPs in these genes account for a substantial proportion of the genetic risk for schizophrenia, although small effects cannot be ruled out.  相似文献   

5.
The dystrobrevin-binding protein 1 (DTNBP1) gene on chromosome 6p has emerged as a potential susceptibility gene for schizophrenia. Although a number of attempts to replicate the original association finding have been successful, they have not identified any obvious pathogenic variants or a single at risk haplotype common to all populations studied. In the present study we attempted further replication in an independent sample of 638 nuclear families from the Han Chinese population of Sichuan Province, SW China. We also examined 580 Scottish schizophrenic cases and 620 controls. We genotyped 10 single-nucleotide polymorphisms (SNPs) in DTNBP1 that were used in the original report of association, plus rs2619538 (SNP 'A') in the putative promoter region, which has also been associated with schizophrenia. In the Chinese trios we found that two SNPs (P1635 and P1765) were significantly overtransmitted, but with alleles opposite to those reported in the original studies. SNPs P1757 and P1765 formed a common haplotype, which also showed significant overtransmission. In the Scottish cases and controls, no individual markers were significantly associated with schizophrenia. A single haplotype, which included rs2619538 and P1583, and one rare haplotype, composed of P1320 and P1757, were significantly associated with schizophrenia, but no previously reported haplotypes were associated. Based on the data from the Chinese population, our results provide statistical support for DTNBP1 as a susceptibility gene for schizophrenia, albeit with haplotypes different from those of the original study. However, our lack of replication in the Scottish samples also indicates that caution is warranted when evaluating the robustness of the evidence for DTNBP1 as genetic risk factor for schizophrenia.  相似文献   

6.
This study attempted to replicate evidence for association of the Epsin 4 gene (which encodes enthoprotin, a protein involved in vesicular transport) to schizophrenia in a new sample of families segregating schizophrenia drawn from the Latin American population. 1,423 subjects (767 with a history of psychosis) from 337 Latino families were genotyped using three single nucleotide polymorphisms (SNPs) spanning the Epsin 4 gene. A family based association test was utilized to test for association of these SNPs to the phenotypes of psychosis and schizophrenia. Haplotypes defined by these three SNPs showed significant association to the phenotype of psychosis in this sample (global p value=0.014, bi-allelic p value=0.047). Variation in the Epsin 4 gene is significantly associated with psychotic disorder in this Latino population. This provides additional support for the involvement of enthoprotin in the pathogenesis of schizophrenia and other psychotic disorders.  相似文献   

7.
OBJECTIVE The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs). METHOD The family sample included 2,461 individuals from 631 pedigrees (581 in the primary European-ancestry analyses). Association was tested for single SNPs and genetic pathways. Polygenic scores based on family study results were used to predict case-control status in the Schizophrenia Psychiatric GWAS Consortium (PGC) data set, and consistency of direction of effect with the family study was determined for top SNPs in the PGC GWAS analysis. Within-family segregation was examined for schizophrenia-associated rare CNVs. RESULTS No genome-wide significant associations were observed for single SNPs or for pathways. PGC case and control subjects had significantly different genome-wide polygenic scores (computed by weighting their genotypes by log-odds ratios from the family study) (best p=10-17, explaining 0.4% of the variance). Family study and PGC analyses had consistent directions for 37 of the 58 independent best PGC SNPs (p=0.024). The overall frequency of CNVs in regions with reported associations with schizophrenia (chromosomes 1q21.1, 15q13.3, 16p11.2, and 22q11.2 and the neurexin-1 gene [NRXN1]) was similar to previous case-control studies. NRXN1 deletions and 16p11.2 duplications (both of which were transmitted from parents) and 22q11.2 deletions (de novo in four cases) did not segregate with schizophrenia in families. CONCLUSIONS Many common SNPs are likely to contribute to schizophrenia risk, with substantial overlap in genetic risk factors between multiply affected families and cases in large case-control studies. Our findings are consistent with a role for specific CNVs in disease pathogenesis, but the partial segregation of some CNVs with schizophrenia suggests that researchers should exercise caution in using them for predictive genetic testing until their effects in diverse populations have been fully studied.  相似文献   

8.
The glial cell line-derived neurotrophic factor (GDNF) gene is located within a region of chromosome 5 (5p14.1-q13.3) that has been highlighted as a potential schizophrenia susceptibility locus by a number of genome scans. GDNF is neurotrophic and is also thought to be involved in differentiation of dopaminergic neurones. The GDNF gene is, therefore, a positional and functional candidate gene for schizophrenia. It is of additional interest because altered GDNF mRNA and protein expression has been reported in response to antipsychotics and the psychotomimetic phencyclidine, and two previous studies, focussed on a single variant, have reported weak support for genetic association between GDNF and schizophrenia in small samples. To test the hypothesis that GDNF is a susceptibility gene for schizophrenia, we performed a detailed association study. We chose 9 SNPs that spanned a genomic region of 40 kb and fully encompassed GDNF. SNPs were genotyped in a sample of 673 schizophrenic patients and 716 matched controls, all of Caucasian origin and all collected from the UK or Ireland. Of the 9 SNPs genotyped 2 showed nominally significant genotypic association at the P< or =0.05 level (rs2973050; OR=1.11; P-value=0.007 and rs2910702; OR=1.14; P-value=0.039). Permutation testing to allow for multiple comparisons of non-independent markers gave a corrected genotypic P-value of 0.052 for rs2973050. We also genotyped an (AGG)(n) repeat located in the 3' UTR of the GDNF but this showed no evidence for association. We conclude that our sample does not provide independent statistically significant evidence for association between GDNF and schizophrenia, nor does it replicate previous specific reports of association.  相似文献   

9.
BACKGROUND: A family based association study in a British sample found the NOTCH4 gene to be associated with schizophrenia; however, all six replication studies failed to confirm the finding. METHODS: We performed a family based association study of NOTCH4 and schizophrenia in 123 trios (16 Japanese and 107 Chinese). In addition to the original study's polymorphisms, we examined four new single nucleotide polymorphisms (SNPs)--SNPs_A, B, C and D--around SNP1 of the original study. We genotyped all samples for SNPs_A-D and for SNP1 and (CTG)n of the original study. RESULTS: We found no significant associations between NOTCH4 and schizophrenia or its subtypes for all polymorphisms, regardless of gender. The finding remained negative when the Chinese sample was analyzed separately. Exploratory analyses suggested that SNP_A may be associated with early-onset schizophrenia and that SNP1 may be associated with schizophrenia characterized by numerous negative symptoms. CONCLUSIONS: NOTCH4 is not a significant susceptibility gene for schizophrenia when clinical heterogeneity is ignored; however, NOTCH4 may be associated with early-onset schizophrenia or schizophrenia with many negative symptoms, but these findings should be interpreted cautiously.  相似文献   

10.
Alterations in centrosomal function have been suggested in the pathology of schizophrenia. The molecule pericentriolar material 1 (PCM1) is involved in maintaining centrosome integrity and in the regulation of the microtubule cytoskeleton. PCM1 forms a complex at the centrosome with the disrupted-in-schizophrenia 1 (DISC1) protein, which is a major susceptibility factor for schizophrenia. The association between genetic variants in the PCM1 gene and schizophrenia has been reported by several case-control studies, linkage studies and a meta-analysis. The aims of this study are to replicate the association between four single-nucleotide polymorphisms (SNPs) in the PCM1 gene and schizophrenia in a Japanese population (1496 cases and 1845 controls) and to perform a meta-analysis of the combined sample groups (3289 cases and 3567 controls). We failed to find a significant association between SNPs or haplotypes of the PCM1 gene and schizophrenia in the Japanese population (P>0.28). The meta-analysis did not reveal an association between the four examined SNPs and schizophrenia. Our data did not support genetic variants in the PCM1 gene as a susceptibility locus for schizophrenia.  相似文献   

11.
Trace amines and their receptors may be implicated in the pathogenesis of psychiatric disorders. Previous studies have reported association of the trace amine associated receptor 6 (TAAR6) gene with susceptibility to schizophrenia and bipolar disorder but results have not been consistent. The purpose of this study was to examine these associations in Korean patients and also to test for association of TAAR6 with susceptibility to major depressive disorder (MDD). A case control sample consisting of 281 patients with schizophrenia, 190 patients with bipolar disorder, 187 patients with MDD and 288 psychiatrically healthy control subjects, was examined. Patients with schizoaffective disorder were not included in any of the psychiatric samples. Five single nucleotide polymorphisms (SNPs: rs4305745; rs8192625; rs7452939; rs6903874 and rs6937506) were genotyped in the TAAR6 gene and in the 3' regulatory region, using pyrosequencing. SNP rs6903874 was significantly associated with schizophrenia (p = 0.012) and bipolar disorder (p = 0.004). A three SNP haplotype consisting of alleles GCT from SNPs rs7452939, rs6903874 and rs6937506, respectively, was significantly over-represented in patients with schizophrenia (p = 0.0003) and bipolar disorder (p = 0.00002). A second three SNP haplotype (GTT) derived from the same SNPs was significantly under-represented in patients with bipolar disorder (p = 0.001). The GTT haplotype associations withstand the most rigorous corrections for multiple testing. These findings strongly support association of the TAAR6 gene with susceptibility to both schizophrenia and bipolar disorder in Korean patients. Further studies are needed to confirm these findings in this and other populations and to identify functional variants in TAAR6 that may be implicated in pathogenesis.  相似文献   

12.
Objectives: Through recent genome‐wide association studies (GWASs), several groups have reported significant association between variants in the calcium channel, voltage‐dependent, L‐type, alpha 1C subunit (CACNA1C) and bipolar disorder (BP) in European and European‐American cohorts. We performed a family‐based association study to determine whether CACNA1C is associated with BP in the Latino population. Methods: This study included 913 individuals from 215 Latino pedigrees recruited from the USA, Mexico, Guatemala, and Costa Rica. The Illumina GoldenGate Genotyping Assay was used to genotype 58 single‐nucleotide polymorphisms (SNPs) that spanned a 602.9‐kb region encompassing the CACNA1C gene including two SNPs (rs7297582 and rs1006737) previously shown to associate with BP. Individual SNP and haplotype association analyses were performed using Family‐Based Association Test (version 2.0.3) and Haploview (version 4.2) software. Results: An eight‐locus haplotype block that included these two markers showed significant association with BP (global marker permuted p = 0.0018) in the Latino population. For individual SNPs, this sample had insufficient power (10%) to detect associations with SNPs with minor effect (odds ratio = 1.15). Conclusions: Although we were not able to replicate findings of association between individual CACNA1C SNPs rs7297582 and rs1006737 and BP, we were able to replicate the GWAS signal reported for CACNA1C through a haplotype analysis that encompassed these previously reported significant SNPs. These results provide additional evidence that CACNA1C is associated with BP and provides the first evidence that variations in this gene might play a role in the pathogenesis of this disorder in the Latino population.  相似文献   

13.
14.
Little is known for certain about the genetics of schizophrenia. The advent of genomewide association has been widely anticipated as a promising means to identify reproducible DNA sequence variation associated with this important and debilitating disorder. A total of 738 cases with DSM-IV schizophrenia (all participants in the CATIE study) and 733 group-matched controls were genotyped for 492,900 single-nucleotide polymorphisms (SNPs) using the Affymetrix 500K two-chip genotyping platform plus a custom 164K fill-in chip. Following multiple quality control steps for both subjects and SNPs, logistic regression analyses were used to assess the evidence for association of all SNPs with schizophrenia. We identified a number of promising SNPs for follow-up studies, although no SNP or multimarker combination of SNPs achieved genomewide statistical significance. Although a few signals coincided with genomic regions previously implicated in schizophrenia, chance could not be excluded. These data do not provide evidence for the involvement of any genomic region with schizophrenia detectable with moderate sample size. However, a planned genomewide association study for response phenotypes and inclusion of individual phenotype and genotype data from this study in meta-analyses hold promise for eventual identification of susceptibility and protective variants.  相似文献   

15.
Several linkage studies have shown significant linkage of schizophrenia to chromosome 6p region, which includes the positional candidate genes, Dystrobrevin-binding protein 1 (DTNBP1). The aim was to examine the association evidence of the candidate gene in 693 Taiwanese families with at least two affected siblings of schizophrenia. We genotyped nine SNPs of this gene with average intermarker distance of 17 kb. Intermarker linkage disequilibrium was calculated with GOLD. Single locus and haplotype association analyses were performed with TRANSMIT program. We found no significant association between schizophrenia and DTNBP1 either through single locus or haplotype analyses. We failed to replicate the association evidence between DTNBP1 and schizophrenia and this gene may not play a major role in the etiology of schizophrenia in this Taiwanese family sample.  相似文献   

16.

Objective

We performed a genetic association study with schizophrenic patients to investigate whether the V-akt murine thymoma viral oncogene homolog 1 (AKT1) gene plays a role in obstetric complications.

Methods

One-hundred-eighty patients with schizophrenia (male, 113; female, 67) were included. All patients fulfilled DSM-IV criteria for schizophrenia. Obstetric complications were measured by the Lewis scale. Prenatal and perinatal information was retrospectively collected from the patients'' mothers. We selected six single nucleotide polymorphisms (SNPs) for the AKT1 gene: SNP1 (rs3803300), SNP2 (rs1130214), SNP3 (rs3730358), SNP4 (rs 1130233), SNP5 (rs2494732), and SNPA (rs2498804). The genotype data were analyzed for an association with the Lewis total score in terms of allele, genotype, and haplotype distribution.

Results

The mean total Lewis scores were 1.30±1.61 for males and 1.54±1.87 for females. Higher total score tended to be correlated with an earlier age of onset of schizophrenia in females. In the total sample, no SNP was associated with obstetric complications. However, the additional analyses for male and female subgroups found a significant association between SNPA and SNP4 and Lewis score in females (p=0.02 for SNPA, p=0.04 for SNP4). The SNP5-SNPA haplotype showed a positive association with obstetric complications (p=0.03) in the female patient group.

Conclusion

We found an association between SNPs in the AKT1 gene and total Lewis score measuring obstetric complications in female patients with schizophrenia. Because these findings did not survive a correction for multiple testing, the significance should be interpreted carefully and replication studies are required.  相似文献   

17.
Summary. Two research groups have recently reported a significant association between schizophrenia and genetic variants of Frizzled-3 (FZD3) gene. We examined a possible association in a Japanese sample of schizophrenia, bipolar disorder, unipolar depression and controls with four single nucleotide polymorphisms (SNPs), tested in previous reports. We failed to find significant association in the four SNPs or haplotype analysis. The FZD3 gene might not play a role in conferring susceptibility to major psychosis in our sample.  相似文献   

18.
We aim to replicate AKT1 gene variants studies using Malaysian samples. Seven AKT1 single nucleotide polymorphisms (SNPs) were studied in 417 patients and 429 controls. Haplotype showed significant association (p=0.036) with schizophrenia, especially in Malays and Indians. Meta-analysis of rs2494732 showed significant association worldwide (p=0.018) and in Asians (p=0.023).  相似文献   

19.
BACKGROUND: DISC1 has been suggested as a causative gene for psychoses in a large Scottish family. We recently identified FEZ1 as an interacting partner for DISC1. To investigate the role of FEZ1 in schizophrenia and bipolar disorder, case-control association analyses were conducted in Japanese cohorts. METHODS: We performed a mutation screen of the FEZ1 gene and detected 15 polymorphisms. Additional data on informative polymorphisms were obtained from public databases. Eight single nucleotide polymorphisms (SNPs) were analyzed in 119 bipolar disorder and 360 schizophrenic patients and age- and gender-matched control subjects. All genotypes were determined with the TaqMan assay, and selected samples were confirmed by sequencing. RESULTS: The two adjacent polymorphisms displayed a nominally significant association with schizophrenia (IVS2+ 1587G>A, p = .014; 396T相似文献   

20.
Recent molecular genetic studies have reported a positive association of schizophrenia with several single nucleotide polymorphisms (SNPs) and haplotypes from the human dystrobrevin-binding protein 1 (DTNBP1) gene locus on chromosome 6p. This finding suggests that the DTNBP1 gene is likely a susceptible gene for schizophrenia. Because all the SNPs showing positive association with schizophrenia locate at the intronic sequences of the DTNBP1 gene, we set out to search for mutations in the protein-coding sequences and at the 5' promoter region of the DTNBP1 gene to investigate if the DTNBP1 gene is a schizophrenia-susceptible gene. We directly sequenced the cDNA of DTNBP1 gene in 50 schizophrenic patients and the 5' promoter region of the DTNBP1 genomic DNA in 94 schizophrenia patients. No mutations were identified in either the protein-coding sequences or the 5' promoter region of the human DTNBP1 gene in this sample. Thus, in contrast to prior studies reporting positive association of the DTNBP1 gene with schizophrenia in both Irish and German population, our data indicate that the human DTNBP1 is unlikely a major susceptible gene for schizophrenia in Chinese Han patients from Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号