首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous pharmacological studies have demonstrated that pulmonary endothelial cells and noradrenergic neurones possess the same transporter for inward transport of catecholamines, uptake1. In noradrenergic neurones, it has been shown that uptake1 is also involved in the carrier-mediated outward transport, or efflux, of noradrenaline and dopamine. The aim of the present study was to examine the efflux of noradrenaline and dopamine from perfused lungs of rats to determine whether uptake1, in addition to diffusion, mediates efflux of catecholamines from pulmonary vascular endothelial cells.The effects of reducing the cellular sodium gradient and of substrates and inhibitors of uptake1 on the efflux of 3H-noradrenaline and 3H-dopamine from rat lungs were measured. Isolated; perfused lungs of rats (monoamine oxidase and catechol-0-methyltransferase inhibited) were loaded with 3H-(–)noradrenaline or 3H-dopamine for 10 min followed by perfusion with either (1) a low sodium, amine-free: Krebs solution, in which NaCl was replaced by either Tris.HCl or LiCl, for 15 or 10 min, respectively or (2) amine-free Krebs solution for 30 min in the absence or presence of a substrate or inhibitor of uptake1 for the last 15 min. The rate constants for spontaneous efflux of noradrenaline and dopamine from the lungs were 0.0163 min–1 and 0.0466 min–1, respectively. When NaCl was replaced by Tris.HCl during efflux, the rate constants for efflux of noradrenaline and dopamine were increased 2.5-fold and 3-fold, respectively, whereas, when NaCl was replaced by LICl, the rate constants were increased 8-fold and 4-fold, respectively. The uptake1 substrates, dopamine (1 and 3 mol/l) and adrenaline (40 mol/l), both caused a rapid and marked increase in the efflux of noradrenaline, while noradrenaline (4 mol/l) had a similar effect on the efflux of dopamine. The uptake 1 inhibitors, imipramine (3 and 10 mol/l) and nisoxetine (50 nmol/l), caused small and gradual increases in the efflux of noradrenaline and dopamine from rat lungs.These results demonstrate that efflux of noradrenaline and dopamine from rat lungs is affected by alterations in the normal sodium gradient across the cell and by drugs that interact with the uptake1 transporter. Thus, it can be concluded that the spontaneous efflux of catecholamines from pulmonary vascular endothelial cells is mediated predominantly by uptake1. In addition, efflux of catecholamines from the lungs has a diffusional component, which, combined with inhibition of reuptake, accounts for the small increase in amine efflux by inhibitors of uptake1.Abbreviations COMT Catechol-O-methyltransferase - FRL Fractional rate of loss - K m Michaelis or half-saturation constant - t out rate constant for efflux - k uptake rate constant for uptake - MAO monoamine oxidase - t /12 half-time for efflux - U-0521 3,4-dihydroxy-2-methylpropiophenone - V max maximal rate of uptake Preliminary results of this study were presented to the 1993 Meeting of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (Scarcella et al. 1993).  相似文献   

2.
The aim of the present study was to further characterise the noradrenaline and 5hydroxytryptamine [5HT] transporters in rat lungs by examining the efflux of noradrenaline and 5HT, respectively. Lungs from rats were isolated and perfused via the pulmonary artery. After loading the tissue with 3H5HT or 3Hnoradrenaline the efflux of the relevant amine from the lungs was examined for 1525min. The rate constant for efflux of 3H5HT increased by 81% when Na+ ions were removed from the perfusion solution; increased gradually when a selective 5HT transporter inhibitor, 200nM citalopram, was added to the perfusion solution for the final 6min of efflux; and increased markedly and rapidly when substrates of the 5HT transporter, tryptamine (18μM) and 7methyltryptamine (12μM), were added for the final 6min of efflux. These effects of the substrates were abolished by 1μM citalopram, but were not significantly affected by 1μM desipramine, a selective uptake1 inhibitor. On the other hand, the previously described substrateinduced increase in the rate of efflux of noradrenaline was significantly reduced by desipramine but was unaffected by citalopram. The results show that efflux of 5HT is mediated only by the 5HT transporter, with no significant contribution of uptake1, and efflux of noradrenaline from rat lungs is mediated only by uptake1 and not by the 5HT transporter. The effects of dopamine on the efflux of noradrenaline over a concentration range of 100-600nM were investigated and the results showed that 50% of the maximal increase in the rate of efflux occurred at a concentration of 275nM. This value did not differ from the Km for uptake of dopamine. This result implies that the only factor affecting the substrate-induced increase in noradrenaline efflux is the affinity of the substrate for uptake1. The efflux of noradrenaline was also examined in the absence and presence of two concentrations of desipramine (0.35and 1.5μM). Analysis of these results showed that uptake1 contributed approximately 81% and diffusion 19% to the total efflux of noradrenaline and that 90% of the total noradrenaline efflux was subject to reuptake by uptake1 into the pulmonary endothelial cells. Received: 23 January 1997 / Accepted: 26 March 1997  相似文献   

3.
Previous studies have resulted in the classification of amezinium as a selective inhibitor of neuronal monoamine oxidase (MAO), because it is a much more potent MAO inhibitor in intact tissues, in which it is accumulated in noradrenergic neurones by uptake1, than in tissue homogenates. In the present study, the effects of amezinium on the deamination of noradrenaline were investigated in intact lungs of rats, since the pulmonary endothelial cells are a site where the catecholamine transporter is non-neuronal uptake1. In addition, another drug that is both a substrate of uptake1 and a MAO inhibitor, debrisoquine, was investigated in the study.The first aim of the study was to show whether amezinium and debrisoquine are substrates of uptake1 in rat lungs. After loading of isolated perfused lungs with 3H-noradrenaline (MAO and catechol-O-methyltransferase (COMT) inhibited), the efflux of 3H-noradrenaline was measured for 30 min. When 1 mol/l amezinium or 15 mol/l debrisoquine was added for the last 15 min of efflux, there was a rapid and marked increase in the fractional rate of loss of 3H-noradrenaline, which was reduced by about 70% when 1 mol/l desipramine was present throughout the efflux period. These results showed that both drugs were substrates for uptake1 in rat lungs. In lungs perfused with 1 nmol/l 3H-noradrenaline (COMT inhibited), 10, 30 and 300 nmol/l amezinium caused 58%, 76% and 74% inhibition of noradrenaline deamination, respectively, and 30, 300 and 3000 nmol/l debrisoquine caused 56%, 89% and 96% inhibition of noradrenaline deamination, respectively. When MAO-B was also inhibited, 10 nmol/l amezinium caused 84% inhibition of the deamination of noradrenaline by MAO-A in the lungs. In contrast, in hearts perfused with 10 nmol/l 3H-noradrenaline under conditions where the amine was accumulated by uptake2 (COMT, uptake1 and vesicular transport inhibited), 10 nmol/l amezinium had no effect and 300 nmol/l amezinium caused only 36% inhibition of deamination of noradrenaline.The results when considered with previous reports in the literature show that amezinium is about 1000 times more potent and debrisoquine is about 20 times more potent for MAO inhibition in rat lungs than in tissue homogenates, and the reason for their high potencies in the intact lungs is transport and accumulation of the drugs in the pulmonary endothelial cells by uptake1. Amezinium is much less potent as a MAO inhibitor in cells with the uptake2 transporter, such as the myocardial cells of the heart. The results also confirmed previous reports that amezinium is highly selective for MAO-A.Abbreviations COMT catechol-O-methyltransferase - DOMA 3, 4-dihydroxy-mandelic acid - DOPEG 3, 4–'dihydroxyphenylglycol - ECS extracellular space - FRL fractional rate of loss - IC 50 inhibitor concentration that causes 50% inhibition - K m uptake Michaelis or half-saturation constant for uptake - k M AO rate constant for deamination - k out NA rate constant for efflux of noradrenaline - MAO monoamine oxidase - MAO-Aa type A monoamine oxidase - MAO-B type B monoamine oxidase - T/M NA tissue to medium ratio of noradrenaline - U-0521 3, 4-dihydroxy-2-methylpropiophenone - V max maximal rate - v st–st steady-state rate of metabolite formation Preliminary results of this study were presented to the 1993 Meeting of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (Bryan-Lluka 1993).  相似文献   

4.
Summary Possible effects of (±)-dobutamine on adrenergic nerve endings were determined in experiments with ghosts of bovine chromaffin granules, with rat phaeochromocytoma (PC-12) cells and with the rat vas deferens. Dobutamine inhibited the vesicular uptake of a mixture of 70% adrenaline + 30% 3H-noradrenaline into ghosts, with an IC50 of 1.7 mol/l. Dobutamine inhibited uptake, of 3H-noradrenaline in PC-12 cells (with an IC50 of 0.38 mol/l) without being a substrate. However, dobutamine easily entered PC-12 cells by diffusion. After inhibition of MAO, COMT and vesicular uptake dobutamine (15 and 45 mol/l) released tritium from rat vasa deferentia preloaded with 3H-noradrenaline. Equi-inhibitory concentrations of dobutamine and desipramine (against uptake1) were equireleasing. On the other hand, when MAO and vesicular uptake were intact, dobutamine (15 mol/l) increased the efflux of tritium from preloaded vasa deferentia much more than did an equi-inhibitory concentration of desipramine. Most of the released tritium was then 3H-DOPEG.Dobutamine is a potent inhibitor of uptake1 as well as of vesicular uptake; moreover, it easily diffuses into adrenergic nerve endings. Hence, it blocks the neuronal and the vesicular re-uptake of noradrenaline; consequently, when MAO and vesicular uptake are intact, dobutamine increases the net leakage of noradrenaline from the storage vesicles, thereby leading to an efflux of deaminated metabolites. However, dobutamine is virtually unable to release noradrenaline into the extracellular space.Abbreviations COMT catechol-O-methyl transferase - DOPEG dihydroxyphenylglycol - DOMA dihydroxymandelic acid - MAO monoamine oxidase Supported by the Deutsche Forschungsgemeinschaft (Gr 490/5 and SFB 176) Send offprint requests to P. Fischer at the above address  相似文献   

5.
Summary This study describes for the first time an experimental system for the extraneuronal transport mechanism of noradrenaline (uptake2) which is based on a clonal cell line (Caki-1). Caki-1 cells were originally derived from a human renal cell carcinoma. The conclusion that these cells express uptake2 is supported by several experimental findings. (1) The initial rate of 3H-noradrenaline uptake in Caki-1 cells is saturable, the K m being 450 mol/l. (2) Inhibitors of uptake2 such as corticosterone (1 mol/l) and O-methyl-isoprenaline (100 Emol/l) largely inhibit 3H-noradrenaline uptake in Caki-1 cells. Whereas inhibitors of the neuronal transport mechanism for noradrenaline (uptake1) such as desipramine (1 mol/l) and cocaine (10 mol/l) do not reduce it. (3) Depolarization of Caki-1 cells by the elevation of extracellular potassium inhibits 3H-noradrenaline uptake. (4) There is a highly significant correlation between the IC50's of various compounds for the inhibition of 3H-noradrenaline uptake in Caki-1 cells and rabbit aorta known to possess uptake2.Interestingly enough, uptake2 in Caki-1 cells and rabbit aorta is inhibited by cimetidine, quinidine and procainamide which are substrates of the renal transport mechanism for organic cations. Moreover, 3H-cimetidine is shown to be a substrate of uptake2 in the isolated perfused rat heart. These results indicate a striking similarity between uptake2 and the renal transport mechanism for organic cations. Send offprint requests to E. Schömig at the above addressSupported by the Deutsche Forschungsgemeinschaft (SFB 176, Scho 373) and the Dr. Robert Pfleger Stiftung  相似文献   

6.
Previous studies on the pulmonary removal and metabolism of catecholamines in rat lungs have shown that, when the lungs are perfused with a low concentration (1 nmol/1) of noradrenaline, the amine is metabolized by catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), but is predominantly O-methylated, and the activities of COMT and MAO are 0.357 min–1 and 0.186 min–1, respectively. The aim of the present study was to examine the changes in the metabolic profile of noradrenaline in rat lungs over a range of concentrations, and to examine the kinetics of the pulmonary O-methylation of noradrenaline and adrenaline.In isolated lungs perfused with 3H-noradrenaline, there was a progressive decrease in the proportion of O-methylated metabolites and a corresponding increase in the proportion of deaminated metabolites, as the noradrenaline concentration in the perfusion solution was increased from 1 to 10 to 100 to 1000 nmol/l. Experiments designed to determine the rate of uptake of noradrenaline in lungs perfused with 1 nmol/l 3H-noradrenaline, under conditions of MAO inhibited, COMT inhibited and COMT and MAO inhibited, showed that the results were compatible with co-existence of COMT and MAO in the pulmonary endothelial cells. Hence, it appeared that the changing metabolic profile with amine concentration in the previous series of experiments was not due to saturation of noradrenaline uptake into cells that contained COMT but not MAO.Further experiments to examine the kinetics of O-methylation of noradrenaline and adrenaline (MAO inhibited) showed that the O-methylation of these amines in the lungs was predominantly saturable, with half-saturation occurring at concentrations (9.8 nmol/I and 19.4 nmol/l, respectively) that were two orders of magnitude lower than those required to half-saturate uptake1 of the amines. Saturation of O-methylation by these low concentrations of noradrenaline (1) provides the explanation for the change in the metabolic profile of noradrenaline described above and (ii) appears to occur because Vmax uptake Vmax COMT for the metabolizing system consisting of non-neuronal uptake1 + COMT in the lungs, as has been described previously for the system consisting of uptake2 + COMT in extraneuronal sites in rat heart. The results show that the metabolic profile of catecholamines in the pulmonary circulation will reflect that occurring at physiological levels only if studies are carried out with very low amine concentrations.Abbreviations COMT Catechol-O-methyltransferase - DOMA 3,4-dihydroxymandelic acid - DOPEG 3 4-dihydroxyphenylglycol - ECS Extracellular space - HSOC Half-saturating outside concentration - Km uptake Half-saturation constant for uptake - kCOMT Rate constant for O-methylation - kMAO Rate constant for deamination - kout NA Rate constant for efflux of noradrenaline - MAO Monoamine oxidase - MB-COMT Membrane-bound - COMT NMN Normetanephrine - OMDA O-methylated deaminated metabolites - S-COMT Soluble COMT - T/MNA Tissue to medium ratio of noradrenaline - U-0521 3,4-dihydroxy-2-methylpropiophenone - Vmax Maximal rate of uptake or O-methylation - Vst-st Steady-state rate of metabolite formation - Vuptake Rate of uptake Preliminary results of part of this study were presented to the Seventh Meeting on Adrenergic Mechanisms, Porto, Portugal (Bryan 1990)  相似文献   

7.
Tritiated methylphenylpyridinium ([3H]MPP+), a substrate of the neuronal and extraneuronal noradrenaline transporter (uptake1 and uptake2, respectively) and of the organic cation transporter (OCT1), was used to characterize the amine transport system of the established human glioma cell line SK-MG-1.Uptake of [3H]MPP+ (25 nM) into SK-MG-1 cells increased linearly with time for up to 15 min. Selective uptake1 inhibitors (e.g. (+)oxaprotiline) or omission of Na+ or Cl ions did not affect [3H]MPP+ uptake, whereas uptake2 inhibitors such as O-methyl-isoprenaline (OMI) or corticosterone as well as depolarizing concentrations of K+ or Ba2+ strongly reduced [3H]MPP+ uptake. Initial rates of OMI(100 M)-sensitive [3H]MPP+ uptake were saturable, with a Km of about 17 M and a maximal rate of about 50 pmol/ (min × mg protein). IC50 (or Ki) values for inhibition of [3H]MPP+ uptake by substrates and inhibitors of uptake2 or OCTI were highly significantly correlated with published IC50 values for inhibition of uptake2 but not with corresponding values for inhibition of OCT1.The results presented here clearly demonstrate that human glioma cells express an uptake2 transporter. Thus, glial cells in the human central nervous system endowed with this transporter are likely to contribute to the inactivation of neuronally released noradrenaline.  相似文献   

8.
Summary The aim of the study was to determine whether the uptake process for catecholamines in rat lungs is Uptake1, Uptake2 or a distinct process with some properties of both Uptake1 and Uptake2. The initial rate of uptake of noradrenaline was measured in isolated lungs of rats perfused with 2 nmol/l 3H-(–)-noradrenaline for 2 min with monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) inhibited, in the absence or presence of drugs that are substrates or inhibitors of Uptake1 or Uptake2 or of alterations in the ionic composition of the Krebs solution. The rank order of the IC50 values for inhibition of uptake of noradrenaline in the lungs by drugs that are substrates or inhibitors of Uptake1 or Uptake2 is compatible with the conclusion that uptake of catecholamines in rat lungs occurs by Uptake2, and not by a process with the properties of Uptake2. Additional evidence was provided by the marked inhibition of uptake in the lungs when the Na+ concentration in the Krebs solution was decreased from 143 to 25 mmol/l and by the lack of inhibition when the K+ concentration was increased from 5.9 mmol/l to either 10.9 or 20.9 mmol/1.Further experiments were included in the study to obtain data additional to histological evidence (Hughes et al. 1969; Nicholas et al. 1974) regarding the site of Uptake1 in rat lungs. Pretreatment of rats with either 6-hydroxydopamine (to destroy noradrenergic neurones) or reserpine (to inhibit synaptic vesicle uptake) had no effect on the deamination or accumulation of noradrenaline in lungs perfused with 3H-noradrenaline (COMT inhibited). In a further series of experiments, efflux of noradrenaline from rat lungs, after loading with 3H-noradrenaline (MAO and COMT inhibited), could be described by a single compartment with a half-time for efflux of 42 min and with no bound fraction. These results provide further evidence that no significant uptake of noradrenaline in the lungs occurs into noradrenergic neurones and are compatible with histological evidence that the endothelial cells of the lung microvasculature are the site of noradrenaline uptake.The study has shown that the uptake of catecholamines in the lungs, at least in the rat, occurs by Uptake1, and hence the pulmonary endothelial cells are a nonneuronal site where catecholamine transport occurs by Uptake1.Some of the results of this study were presented to the Australasian Society of Clinical and Experimental Pharmacologists (Bryan and O'Donnell 1988; Bryan et al. 1988a) and the British Pharmacological Society (Bryan et al. 1988) Send offprint requests to L. J. Bryan-Lluka at the above address  相似文献   

9.
Summary The uptake and metabolism of 3H-noradrenaline has been examined in the FL cell-line derived originally from human amnion. Cell cultures metabolised 3H-noradrenaline (1.0 mol/l) to 3H-normetanephrine and, to a lesser extent, to metabolites (not distinguished) of the O-methylated deaminated fraction; primary deaminated metabolites were not detected. 3(H-normetanephrine formation a) was not saturable in the noradrenaline concentration range 0.2–150 mol/l, b was decreased to 20%–30% of control levels by uptake2 inhibitors (O-methylisoprenaline, 20 and 100 mol/l; cimetidine, 10 mol/l; hydrocortisone, 200 mol/l) and c, was almost insensitive to uptake1 inhibitors (cocaine, 30 mol/l; desipramine, 3 mol/l).Uptake of noradrenaline was manifested after 30 minutes as a 6-fold increase in the cell content of the amine following inhibition of catechol-O-methyl transferase, either alone or in conjunction with inhibition of monoamine oxidase. Uptake was decreased maximally to 40% of control levels by O-methylisoprenaline. IC50 values for inhibition of the O-methylisoprenaline-sensitive component of uptake were (in mol/l): corticosterone (0.3), papaverine (1.1), O-methylisoprenaline (3.0), cimetidine (6.0), (–)noradrenaline (460), and tetraethylammonium (2230). Except for the last agent, for which a comparative value is not available, the IC50's are in good agreement with those for inhibition of uptake2 in the Caki-1 cell-line reported by other investigators.The component of uptake resistant to O-methylisoprenaline was depressed by papaverine (a 50% decrease at 50 mol/l), but was not affected by the other uptake2 inhibitors or by cocaine (30 mol/l).It is concluded that the FL cell possesses an extraneuronal metabolising system very similar to the system in tissues such as heart and smooth muscle where transport of noradrenaline into the cell by uptake2 is followed by rapid O-methylation via catechol-O-methyl transferase. The only difference appears to be the absence of saturation of 3H-normetanephrine formation in the FL cell at low micromolar concentrations of 3H-noradrenaline. The presence of a second uptake process is suggested by the inhibitory effect of papaverine on uptake resistant to O-methylisoprenaline; lack of effect of cocaine implies that this second process is not uptake,.Abbreviations COMT catechol-O-methyl transferase - DOMA dihydroxymandelic acid - DOPEG dihydroxyphenylethylene glycol - MAO monoamine oxidase - NMN normetanephrine - OMDA O-methylated and deaminated metabolite fraction - OMI 3-O-methylisoprenaline - TEA tetraethylammonium Correspondence to I. S. de la Lande at the above address  相似文献   

10.
In myocardial ischemia, nonexocytotic noradrenaline release has been identified as underlying mechanism of ischemia-evoked noradrenaline release. Nonexocytotic noradrenaline release can be suppressed by inhibitors of the neuronal noradrenaline carrier (uptake), such as desipramine. Utilizing this pharmacological intervention the role of local noradrenaline release in the genesis of ischemia-induced ventricular arrhythmias was studied. Regional ischemia was induced in rat isolated perfused hearts by ligature of the left anterior descending coronary artery, and the venous effluent obtained during the first 2 min of reperfusion was used to measure the release of endogenous noradrenaline by high-performance liquid chromatography methods. Coronary occlusion caused ventricular fibrilation in a well reproducible manner with an incidence of 70 to 80% during a 30 min observation period. Blockade of uptake, by desipramine decreased the occurrence of ischemia-induced ventricular fibrillation to 60% (0.01 mol/1) or 20% (0.1 mol/l), and ventricular fibrillation was completely suppressed by 1 mol/l desipramine. Likewise, desipramine (0.01–1 mol/l) concentration-dependently reduced endogenous noradrenaline release during 30 min of regional myocardial ischemia. Nisoxetine, a structurally unrelated inhibitor of uptake,, also suppressed ischemia-evoked ventricular fibrillation.In contrast to its antifibrillatory effect during regional myocardial ischemia, desipramine precipitated arrhythmias when ventricular fibrillation was induced by perfusing normoxic hearts with exogenous noradrenaline. Combination of desipramine (0.1 mol/1) with exogenous noradrenaline (0.01 to 1 mol/l) increased the incidence of ventricular fibrillation compared to noradrenaline perfusion alone. Under these conditions, uptake1-blockade is known to increase the extracellular concentration of the perfused noradrenaline. Finally, in the isolated, spontaneously beating papillary muscle of the left rat heart, desipramine (0.1 and 1.0 mol/l) had no effect on the upstroke velocity of action potentials, the action potential duration and the effective refractory period.In conclusion, the findings demonstrate that nonexocytotic noradrenaline release is an important mediator of ischemia-induced ventricular fibrillation in isolated hearts of the rat. It is also documented that uptake, inhibitors such as desipramine reveal their effects on ventricular fibrillation secondary to their action on transmembrane noradrenaline transport.  相似文献   

11.
The macrolide antibiotic bafilomycin A1, a selective inhibitor of the vesicular H+-transporting ATPase, increased irreversibly the overflow of 3,4-dihydroxyphenylethylene glycol from isolated segments of the rat tail artery. Maximum increase in the overflow was produced by exposing the tissues to 0.5 mol/l bafilomycin As. Unless the Na-dependent neuronal amine carrier (uptake1) was inhibited, overflow of noradrenaline was below the detection limit. The bafilomycin As-induced increase in overflow of noradrenaline from tissues with inhibited uptakes was accompanied by a significant decrease in the (noradrenaline overflow:glycol overflow) ratio. Unlike reserpine and tetrabenazine, the antibiotic did not alter the (noradrenaline overflow:glycol overflow) ratio in arteries incubated in Ca2+-free, 120 mmol/1 K+ medium.Bafilomycin A1 increased overflow of noradrenaline and normetanephrine from tissues with inhibited monoamine oxidase. Inhibitors of extraneuronal catecholamine transport (uptake2), corticosterone, 3-O-methylisoprenaline and 1,1-diethyl-2,2-cyanine, suppressed overflow of normetanephrine while increasing that of noradrenaline. Further increase in overflow of noradrenaline was produced by concomitant inhibition of uptake1. A similar effect was observed in tissues previously exposed to phenoxybenzamine. After exposure to bafilomycin As, tyramine and (+) amphetamine (10 mol/l) were equally effective in increasing overflow of noradrenaline from tissues with inhibited monoamine oxidase into corticosterone-containing medium.Bafilomycin A1 promotes leakage of noradrenaline from storage vesicles without affecting its conversion to 3,4-dihydroxyphenylethylene glycol. When uptake1 is inhibited, axoplasmic noradrenaline can be translocated effectively across the axonal membrane by the diffusional efflux. When uptakes is inhibited, spontaneous quantal release contributes significantly to overflow of noradrenaline into normal media. The diffusional efflux of noradrenaline is unaffected by inhibitors of uptake2. Even at highly elevated concentrations of axoplasmic noradrenaline, the uptake1-mediated influx of noradrenaline exceeds the uptake1-mediated efflux. Enhancement of noradrenaline overflow from tissues with inhibited monoamine oxidase by indirectly acting sympathomimetic amines depends primarily on their ability to induce leakage of the transmitter from storage vesicles rather than its translocation across the axonal membrane.  相似文献   

12.
The effects in rats of long-term administration of the potent, specific 5-HT uptake inhibitor citalopram have been investigated. Citalopram hydrobromide (MW=405) was given in the diet, 99 or 25 mol/kg daily, for 13 days or orally, 49 mol/kg twice a day, for 14 days. High plasma and brain levels of citalopram were found during the treatment period, whereas negligible amounts were found 24 h after withdrawal. The 5-HT uptake mechanism in blood platelets was completely blocked, since levels of whole blood 5-HT during and shortly (2 days) after treatment were decreased by 75–90%. The drug load after the two highest doses in terms of plasma drug levels was the same as in depressed patients treated with citalopram. Receptor binding technique ex vivo was applied to different brain parts to measure receptor parameters for several neurotransmitters. All data were evaluated by Eadie-Hoffstee analysis. No changes were seen in B max and K d for -receptors (3H-dihydroalprenolol) in frontal cortex, occipital+temporal cortex, whole cortex and limbic structures, 5-HT2 receptors (3H-spiroperidol) in frontal and whole cortex, 1-receptors (3H-prazosin) in rest of brain and DA D-2 receptors (3H-spiroperidol) in corpus striatum and limbic structures. The uptake mechanism for 5-HT as well as the inhibitory effect of citalopram on this uptake remained unaffected in brain synaptosomes derived from control and from citalopram (99 mol/kg)-treated rats. Thus long-term treatment with citalopram does not induce changes in neurotransmitter receptors as seen with most tricyclic as well as newer atypical antidepressants. Most striking is the lack of - and 5-HT2 receptor down-regulation. Since citalopram clinically shows clear antidepressant activity, this down-regulation does not seem to be a prerequisite of antidepressant activity.  相似文献   

13.
Summary The inhibition by N-ethylmaleimide (NEM) of uptake1 and desipramine binding was studied on clonal rat phaeochromocytoma cells (PC12 cells) in different experimental settings: (1) 3H-noradrenaline uptake into intact PC12 cells; (2) 3H-noradrenaline uptake into isolated PC12 plasma membrane vesicles; (3) 3H-desipramine binding to isolated PC12 plasma membrane vesicles.In plasma membrane vesicles, NEM inhibited 3H-desipramine binding and 3H-noradrenaline uptake with similar potency (the IC50's were 1.36 mmol/l and 1.04 mmol/l, respectively). However, in intact cells, NEM was about 75 times more potent in inhibiting 3H-noradrenaline uptake (IC50 = 0.014 mmol/l). The increased potency of NEM in intact cells is probably due to an inhibition of the Na+/K +-ATPase and not to a direct interaction with the noradrenaline carrier.The inactivation by NEM of 3H-desipramine binding to PC12 plasma membrane vesicles was irreversible. Both an inhibitor (cocaine, 1 mmol/l) and a substrate of uptake1 (amezinium, 1 mmol/l) protected desipramine binding from inactivation.These results are compatible with the hypothesis of a common binding site for substrates and inhibitors of the neuronal noradrenaline carrier.This study was supported by the Deutsche Forschungsgemeinschaft (SFB176) Send offprint requests to E. Schömig at the above address  相似文献   

14.
Summary The extraneuronal removal and disposition of noradrenaline in rabbit dental pulp was examined in view of earlier evidence that the tissue possessed an extra-neuronal uptake process resembling neuronal uptake1. Pulp, which had been depleted of sympathetic nerves by homolateral superior cervical ganglionectomy, was incubated in vitro with 3H-noradrenaline in low concentrations (0.025 or 0.18 mol/l). When the metabolising enzymes (monoamine oxidase, catechol-O-methyl transferase) were active, 3H retention by the denervated pulp, as indicated by the 3H content after the tissue had been washed for 30 min following incubation with 3H-noradrenaline, was less than 30% of that of the innervated pulp. When the enzymes were inhibited, retention rose to approximately 30% of that of the innervated pulp. Analysis of the time course of the 3H efflux indicated that the 3H-noradrenaline in the denervated pulp had accumulated in a single compartment characterised by a t1/2 for efflux of several hours. Accumulation did not occur under Na+-free conditions, and was inhibited by desipramine (IC50 < 0.03 mol/l) and by substrates of neuronal uptake1. Mean IC50, values of the latter were very similar to those for inhibition of neuronal uptake1 and comprised (in mol/l): (+)amphetamine (0.29), dopamine (0.31), tyramine (0.39), (–)noradrenaline (0.70), (–)adrenaline (1.50), 5-hydroxytryptamine (20) and bretylium (35). Uptake2 inhibitors were less active (O-methyl isoprenaline, IC50 = 60 mol/l) than uptake1 inhibitors, or were without inhibitory effects at the concentrations tested (hydrocortisone, 210 mol/l; 2-methoxy oestrone, 10 mol/l).The effects of Na+ omission, of (+)amphetamine, and of O-methylisoprenaline on 3H-normetanephrine formation (measured in the absence of catechol-O-methyl transferase inhibition) matched their effects on 3H-noradrenaline accumulation. The results provide strong support for the presence in rabbit dental pulp of extraneuronal uptake1 which is linked with catechol-O-methyl transferase in the removal of noradrenaline. Send offprint requests to D. A. S. Parker at the above address  相似文献   

15.
Summary Using hepatocytes isolated by collagenase perfusion, we studied the accumulation of 3-noradrenaline. Cells incubated during 15 min in the presence of 0.4 mol/l 3H-noradrenaline (without inhibition of noradrenaline metabolism) accumulated 8.32 ± 1.77 pmol/106 cells (n = 3). The accumulation of 3H-noradrenaline in isolated parenchymal liver cells was sensitive to 10 mol/l cocaine (inhibition 36.6 ± 7.9%, n = 3) and 1 mol/l desipramine (inhibition 27.2 ± 6.9, n = 3). Accumulation of 3H-noradrenaline was temperature and sodium dependent (inhibition 33.2 ± 9.4%, n = 9, when Na+ was replaced by Tris+) and was influenced by the inhibition of the membrane Na+-K+-adenosine triphosphatase (Na+-K+-ATPase) by 150 mol/l ouabain (34.7 ± 6.9% inhibition, n = 3). Accumulation of 3H-noradrenaline in the hepatocytes was not affected by the presence of uptake2 inhibitors, normetanephrine (30 mol/l) and corticosterone (30 mol/l), but was reduced by 30 mol/l isoprenaline (76.3 ± 5.0% inhibition, n = 6). Thus, the system that takes up and accumulates noradrenaline in the isolated rat liver cells possesses some characteristics of both, uptake1 and uptake2 systems and appears to be different from other extraneuronal cocaine-sensitive systems, such as the one reported for pulmonary endothelial cells. Send offprint request to M. I. Masana at the above address  相似文献   

16.
Summary The corticosterone-sensitive extraneuronal transport mechanism for noradrenaline (uptake2) removes the neurotransmitter from the extracellular space. Recently, an experimental model for uptake2 has been introduced which is based on tissue culture techniques (human Caki-1 cells). The present study describes some properties of uptake2 in Caki-1 cells and introduces a new substrate, i.e., 1-methyl-4-phenylpyridinium (MPP+).Experiments on Caki-1 cells disclosed disadvantages of tritiated noradrenaline as substrate for the investigation of uptake2. The initial rate of 3H-noradrenaline transport [kin = 0.58 l/(mg protein · min)] was low compared with other cellular transport systems and intracellular noradrenaline was subject to rapid metabolism (kO-methylation = 0.54 min–1). The neurotoxin MPP+ was found to be a good substrate of uptake2. Initial rates of specific 3H-MPP+ transport into Caki-1 cells were saturable, the Km being 24 mol/l and the Vmax being 420 pmol/(mg protein · min). The rate constant of specific inward transport was 34 times higher [19.6 mol/l (mg protein · min)] than that of 3H-noradrenaline. The ratio specific over non-specific transport was considerably higher for 3H-MPP+ (12.6) than for 3H-noradrenaline (3.0). 3H-MPP+ transport into Caki-1 cells was inhibited by various inhibitors of uptake2. The highly significant positive correlation (p < 0.001, r = 0.986, n = 7) between the IC50's for the inhibition of the transport of 3H-noradrenaline and 3H-MPP+, respectively, proves the hypothesis that MPP+ enters Caki-1 cells via uptake2. 3H-MPP+ is taken up via uptake2 not only by Caki-1 cells but also by the isolated perfused rat heart which is another established model of uptake2.Tritiated MPP+ is a new and convenient tool for the investigation of uptake2. The rate constant for inward transport, the factor of accumulation and the ratio specific over non-specific transport are considerably higher for 3H-MPP+ than for 3H-noradrenaline. In uptake studies with 3H-MPP+ inhibition of intracellular noradrenaline-metabolizing enzymes is not necessary. In tissues and tissue cultures which possess fewer uptake2 carriers than Caki-1 cells or the rat heart, the identification and characterization of uptake2 can be expected to be greatly facilitated by the use of 3H-MPP+.Supported by the Deutsche Forschungsgemeinschaft (SFB 176) Send offprint requests to H. Russ at the above address  相似文献   

17.
Summary Ischemia induces a nonexocytotic noradrenaline release in the heart, which leads to high and potentially harmful interstitial noradrenaline concentrations. The effect of beta-adenoceptor antagonists on noradrenaline release in ischemia has been investigated in the present study. DL-Propranolol (1–100 mol/l) concentration-dependently reduced noradrenaline release during 20 min of global and total ischemia in the perfused rat heart. Other beta-adrenoceptor blocking agents such as atenolol, metoprolol, and timolol (10 mol/l each), however, did not share this effect. Moreover, both stereoisomers of propranolol were equipotent in suppression of ischemia-induced noradrenaline release, indicating a property of propranolol independent from interaction with beta-adrenoceptors. The well known local anesthetic action of propranolol was not likely to cause its inhibitory effect on ischemia-induced noradrenaline release, as lidocaine (10 mol/l) did not affect noradrenaline overflow in ischemia. The effect of propranolol was further examined in cyanide intoxication, an experimental model of energy depletion. In this experimental setting the release of dihydroxyphenylethyleneglycol - the major neuronal metabolite of noradrenaline - served as indicator of increased axoplasmic noradrenaline levels which are present during nonexocytotic noradrenaline release. In cyanide intoxication DL-propranolol also reduced noradrenaline overflow but did not affect release of dihydroxyphenylethylene glycol. The latter finding suggests an interaction of propranolol with the neuronal membrane transport of noradrenaline. In ischemia and cyanide intoxication, transport of noradrenaline across the plasma membrane is known to be driven by the noradrenaline carrier (uptake,) working in reverse of its normal direction - from inside to outside. Consequently, inhibitors of the noradrenaline carrier like desipramine were shown to suppress nonexocytotic noradrenaline release in ischemia and cyanide intoxication. In order to test the ability of propranolol to interact with the noradrenaline carrier a model of 3H-noradrenaline uptake was employed in normoxic rat heart. DL-Propranolol concentration-dependently (1–100 mmol/l) inhibited 3H-noradrenaline uptake, while atenolol and timolol did not interfere with 3H-noradrenaline uptake.In conclusion, the results indicate suppression of noradrenaline release in myocardial ischemia by propranolol. This action of propranolol is independent of its beta-adrenoceptor blocking properties and is rather due to an interaction of propranolol with the neuronal noradrenaline transport mechanism (uptake1).The work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 320 - Cardiac Function and its Regulation)  相似文献   

18.
Summary The uptake and subsequent metabolism by catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) of dopamine, adrenaline, isoprenaline and noradrenaline in isolated perfused lungs of rats has been examined. In lung preparations in which COMT and MAO were inhibited, the uptake of 3H-labelled dopamine, (–)-adrenaline and (–)-noradrenaline, but not (±)-isoprenaline, was reduced by cocaine (10 or 100 mol/l) The rank order of the Km values of the amines that were substrates for uptake in the lungs were: dopamine (0.246 mol/l) < noradrenaline (0.967 mol/l) < adrenaline (3.32 mol/l). These results are consistent with transport of catecholamines in rat lungs by Uptake1.In lung preparations with COMT and MAO intact, dopamine and noradrenaline were removed from the circulation (50% and 32%, respectively) and mainly metabolized. There was very little (3.0%) removal of isoprenaline by the lungs and adrenaline was not included in this part of the study. In lung preparations in which only MAO was inhibited, the rank order of COMT activity for O-methylation of the amines was dopamine noradrenaline adrenaline (kCOMT values: 4.98 min–1, 0.357 min–1, and 0.234 min–1, respectively).If dopamine or adrenaline are perfused through the pulmonary circulation in isolated lungs of the rat, they are taken up and then metabolized by COMT and MAO, as also occurs for noradrenaline. Isoprenaline is not a substrate for uptake in the lungs. There was less uptake of adrenaline than noradrenaline, indicating that uptake and metabolism in the lungs may not be a significant removal process for adrenaline in the circulation of rats in vivo. The more marked uptake of dopamine (than of noradrenaline) indicates that uptake and metabolism by the lungs, at least in the rat, may play an important role in the removal of dopamine from the circulation in vivo.Abbreviations COMT catechol-O-methyltransferase - DOMA 3,4-dihydroxymandelic acid - DOPAC 3,4-dihydroxyphenylacetic acid - DOPEG 3,4-dihydroxyphenylglycol - DOPET 3,4-dihydroxyphenyl ethanol - MAO monoamine oxidase - MN metanephrine - MTA 3-methoxytyramine - NMN normetanephrine - OMDA O-methylated deaminated metabolites - OMI 3-O-methylisoprenaline - U-0521 3,4-dihydroxy-2-methylpropiophenone Some of the results of this study were presented to the Australasian Society of Clinical and Experimental Pharmacologists (Bryan and O'Donnell 1987, 1988; Bryan et al. 1989; Bryan-Lluka 1990) Send offprint requests to L.J. Bryan-Lluka at the above address  相似文献   

19.
Summary The specific (i.e. nisoxetine-sensitive) binding of [3H]desipramine was studied in membranes prepared from bovine adrenal medullae. (1) [3H]desipramine bound reversibly and with high affinity (K D = 2.8 nmol/l) to a single class of non-interacting binding sites (Hill coefficient = 0.96); the maximal number of binding sites (Bmax) was 2.1 pmol/mg protein. (2) Binding of [3H]desipramine was dependent on [Na+] and [Cl]. Increasing the concentrations of these ions increased binding. (3) Substrates and inhibitors of the neuronal noradrenaline transport system (uptake,) inhibited binding of [3H]desipramine with a rank order of potency typical for an interaction with the uptake, carrier.The characteristics of [3H]desipramine binding remained essentially unchanged after solubilization of adrenomedullary membranes with the non-ionic detergent digitonin.The results indicate that the plasma membrane of bovine adreno-medulary cells is endowed with the neuronal uptake1 transporter. Correspondence to: H. Bönisch  相似文献   

20.
Isolated rat hepatocytes were incubated with 200 nmol/l 3H-(–)-noradrenaline or 50 nmol/l 3H(–)-adrenaline for 15 min, in Krebs-Henseleit solution at 37°C, gassed with 95% O2 5010 CO2. Monoamine oxidase and catechol-O-methyl transferase were inhibited withpargyline (500 mol/l)and Ro 01-2812 (3,5-dinitropyrocatechol; 2 ol/l), respectively. Total radioactivity present in the cells, which corresponded mostly to intact 3H-amine, was measured.The content of 3H-noradrenaline increased with time of incubation, a plateau having been reached after 15 min of incubation. After 15 min of incubation,the cell: medium ratio for 3H-noradrenaline and 3H-adrenaline was 0.6–0.7. Desipramine (an inhibitor of the neuronal uptake of catecholamines — uptake,; 1 mol/l) did not affect the uptake of either 3H-noradrenaline or 3H-adrenaline into hepatocytes. Corticosterone (an inhibitor of the extraneuronal uptake of catecholamines — uptake2; 40 mol/l) slightly inhibited (by 28%) the uptake of 3H-adrenaline, and did not significantly reduce 3H-noradrenaline uptake. Probenecid (an inhibitor of the renal transport of organic anions; 100 mol/l) did not influence the amount of either 3H-noradrenaline or 3H-adrenaline in hepatocytes. Cyanine 863 (an inhibitor of the renal transport of organic cations; 10 mol/l) decreased by 62% the uptake of 3H-adrenaline into cells but did not significantly affect 3H-noradrenaline uptake. Bilirubin (a substrate of a hepatic transport for organic anions; 200 ol/l) produced a significant increase (50%) in the amount of 3H-noradrenaline and 3H-adrenaline present in the cells. When isolated hepatocytes were incubated in a sodium-free medium (sodium being replaced by choline or lithium) there was a very marked inhibition of 3H-noradrenaline and 3H-adrenaline uptake (by 85–97%). An increase in potassium content of the medium (from 6.6 to 50 mmol/l) did not affect the uptake of either 3H-amine into isolated cells.In conclusion, the uptake of catecholamines by isolated liver cells possesses characteristics that distinguish it from the classic uptake systems for catecholamines (uptake1 and uptake2): (1) it is sodium-dependent but not affected by desipramine; (2) it is only slightly sensitive to corticosterone and not affected by potassium-induced depolarization; (3) it is partially sensitive to cyanine 863. Moreover, the increase of 3H-amine content in the cells in the presence of bilirubin suggests the possibility of catecholamines being excreted from the hepatocytes through the bilirubin transporter.PhD student with a grant from JNICT (Programa Ciência)Abbreviations COMT catechol-O-methyl transferase - MAO monoamine oxidase - RTOC renal transport of organic cations Supported by Programa STRIDE (STRDA/P/SAU/259/92) Correspondence to: F. Martel at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号