首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Migration inhibitory factor (MIF) responds to tissue damage and regulates inflammatory and immunological processes. To elucidate the function of MIF in cutaneous wound healing, we analyzed MIF knockout (KO) mice. After the excision of wounds from the dorsal skin of MIF KO and wild-type (WT) mice, healing was significantly delayed in MIF KO mice compared to WT mice. Lipopolysaccharide treatment significantly increased [(3)H]thymidine uptake in WT mouse fibroblasts compared to MIF KO mouse fibroblasts. Furthermore, there was a significant reduction in fibroblast and keratinocyte migration observed in MIF KO mice after 1-oleoyl-2-lysophosphatidic acid treatment. We subsequently examined whether MIF-impregnated gelatin slow-release microbeads could accelerate skin wound healing. Injection of more than 1.5 microg/500 microl of MIF-impregnated gelatin microbeads around a wound edge accelerated wound healing compared to a single MIF injection without the use of microbeads. MIF-impregnated gelatin microbeads also accelerated skin wound healing in C57BL/6 mice and diabetic db/db mice. Furthermore, incorporating MIF-impregnated gelatin microbeads into an artificial dermis implanted into MIF KO mice accelerated procollagen production and capillary formation. These findings suggest that MIF is crucial in accelerating cutaneous wound healing and that MIF-impregnated gelatin microbeads represent a promising treatment to facilitate skin wound healing.  相似文献   

2.
In this study, we investigated the role of interleukin (IL)-1 signaling in wound healing. IL-1 receptor type I (IL-1R) knockout (KO) mice showed reduced fibrosis in both cutaneous and deep tissue wounds, which was accompanied by a reduction in inflammatory cellular infiltration in cutaneous but not in deep tissue wounds. There were no differences in either total collagenolytic activity or in the expression of selected matrix metalloproteinases or tissue inhibitors of metalloproteinases between the wound fluids from wild-type or IL-1R KO mice. However, wound fluids from IL-1R KO mice contained lower levels of IL-6 compared with wild-type controls. In addition, the infusion of IL-6 into wounds in IL-1R KO mice did not increase fibrosis. Skin wounds in IL-1R KO animals had lower levels of collagen and improved restoration of normal skin architecture compared with skin wounds in wild-type mice. However, neither the tensile strength of incisional skin wounds nor the rate of closure of excisional wounds differed between IL-1R KO and wild-type animals. The reduced fibrotic response in wounds from IL-1R KO mice could be reproduced by the administration of an IL-1R antagonist. These findings suggest that pharmacological interference with IL-1 signaling could have therapeutic value in the prevention of hypertrophic scarring and in the treatment of fibrotic diseases.Progress in the therapeutic management of abnormal wound healing has fallen short of expectations. The promise of molecular medicine to normalize impaired healing, as seen in diabetes, vascular insufficiency, or other chronic diseases, through the use of exogenous cytokines or growth factors has not been realized. At the other end of the abnormal wound healing spectrum, no reliable prophylactic or therapeutic measures exist to address the pathologies of excessive repair, exemplified by hypertrophic burn scars, keloids, and stenosing gastrointestinal or vascular anastomoses. The availability of effective therapies that allow for the modulation of the wound healing response would be of substantial clinical relevance. Recent reports demonstrate a markedly reduced cellular inflammatory response in models of sterile inflammation1,2,3,4 and decreased scarring after experimental myocardial infarction in mice deficient in the interleukin (IL)-1 receptor type I (IL-1R).4The present studies tested the hypothesis that genetic or pharmacological interference with IL-1 signaling would modulate the inflammatory response in skin and deep tissue wounds and reduce scar formation. Results using IL-1R knockout (KO) mice demonstrated that signaling through the IL-1R is required for the constitution of a normal cellular inflammatory response in cutaneous but not in deep tissue wounds. Most importantly, the quality of wound healing was different in IL-1R KOs, with cutaneous wounds in these animals attaining better restoration of normal skin architecture and a marked reduction in fibrosis without compromise in tensile strength. Additionally, deep tissue wounds in IL-1R KO mice showed a substantial reduction in collagen content, an observation that was reproduced by the administration of a human recombinant IL-1 R antagonist.Findings demonstrate a role for the IL-1/IL-1R axis in the regulation of wound healing. They suggest that interference with IL-1 signaling through the use of an IL-1R antagonist may find a clinical application in the prevention of excessive or hypertrophic scar formation.  相似文献   

3.
Ehlers-Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders with characteristic skin and joint involvement. The concept that EDS is a disease of fibrillar collagen was challenged by the identification of a clinically distinct, recessive type of EDS caused by deficiency of the extracellular matrix protein tenascin-X (TNX). Interestingly, haploinsufficiency of TNX is associated with the dominantly inherited hypermobility type of EDS. In this study, we examined whether missense mutations in the TNX gene can account for some of the cases of hypermobility type EDS. Furthermore, we studied whether missense mutations or heterozygosity for truncating mutations in the TNX gene lead to alterations in the dermal connective tissue. Sequence analysis revealed three missense mutations in TNX in hypermobility type EDS patients, which were not present in 192 control alleles. Morphometric analysis of skin biopsies of these patients showed altered elastic fibers in one of them, suggesting that this missense mutation is disease causing. Light microscopic and ultrastructural changes of the elastic fibers were observed in TNX-haploinsufficient hypermobility type EDS patients, which were not found in hypermobility type EDS patients in whom TNX mutations were excluded. Our results indicate that the observed alterations in elastic fibers are specific for hypermobility type EDS patients with mutations of TNX.  相似文献   

4.
Jacobsen JN, Steffensen B, Häkkinen L, Krogfelt KA, Larjava HS. Skin wound healing in diabetic β6 integrin‐deficient mice. APMIS 2010; 118: 753–64. Integrin αvβ6 is a heterodimeric cell surface receptor, which is absent from the normal epithelium, but is expressed in wound‐edge keratinocytes during re‐epithelialization. However, the function of the αvβ6 integrin in wound repair remains unclear. Impaired wound healing in patients with diabetes constitutes a major clinical problem worldwide and has been associated with the accumulation of advanced glycated endproducts (AGEs) in the tissues. AGEs may account for aberrant interactions between integrin receptors and their extracellular matrix ligands such as fibronectin (FN). In this study, we compared healing of experimental excisional skin wounds in wild‐type (WT) and β6‐knockout (β6?/?) mice with streptozotocin‐induced diabetes. Results showed that diabetic β6?/? mice had a significant delay in early wound closure rate compared with diabetic WT mice, suggesting that αvβ6 integrin may serve as a protective role in re‐epithelialization of diabetic wounds. To mimic the glycosylated wound matrix, we generated a methylglyoxal (MG)‐glycated variant of FN. Keratinocytes utilized αvβ6 and β1 integrins for spreading on both non‐glycated and FN‐MG, but their spreading was reduced on FN‐MG. These findings indicated that glycation of FN and possibly other integrin ligands could hamper keratinocyte interactions with the provisional matrix proteins during re‐epithelialization of diabetic wounds.  相似文献   

5.
Introduction: Tenascin-X (TNX) is an extracellular matrix (ECM) glycoprotein, the absence of which in humans leads to a recessive form of Ehlers–Danlos syndrome (EDS), a group of inherited connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. A mouse model of TNX-deficient type EDS has been used to characterize the dermatological, orthopedic, and obstetrical features. The growing insight in the clinical overlap between myopathies and inherited connective tissue disorders asks for a study of the muscular characteristics of inherited connective tissue diseases. Therefore, this study aims to define the muscular phenotype of TNX knockout (KO) mice. Materials and methods: We performed a comprehensive study on the muscular phenotype of these TNX KO mice, consisting of standardized clinical assessment, muscle histology, and gene expression profiling of muscle tissue. Furthermore, peripheral nerve composition was studied by histology and electron microscopy. Results: The main findings are the presence of mild muscle weakness, mild myopathic features on histology, and functional upregulation of genes encoding proteins involved in ECM degradation and synthesis. Additionally, sciatic nerve samples showed mildly reduced collagen fibril density of endoneurium. Discussion: The muscular phenotype of TNX KO mice consists of mild muscle weakness with histological signs of myopathy and of increased turnover of the ECM in muscle. Furthermore, mildly reduced diameter of myelinated fibers and reduction of collagen fibril density of endoneurium may correspond with polyneuropathy in TNX-deficient EDS patients. This comprehensive assessment can serve as a starting point for further investigations on neuromuscular function in TNX KO mice.  相似文献   

6.
Thrombomodulin is a cell surface anticoagulant that is expressed by endothelial cells and epidermal keratinocytes. Using immunohistochemistry, we examined thrombomodulin expression during healing of partial-thickness wounds in human skin and full-thickness wounds in mouse skin. We also examined thrombomodulin expression and wound healing in heterozygous thrombomodulin-deficient mice, compound heterozygous mice that have <1% of normal thrombomodulin anticoagulant activity, and chimeric mice derived from homozygous thrombomodulin-deficient embryonic stem cells. In both human and murine wounds, thrombomodulin was absent in keratinocytes at the leading edge of the neoepidermis, but it was expressed strongly by stratifying keratinocytes within the neoepidermis. No differences in rate or extent of reepithelialization were observed between wild-type and thrombomodulin-deficient mice. In chimeric mice, both thrombomodulin-positive and thrombomodulin-negative keratinocytes were detected within the neoepidermis. Compared with wild-type mice, heterozygous and compound heterozygous thrombomodulin-deficient mice exhibited foci of increased collagen deposition in the wound matrix. These findings demonstrate that expression of thrombomodulin in keratinocytes is regulated during cutaneous wound healing. Severe deficiency of thrombomodulin anticoagulant activity does not appear to alter reepithelialization but may influence collagen production by fibroblasts in the wound matrix.  相似文献   

7.
8.
Transforming growth factor-beta (TGF-beta) plays a central role in the pathogenesis of inflammatory and fibrotic diseases, including radiation-induced fibrosis. We previously reported that mice null for Smad3, a key downstream mediator of TGF-beta, show accelerated healing of cutaneous incisional wounds with reduced inflammation and accumulation of matrix. To determine if loss of Smad3 decreases radiation-induced injury, skin of Smad3+/+ [wild-type (WT)] and -/- [knockout (KO)] mice was exposed to a single dose of 30 to 50 Gy of gamma-irradiation. Six weeks later, skin from KO mice showed significantly less epidermal acanthosis and dermal influx of mast cells, macrophages, and neutrophils than skin from WT littermates. Skin from irradiated KO mice exhibited less immunoreactive TGF-beta and fewer myofibroblasts, suggesting that these mice will have a significantly reduced fibrotic response. Although irradiation induced no change in the immunohistochemical expression of the TGF-beta type I receptor, the epidermal expression of the type II receptor was lost after irradiation whereas its dermal expression remained high. Primary keratinocytes and dermal fibroblasts prepared from WT and KO mice showed similar survival when irradiated, as did mice exposed to whole-body irradiation. These results suggest that inhibition of Smad3 might decrease tissue damage and reduce fibrosis after exposure to ionizing irradiation.  相似文献   

9.
To clarify interleukin (IL)-6 roles in wound healing, we prepared skin excisions in wild-type (WT) and IL-6-deficient BALB/c [knockout (KO)] mice. In WT mice, the wound area was reduced to 50% of original size at 6 days after injury. Microscopically, leukocyte infiltration was evident at wound sites. Furthermore, the re-epithelialization rate was approximately 80% at 6 days after injury with increases in angiogenesis and hydroxyproline contents. The gene expression of IL-1, chemokines, adhesion molecules, transforming growth factor-beta1, and vascular endothelial growth factor was enhanced at the wound sites. In contrast, the enhanced expression of these genes was significantly reduced in KO mice. Moreover, in KO mice, the reduction of wound area was delayed with attenuated leukocyte infiltration, re-epithelialization, angiogenesis, and collagen accumulation. Finally, the administration of a neutralizing anti-IL-6 monoclonal antibody significantly delayed wound closure in WT mice. These observations suggest that IL-6 has crucial roles in wound healing, probably by regulating leukocyte infiltration, angiogenesis, and collagen accumulation.  相似文献   

10.
Transforming growth factor (TGF)-beta regulates many aspects of wound repair including inflammation, chemotaxis, and deposition of extracellular matrix. We previously showed that epithelialization of incisional wounds is accelerated in mice null for Smad3, a key cytoplasmic mediator of TGF-beta signaling. Here, we investigated the effects of loss of Smad3 on healing of wounds in skin previously exposed to ionizing radiation, in which scarring fibrosis complicates healing. Cutaneous wounds made in Smad3-null mice 6 weeks after irradiation showed decreased wound widths, enhanced epithelialization, and reduced numbers of neutrophils and myofibroblasts compared to wounds in irradiated wild-type littermates. Differences in breaking strength of wild-type and Smad3-null wounds were not significant. As shown previously for neutrophils, chemotaxis of primary dermal fibroblasts to TGF-beta required Smad3, but differentiation of fibroblasts to myofibroblasts by TGF-beta was independent of Smad3. Previous irradiation-enhanced induction of connective tissue growth factor mRNA in wild-type, but not Smad3-null fibroblasts, suggested that this may contribute to the heightened scarring in irradiated wild-type skin as demonstrated by Picrosirius red staining. Overall, the data suggest that attenuation of Smad3 signaling might improve the healing of wounds in previously irradiated skin commensurate with an inhibition of fibrosis.  相似文献   

11.
BACKGROUND: An extracellular matrix tenascin-X (TNX) is highly expressed in muscular tissues, especially heart and skeletal muscle, and is also prominent around blood vessels. The precise in vivo role of TNX remains to be elucidated. To identify proteins that interact with TNX in the extracellular environment, we searched for TNX-binding proteins using a yeast two-hybrid system. RESULTS: We used mouse TNX-specific fibronectin type III repeats (mTNX/FNIII13-25) as a bait for the screening. We found that vascular endothelial growth factor B (VEGF-B) binds to mTNX/FNIII13-25. This interaction was confirmed by pull-down assays and co-immunoprecipitation assays. The full-length mTNX, as well as mTNX/FNIII13-25, interacted with both alternative splice isoforms VEGF-B186 and VEGF-B167. Furthermore, the full-length mTNX also bound to VEGF-A. The minimal region of TNX that interacts with VEGF-B was mapped to the FNIII repeats (FNIII13-25) but not to the other characteristic domains of TNX. The TNX-binding site of VEGF-B was located in the N-terminal 115-amino acid region. mTNX/FNIII13-25 did not prevent the interaction of VEGF-B with VEGFR-1 (VEGF receptor 1), and VEGF-B could simultaneously bind to both mTNX/FNIII13-25 and VEGFR-1. A conditioned medium from transfected 293T cells coexpressing full-length TNX and VEGF-B could promote DNA synthesis in bovine endothelial cells in which VEGFR-1 were expressed. VEGFR-1 phosphorylation triggered by VEGF-B186 were increased in cells plated with mTNX/FNIII13-25 or full-length mTNX, compared with cells plated with VEGF-B186 alone. CONCLUSION: TNX interacts with VEGF-B and enhances the ability of VEGF-B to stimulate cell proliferation. This enhanced mitogenecity is caused by increased signals mediated by the VEGFR-1 receptor. This finding suggests a role for TNX in the regulation of the development of blood vessels such as vasculogenesis and angiogenesis.  相似文献   

12.
Macrophages play a critical role in the establishment of a regulated inflammatory response following tissue injury. Following injury, CCR2+ monocytes are recruited from peripheral blood to wound tissue, and direct the initiation and resolution of inflammation that is essential for tissue repair. In pathologic states where chronic inflammation prevents healing, macrophages fail to transition to a reparative phenotype. Using a murine model of cutaneous wound healing, we found that CCR2‐deficient mice (CCR2?/?) demonstrate significantly impaired wound healing at all time points postinjury. Flow cytometry analysis of wounds from CCR2?/? and WT mice revealed a significant decrease in inflammatory, Ly6CHi recruited monocyte/macrophages in CCR2?/? wounds. We further show that wound macrophage inflammatory cytokine production is decreased in CCR2?/? wounds. Adoptive transfer of mT/mG monocyte/macrophages into CCR2+/+ and CCR2?/? mice demonstrated that labeled cells on days 2 and 4 traveled to wounds in both CCR2+/+ and CCR2?/? mice. Further, adoptive transfer of monocyte/macrophages from WT mice restored normal healing, likely through a restored inflammatory response in the CCR2‐deficient mice. Taken together, these data suggest that CCR2 plays a critical role in the recruitment and inflammatory response following injury, and that wound repair may be therapeutically manipulated through modulation of CCR2.  相似文献   

13.
Role of endothelial selectins in wound repair.   总被引:3,自引:4,他引:3       下载免费PDF全文
P- and E-selectins are adhesion molecules expressed on activated endothelium and platelets at sites of vascular injury and inflammation. The selectins are important for leukocyte recruitment. Because little is known about the role of selectins in wound healing, we studied cutaneous wound repair of full-thickness excisional skin wounds in mice lacking P-selectin, E-selectin, or both of these selectins. The absence of either selectin alone had no notable effect on healing, and the only deficit observed was a delay in early neutrophil extravasation in the P-selectin-deficient mice. Mice deficient in both P- and E-selectins had markedly reduced recruitment of inflammatory cells and impaired closure of the wounds. Wound sections, studied up to 3 days after wounding, showed significant impairment of neutrophil influx. Macrophage numbers were also reduced in the double mutants at 3 and 7 days after wounding as compared with wild-type mice. Additionally, a wider epithelial gap in the wounds of the P- and E-selectin-double-deficient mice 3 days after wounding indicated delayed keratinocyte migration. These results demonstrate an important combined role for P- and E-selectins in processes leading to wound healing.  相似文献   

14.
We determined whether a two-part space-conforming polyethylene glycol/dopa polymer-based gel promoted healing of contaminated wounds in mice. This silver-catalysed gel was previously developed to be broadly microbiocidal in vitro while being biocompatible with human wound cell functioning. Full-thickness wounds were created on the backs of mice. The wounds were inoculated with 10(4) CFU of each of four common skin wound contaminants, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanii and Clostridium perfringens. The wounds were then treated with our multifunctional polymer-based gel, the commercially available NewSkin product, or left to heal untreated. The untreated wounds were overtly infected, and presented detectable bacterial loads over the entire 21-day healing period, while the gel and NewSkin groups presented significantly smaller rises in bacterial levels and were cleared of detectable colonies by the third week, with the gel group clearing the bacteria earlier. While all three groups healed their wounds, the polymer-based gel-treated group demonstrated significantly earlier re-epithelialization and dermal maturation (P<0.05). This was reflected in a quick regain of tensile strength. This accelerated dermal maturation and regain in strength was noted in mice treated with the polymer-based gel when compared to wound treated with the commercially available Aquacel-Ag dressing (P<0.05). What distinguishes the polymer-based gel from these other products is that it is incorporated within the healing wound. These preclinical studies show that the anti-microbial polymer gel not only supports but also accelerates healing of bacterially contaminated wounds.  相似文献   

15.
To determine the role of matrix metalloproteinase-7 (MMP-7) in the pathogenesis of chlamydial infection, C57BL/6 wild-type (WT) and MMP-7 knockout (KO) mice were infected intravaginally with Chlamydia trachomatis mouse pneumonitis (MoPn). Over a period of 6 weeks postinfection, various organs were cultured for C. trachomatis. Other infected animals were mated to assess their fertility status. No significant differences were observed between WT and KO mice in the number of animals with positive vaginal cultures, length of time of C. trachomatis shedding, or the number of C. trachomatis inclusion-forming units (IFU) recovered from their genital tracts. Likewise, the number of animals with hydrosalpinx, and the fertility rates and the number of embryos per mouse, were similar in WT and KO mice. Cultures from the spleen, lungs, kidneys and large intestine yielded similar numbers of IFU from WT and KO mice. However, the number of C. trachomatis IFU recovered from the small intestine of KO mice was significantly higher than that recovered from the small intestine of WT mice at 2 weeks postinfection. Because MMP-7 KO mice are deficient in active intestinal alpha-defensins, the results suggest that these components play a role in regulating colonization of the gastrointestinal tract by Chlamydia. By contrast, MMP-7 is dispensable in the progression and resolution of the genital tract infection.  相似文献   

16.
Contact dermatitis is the second most reported occupational injury associated with workers compensation. Inflammatory cytokines are closely involved with the development of dermatitis, and their modulation could exacerbate skin damage, thus contributing to increased irritancy. IL-6 is a pro-inflammatory cytokine paradoxically associated with both skin healing and inflammation. To determine what role this pleiotropic cytokine plays in chemically-induced irritant dermatitis, IL-6 deficient (KO), IL-6 over-expressing transgenic (TgIL6), and corresponding wild-type (WT) mice were exposed to acetone or the irritants JP-8 jet fuel or benzalkonium chloride (BKC) daily for 7 days. Histological analysis of exposed skin was performed, as was tissue mRNA and protein expression patterns of inflammatory cytokines via QPCR and multiplex ELISA. The results indicated that, following JP-8 exposure, IL-6KO mice had greatly increased skin IL-1β, TNFα, CCL2, CCL3, and CXCL1 mRNA and corresponding product protein expression when compared to that of samples from WT counterparts and acetone-exposed control mice. BKC treatment induced the expression of all cytokines examined as compared to acetone, with CCL2 significantly higher in skin from IL-6KO mice. Histological analysis showed that IL-6KO mice displayed significantly more inflammatory cell infiltration as compared to WT and TgIL6 mice in response to jet fuel. Analysis of mRNA for the M2 macrophage marker CD206 indicated a 4-fold decrease in skin of IL-6KO mice treated with either irritant as compared to WT. Taken together, these observations suggest that IL-6 acts in an anti-inflammatory manner during irritant dermatitis, and these effects are dependent on the chemical nature of the irritant.  相似文献   

17.
It has been hypothesized that excessive activity of matrix metalloproteinases (MMPs), in particular the gelatinases MMP-9 and MMP-2, contributes to poor healing of chronic skin ulcers. We compared MMP-9 and MMP-2 in wound margin biopsies of standardized acute partial-thickness wounds in healthy volunteers (n = 6) and in venous leg ulcer patients (n = 12) with those of chronic wounds of different etiologies (n = 34) by a combination of specific analyses of activity and protein localization. We also studied MMP-14 by immunohistochemistry and in situ hybridization in parallel. Neither MMP-9 (P =.814) nor MMP-2 (P =.742) endogenous activities differed significantly between acute and chronic wound tissues. Acute wound healing was characterized by induction of MMP-9 in the advancing epithelium. In chronic wounds, prominent MMP-9 immunostaining was seen in neutrophils and macrophages in the ulcer bed, but virtually no MMP-9 was detected in wound edge keratinocytes. MMP-2 was increased and activated with acute wound age. MMP-2 was found abundantly in dermal fibroblasts and endothelial cells beneath, but not in new epithelium of acute and chronic wounds. MMP-14 mRNA or protein was detected solely in the stroma of both acute and chronic wounds. In conclusion, the overall activity of gelatinases MMP-9 and MMP-2 was not increased in chronic wounds compared to normally healing wound tissues. Chronic nonhealing wounds may not be caused by excessive gelatinase activity, but are distinguished from healing wounds by an unfavorable distribution and persistance of MMP-9.  相似文献   

18.
Skin wound healing is mediated by inflammatory cell infiltration of the wound site. Inducible costimulator (ICOS), expressed on activated T cells, and its ligand, ICOS ligand (ICOSL), expressed on antigen-presenting cells, have been considered a single receptor-ligand pair. Although the ICOS-ICOSL pathway participates in adaptive immunity, its roles in skin wound healing, which is mediated by innate immune responses, remain unknown. To clarify these roles, repair of excisional wounds was examined in ICOS(-/-) mice, ICOSL(-/-) mice, and ICOS(-/-)ICOSL(-/-) mice. Each mutant strain showed similar, dramatic delays in wound healing, especially at early times. Knockout mice showed suppressed keratinocyte migration, angiogenesis, and granulation tissue formation, and diminished T-cell, macrophage, and neutrophil infiltration. The loss of ICOS and/or ICOSL resulted in marked suppression of cytokine expression in wounds, especially the Th2 cytokines interleukin (IL)-4, IL-6, and IL-10. T-cell transfer experiments and T-cell depletion therapy further clarified the important roles of ICOS expressed on T cells and its interaction with ICOSL. Application of IL-6, but not IL-4, to the wounds significantly increased the onset of early wound healing in mutant mice. Thus, our results indicate that ICOS-ICOSL costimulatory signaling has critical roles during wound healing, most likely by inducing IL-6 production.  相似文献   

19.
PDGF and FGF stimulate wound healing in the genetically diabetic mouse.   总被引:22,自引:11,他引:22       下载免费PDF全文
To examine the effects of recombinant growth factors in vivo, impaired wound healing was studied in genetically diabetic C57BL/KsJ-db/db mice. Large full-thickness skin wounds made on the backs of these mice exhibited significant delays in the entry of inflammatory cells into the wound, the formation of granulation tissue, and in wound closure when compared to their nondiabetic littermates. Recombinant human platelet-derived growth factor (rPDGF-BB, 1 or 10 micrograms), recombinant human basic fibroblast growth factor (rbFGF, 1 micrograms), or combinations of both were applied topically to the wounds for 5 to 14 days after wounding. Diabetic mouse wounds treated with rPDGF-BB or rbFGF had many more fibroblasts and capillaries in the wound bed at 10 and 21 days than did wounds treated with the vehicle alone. The animals treated with growth factors also had significantly greater wound closure at 21 days than those treated with the vehicle. Combinations of rPDGF-BB and rbFGF improved all parameters of healing but not to a greater extent than either growth factor alone. The effectiveness of rPDGF-BB and rbFGF suggest that recombinant growth factors may be useful in the treatment of patients with deficient wound repair.  相似文献   

20.
Components of the fibrinolytic system have been implicated in cell migratory events associated with tissue remodeling. Studies in plasminogen-deficient mice (PG(-/-)) indicated that skin wound healing is impaired, but is resolved with an additional fibrinogen deficiency. Plasminogen activator inhibitor-1 (PAI-1) expression by keratinocytes has been identified shortly after wound injury. PAI-1 expression could affect wound healing by regulating the fibrinolytic environment of the wounded area, as well as influencing events associated with cell attachment and detachment through interactions with matrix proteins. The present study directly assesses PAI-1 involvement in skin wound healing through analyses of a dermal biopsy punch model in PAI-1-deficient (PAI-1(-/-) mice. While the cellular events associated with the healing process are similar between wild-type (WT) and PAI-1(-/-) mice, the rate of wound closure is significantly accelerated in PAI-1(-/-) mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号