首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaccination with irradiated granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting gene-transduced cancer vaccines induces tumoricidal immune responses. In a Phase I human gene therapy trial, eight immunocompetent prostate cancer (PCA) patients were treated with autologous, GM-CSF-secreting, irradiated tumor vaccines prepared from ex vivo retroviral transduction of surgically harvested cells. Expansion of primary cultures of autologous vaccine cells was successful to meet trial specifications in 8 of 11 cases (73%); the yields of the primary culture cell limited the number of courses of vaccination. Side effects were pruritis, erythema, and swelling at vaccination sites. Vaccine site biopsies manifested infiltrates of dendritic cells and macrophages among prostate tumor vaccine cells. Vaccination activated new T-cell and B-cell immune responses against PCA antigens. T-cell responses, evaluated by assessing delayed-type hypersensitivity (DTH) reactions against untransduced autologous tumor cells, were evident in two of eight patients before vaccination and in seven of eight patients after treatment. Reactive DTH site biopsies manifested infiltrates of effector cells consisting of CD45RO+ T-cells, and degranulating eosinophils consistent with activation of both Th1 and Th2 T-cell responses. A distinctive eosinophilic vasculitis was evident near autologous tumor cells at vaccine sites, and at DTH sites. B-cell responses were also induced. Sera from three of eight vaccinated men contained new antibodies recognizing polypeptides of 26, 31, and 150 kDa in protein extracts from prostate cells. The 150-kDa polypeptide was expressed by LNCaP and PC-3 PCA cells, as well as by normal prostate epithelial cells, but not by prostate stromal cells. No antibodies against prostate-specific antigen were detected. These data suggest that both T-cell and B-cell immune responses to human PCA can be generated by treatment with irradiated, GM-CSF gene-transduced PCA vaccines.  相似文献   

2.
Cancer vaccine trials have failed to yield robust immune-correlated clinical improvements as observed in animal models, fueling controversy over the utility of human cancer vaccines. Therapeutic vaccination represents an intriguing additional therapy for glioblastoma multiforme (GBM; grade 4 glioma), which has a dismal prognosis and treatment response, but only early phase I vaccine trial results have been reported. Immune and clinical responses from a phase II GBM vaccine trial are reported here. IFN-gamma responsiveness was quantified in peripheral blood of 32 GBM patients given therapeutic dendritic cell vaccines. Posttreatment times to tumor progression (TTP) and survival (TTS) were compared in vaccine responders and nonresponders and were correlated with immune response magnitudes. GBM patients (53%) exhibited >or=1.5-fold vaccine-enhanced cytokine responses. Endogenous antitumor responses of similar magnitude occurred in 22% of GBM patients before vaccination. Vaccine responders exhibited significantly longer TTS and TTP relative to nonresponders. Immune enhancement in vaccine responders correlated logarithmically with TTS and TTP spanning postvaccine chemotherapy, but not with initial TTP spanning vaccination alone. This is the first report of a progressive correlation between cancer clinical outcome and T-cell responsiveness after therapeutic vaccination in humans and the first tracing of such correlation to therapeutically exploitable tumor alteration. As such, our findings offer unique opportunities to identify cellular and molecular components of clinically meaningful antitumor immunity in humans.  相似文献   

3.
PURPOSE: Allogeneic granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor vaccines can cure established tumors in the mouse, but their efficacy against human tumors is uncertain. We have developed a novel GM-CSF-secreting pancreatic tumor vaccine. To determine its safety and ability to induce antitumor immune responses, we conducted a phase I trial in patients with surgically resected adenocarcinoma of the pancreas. PATIENTS AND METHODS: Fourteen patients with stage 1, 2, or 3 pancreatic adenocarcinoma were enrolled. Eight weeks after pancreaticoduodenectomy, three patients received 1 x 10(7) vaccine cells, three patients received 5 x 10(7) vaccine cells, three patients received 10 x 10(7) vaccine cells, and five patients received 50 x 10(7) vaccine cells. Twelve of 14 patients then went on to receive a 6-month course of adjuvant radiation and chemotherapy. One month after completing adjuvant treatment, six patients still in remission received up to three additional monthly vaccinations with the same vaccine dose that they had received originally. RESULTS: No dose-limiting toxicities were encountered. Vaccination induced increased delayed-type hypersensitivity (DTH) responses to autologous tumor cells in three patients who had received >or= 10 x 10(7) vaccine cells. These three patients also seemed to have had an increased disease-free survival time, remaining disease-free at least 25 months after diagnosis. CONCLUSION: Allogeneic GM-CSF-secreting tumor vaccines are safe in patients with pancreatic adenocarcinoma. This vaccine approach seems to induce dose-dependent systemic antitumor immunity as measured by increased postvaccination DTH responses against autologous tumors. Further clinical evaluation of this approach in patients with pancreatic cancer is warranted.  相似文献   

4.
A phase I clinical trial with granulocyte-macrophage colony-stimulating factor tumor cell vaccines in patients with metastatic renal cell carcinoma (RCC) showed immune cell infiltration at vaccine sites and delayed-type hypersensitivity (DTH) responses to autologous tumor cells indicative of T-cell immunity. To further characterize RCC T-cell responses and identify relevant RCC-associated antigens, we did a detailed analysis of CD8+ T-cell responses in two vaccinated RCC patients who generated the greatest magnitude of DTH response and also displayed a strong clinical response to vaccination (>90% reduction in metastatic tumor volume). Three separate CD8+ T-cell lines (and subsequent derived clones) derived from patient 24 recognized distinct RCC-associated antigens. One recognized a shared HLA-A*0201-restricted antigen expressed by both renal cancer cells and normal kidney cells. This recognition pattern correlated with a positive DTH test to normal kidney cells despite no evidence of impairment of renal function by the patient's remaining kidney after vaccination. A second line recognized a shared HLA-C7-restricted antigen that was IFN-gamma inducible. A third line recognized a unique HLA-A*0101-restricted RCC antigen derived from a mutated KIAA1440 gene specific to the tumor. In addition, two independent CTL lines and three clones were also generated from patient 26 and they recognized autologous tumor cells restricted through HLA-A*0205, HLA-A/B/C, and HLA-B/C. These results show that paracrine granulocyte-macrophage colony-stimulating factor tumor vaccines may generate a diverse repertoire of tumor-reactive CD8+ T-cell responses and emphasize the importance of polyvalency in the design of cancer immunotherapies.  相似文献   

5.
The combined therapeutic effect of cytokine-producing cancer cell vaccines and local radiotherapy was studied in a mouse glioma 261 (GI261) brain tumor model. Brain tumor-bearing mice were treated with cytokine (IL -4, IL-6, IL-7, GM-CSF, TNF-alpha, LIF, LT) producing vaccines made by in vitro transduction of GI261 cells with the corresponding adenoviral vectors. Vaccines producing either IL-4 or GM-CSF cured 20-40% of mice. The antitumor effect strongly depended on the secreted cytokine level. Vaccination therapy induced specific activation of cytotoxic T lymphocytes measured by cell-mediated cytotoxicity assay. Brain tumors were heavily infiltrated by CD4+ lymphocytes after treatment with IL-4- or GM-CSF-secreting cells. GM-CSF vaccination induced moderate CD8+ infiltration, as well. Depleting either CD4+ or CD8+ lymphocyte subsets abolished the anticancer effect of GM-CSF-expressing cells. Strong synergism was observed by combining cytokine vaccination (GM-CSF, IL-4, IL-12) with local tumor irradiation: about 80-100% of the glioma-bearing mice was cured. The high efficiency of combined treatment was maintained even under suboptimal conditions when neither of the modalities cured any of the mice alone. This suggests that vaccination therapy might open a new potential in the clinical treatment of high-grade gliomas when applied as adjuvant to existing treatment modalities.  相似文献   

6.
Tumor vaccines composed of autologous tumor cells genetically modified to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) (GVAX) have demonstrated clinical activity in advanced-stage non-small-cell lung cancer (NSCLC). In an effort to remove the requirement for genetic transduction of individual tumors, we developed a 'bystander' GVAX platform composed of autologous tumor cells mixed with an allogeneic GM-CSF-secreting cell line. We conducted a phase I/II trial of this vaccine (3-12 biweekly vaccinations) in advanced-stage NSCLC. Tumors were harvested from 86 patients, tumor cell processing was successful in 76, and 49 proceeded to vaccination. The most common toxicity was local vaccine injection site reactions. Serum GM-CSF pharmacokinetics were consistent with secretion of GM-CSF from vaccine cells for up to 4 days with associated transient leukocytosis confirming the bioactivity of vaccine-secreted GM-CSF. Evidence of vaccine-induced immune activation was demonstrated; however, objective tumor responses were not seen. Compared with autologous GVAX vaccines prepared by transduction of individual tumors with an adenoviral GM-CSF vector, vaccine GM-CSF secretion was approximately 25-fold higher with the bystander GVAX vaccine used in this trial. However, the frequency of vaccine site reactions, tumor response, time to disease progression, and survival were all less favorable in the current study.  相似文献   

7.
A promising cancer vaccine involves the fusion of dendritic cells (DCs) with tumor cells such that a broad array of tumor antigens are presented in the context of DC-mediated costimulation and stimulatory cytokines. In diverse animal models, vaccination with DC/tumor fusions results in protection from an otherwise lethal challenge of tumor cells and eradication of established disease. In phase I clinical studies, vaccination with DC/tumor fusions was well tolerated, and induced immunologic responses in the majority of patients and clinical responses in a subset. Vaccine efficacy may be blunted by the immunosuppressive milieu characteristic of patients with malignancy, including the increased presence of regulatory T cells, and inhibitory pathways such as the PD-1/PDL-1 pathway. A current focus of research interest lies in enhancing response to cancer vaccines, by combining vaccination with tumor cytoreduction, regulatory T-cell depletion, and blockade of critical inhibitory pathways.  相似文献   

8.
The first 1000 dendritic cell vaccinees   总被引:12,自引:0,他引:12  
Dendritic cells (DCs) are potent antigen-presenting cells that have the ability to stimulate primary T cell antitumor immune responses in animals and humans. Since the first published clinical trial of dendritic cell vaccination in 1995, 98 studies describing more than 1000 vaccinees have been published in peer-reviewed medical journals or presented at the annual meetings of the American Society for Clinical Oncology, the American Association of Cancer Research, or the American Society of Hematology. Trials have been performed in 15 countries. Trials included patients with more than two dozen tumor types; most trials studied patients with malignant melanoma, prostate cancer, colorectal carcinoma, or multiple myeloma, using autologous DCs pulsed with synthetic antigens or idiotype antibodies. The DC vaccines were also prepared by pulsing DCs with tumor lysates or RNA, by transfection with tumor DNA, or by creating tumor cell/DC fusions. Various approaches to vaccine cell numbers, length of vaccine program, site of vaccination, frozen preservation of vaccine, and use of a maturation step for DCs were used. Adverse effects associated with DC vaccination were uncommon; most were mild and self-limited and none were serious. Clinical responses were observed in approximately half the trials. The DC vaccination may provide a safe approach to cancer immunotherapy that can overcome the limited reach and immunogenicity of peptide vaccines.  相似文献   

9.
Cancer vaccine therapy represents a promising therapeutical option. Consistently, with these new treatment strategies, the use of dendritic cell vaccines is becoming increasingly widespread and currently in the forefront for cancer treatment. The purpose of this study was to evaluate the feasibility and safety of tumor lysate-pulsed dendritic cell (DC) vaccine in patients with advanced cancers. For this purpose, eighteen patients with relapsed or refractory cancer were vaccinated with peripheral monocyte-derived DCs generated with GM-CSF and IL-4, and pulsed consequently with 100 microg/ml of tumor lysate before maturation in culture in the presence of IL-1beta, PGE2 and TNF alpha for two days. The first two vaccinations were given intradermally every two weeks while further injections were given monthly. Tumor lysate-pulsed dendritic cell injections were well-tolerated in all patients with no more than grade 1 injection-related toxicity. Local inflammatory response was mainly erythematous which subsided in 48 hrs time. No end organ toxicity or autoimmune toxicity was identified. Clinical responses observed in our study were satisfactory for a phase I clinical study. We observed 4 (22%) objective clinical responses. These responses are significantly correlated with delayed type hypersensitivity testing (DTH) (p < 0.01). The results showed that this active immunotherapy is feasible, safe, and may be capable of eliciting immune responses against cancer.  相似文献   

10.
A number of cancer vaccine strategies for the treatment of colorectal cancer have entered clinical trials. Whole tumor cell vaccines have been developed from both patients’ autologous tumor cells as well as established allogeneic tumor cell lines. A vaccine consisting of autologous tumor cells along with bacillus Calmette-Guerin (BCG) has shown a potential clinical benefit in patients with stage II colon cancer. Other approaches using autologous tumor cells have involved transfection of primary tumor cells with cytokine genes. Allogeneic tumor cell vaccines have also been modified to express cytokine genes. Vectors have been studied extensively as a means of vaccine strategy. One tumor-associated antigen (TAA) that has been extensively studied in viral vector vaccines is carcinoembryonic antigen (CEA). A recombinant vaccinia virus containing the CEA transgene (rV-CEA) has been shown to elicit CEA-specific immune responses in advanced carcinoma patients. However, patients receiving multiple vaccinations had limited increases in CEA-specific responses by the third vaccination. This problem may be overcome by the use of non-replicating poxviruses, which have been shown in clinical trials to be safe and to elicit CEA-specific responses. However, recent clinical studies have shown that the optimal use of poxviruses is to prime with vaccinia, followed by boosts with avipox vectors. A recent randomized clinical trial showed that patients primed with rV-CEA and boosted with avipox-CEA had greater immune responses compared with patients receiving three 1-monthly avipox-CEA vaccinations followed by an rV-CEA vaccination. Furthermore, a statistically significant survival advantage was noted in the prime/boost arm. Ongoing studies are now incorporating the genes for costimulatory molecules along with TAA in these vectors. Another vaccine strategy involving TAA that is currently in clinical trials for colorectal cancer is the peptide vaccine. Dendritic cells (DCs) are considered to be the most potent antigen-presenting cell, thus providing an attractive modality for cancer vaccines. In addition to using DCs for peptide-based vaccines, a number of other strategies, including transfection with messenger RNA, have produced specific T-cell responses in clinical trials. In addition, several clinical trials using murine anti-idiotype antibodies as vaccines for patients with advanced colorectal cancer have shown both immunologic responses as well as clinical responses.  相似文献   

11.
The major aims of the International Meeting on Cancer Vaccines were to review the state-of-the-art research on cancer vaccines, to compare different experimental approaches of therapeutic vaccination and to discuss critical issues and perspectives. The results from recent clinical trials in patients treated with different types of cancer vaccines were presented. Reasons for the limited response and possible modalities for enhancing efficacy of therapeutic vaccines were subjects of major discussion. A consensus was achieved on the need of combining cancer vaccines with other anticancer treatments. Of note, evidence stemming from studies in animal models pointed out new rationales for a selective combination of cancer vaccines with chemotherapy. In addition, some main presentations focused on new adjuvants (CpG oligonucleotides) and on the role of cytokines (i.e., type I IFN, interleukin 12, and interleukin 15) in promoting an antitumor immune response to vaccines. A considerable attention was given to regulatory T cells and to strategies for suppressing their function, thus enhancing vaccine efficacy. An entire session was devoted to the use of dendritic cells for the development of cancer vaccines. The results of clinical studies and the advantages of using new modalities for preparing dendritic cell-based vaccines were discussed.  相似文献   

12.
Tumor-specific immune tolerance limits the effectiveness of cancer vaccines. In addition, tumor vaccines alone have a limited potential for the treatment of measurable tumor burdens. This highlights the importance of identifying more potent cancer vaccine strategies for clinical testing. We tested immune-modulating doses of chemotherapy in combination with a granulocyte/macrophage-colony stimulating factor (GM-CSF)-secreting, HER-2/neu (neu)-expressing whole-cell vaccine as a means to treat existing mammary tumors in antigen-specific tolerized neu transgenic mice. Earlier studies have shown that neu transgenic mice exhibit immune tolerance to the neu-expressing tumors similar to what is observed in patients with cancer. We found that cyclophosphamide, paclitaxel, and doxorubicin, when given in a defined sequence with a GM-CSF-secreting, neu-expressing whole-cell vaccine, enhanced the vaccine's potential to delay tumor growth in neu transgenic mice. In addition, we showed that these drugs mediate their effects by enhancing the efficacy of the vaccine rather than via a direct cytolytic effect on cancer cells. Furthermore, paclitaxel and cyclophosphamide appear to amplify the T helper 1 neu-specific T-cell response. These findings suggest that the combined treatment with immune-modulating doses of chemotherapy and the GM-CSF-secreting neu vaccine can overcome immune tolerance and induce an antigen-specific antitumor immune response. These data provide the immunological rationale for testing immune-modulating doses of chemotherapy in combination with tumor vaccines in patients with cancer.  相似文献   

13.
Vaccination using dendritic/tumor cell hybrids represents a novel and promising cancer immunotherapy. We have developed a technology that can instantly purify the hybrids (dendritomas) from the fusion mixture of dendritic cells (DCs) and tumor cells. Our animal studies and a phase I study of stage IV melanoma patients demonstrated that dendritoma vaccination could be conducted without major toxicity and induced tumor cell-specific immunological and clinical responses. In this pilot study, ten stage IV renal cell carcinoma patients were studied. Dendritomas were made from autologous DCs and tumor cells and administered by subcutaneous injection. After initial vaccination, three escalating doses of IL-2 (3, 6, and 9 million units each) were followed within five days. This treatment regimen was tolerated well without severe adverse events directly related to the dendritoma vaccine. Most adverse events were related to IL-2 administration or pre-existing disease. Patient-specific immune responses were evaluated by flow cytometric measurement of interferon-gamma-producing T-cells before and after vaccination in response to stimulation with tumor antigens. Nine out of nine patients eligible for the analysis showed an increase of IFN-gamma-expressing CD4+ T cells after vaccination(s); while five out of eight patients eligible for the analysis showed an increase of IFN-gamma-expressing CD8+ T cells. Clinical responses were documented in 40% of the patients, three with stabilization of disease and one with a partial response documented by a reduction in tumor size. This pilot study demonstrated that dendritoma vaccines could be administered safely to patients with metastatic renal cell carcinoma, while producing both clinical and immunologic evidence of response.  相似文献   

14.
Prostate stem cell antigen (PSCA) and prostate-specific antigen (PSA) are overexpressed in most prostate cancers. PSCA- and PSA-derived, HLA-A2 binding peptides are specific targets for T-cell responses in vitro. A phase I/II trial was performed to demonstrate feasibility, safety and induction of antigen-specific immunity by vaccination with dendritic cells (DC) presenting PSCA and PSA peptides in patients with hormone- and chemotherapy-refractory prostate cancer. Patients received 4 vaccinations with a median of 2.7 x 10(7) peptide-loaded mature DC s.c. in biweekly intervals. Clinical responses were assessed 2 weeks after the 4th vaccination. Immune monitoring was performed by DTH and HLA multimer analysis. Twelve patients completed vaccination without relevant toxicities. Six patients had stable disease after 4 vaccinations. One patient had a complete disappearance of lymphadenopathy despite rising PSA. Four patients with SD and 1 progressor developed a positive DTH after the 4th vaccination. With a median survival of all patients of 13.4 months, DTH-positivity was associated with significantly superior survival (p = 0.003). HLA tetramer analysis detected high frequencies of peptide-specific T cells after 2 vaccinations in 1 patient who was also the sole responder to concomitant hepatitis B vaccination as an indicator of immune competence and survived 27 months after start of vaccination. Vaccination with PSA/PSCA peptide-loaded, autologous DCs may induce cellular responses primarily in immunocompetent patients, which appear to be associated with clinical benefit. Testing of DC-based vaccination is warranted for patients at earlier stages of prostate cancer.  相似文献   

15.
Hybrid cell vaccination was developed as therapeutic approach that aims at stimulating tumor-specific cytotoxic T-cell responses in cancer patients using hybrids of autologous tumor and allogeneic dendritic cells. We tested this concept and the efficacy of the vaccines in inducing clinical and immunologic responses in a clinical trial with melanoma stage III and IV patients. Of the 17 patients evaluated, 1 experienced a complete response, 1 a partial response and 6 stable disease with remarkably long survival times. In 11 of 14 patients analyzed, high-frequency T-cell responses to various tumor-associated T-cell epitope were induced and detectable in the peripheral blood. These immune responses were detected in clinical response patients as well as nonresponders. Failures of clinical responses in all the cases investigated correlated with loss of antigen expression and presentation. Hybrid cell vaccination thus proves effective in inducing tumor-specific T-cell responses in cancer patients.  相似文献   

16.
The development of delayed-type hypersensitivity (DTH) response to recall antigens has long been utilized as a measure of immune competence. It is assumed that because patients with advanced stage cancers exhibit multiple immune system defects they may not be responsive to immunization. We pre-selected patients with advanced HER-2/neu (HER2) overexpressing breast and ovarian cancers for enrolment into a phase I trial designed to evaluate the immunogenicity of a HER2 peptide vaccine based on the patient's immune competence as assessed by DTH skin testing to common recall antigens (Multitest CMI, Institut Merieux, Lyon, France). At the time of a positive DTH response to tetanus toxoid (tt) peripheral blood was obtained to measure T cell responses to tt. Of 53 patients evaluated, 38 (72%) were not anergic. Among the 15 (28%) who were, seven patients with advanced stage breast cancer were re-tested a median of 26 days (range 12–150 days) after receiving a tt booster vaccination. Five of the seven had positive DTH responses when re-challenged with tt and six had peripheral blood tetanus specific T cell response with stimulation index > 2.0. Thus, the majority of patients studied with advanced stage breast or ovarian cancer were able to mount a DTH response to common recall antigens. Moreover, a negative response by DTH testing to a battery of common recall antigens was not a reflection of the breast cancer patient's ability to mount a cell-mediated immune response to a vaccinated antigen, tt.  相似文献   

17.
《Clinical lymphoma》2000,1(2):129-139
Exploitation of the immune system is an attractive strategy for developing selective lymphoma therapies. In the past several decades, increased knowledge of tumor immunology has granted investigators the tools to formulate a variety of lymphoma-specific vaccines. Vaccines targeting the tumor-specific immunoglobulin (idiotype) of B-cell lymphomas were the first to be developed, owing to successful active vaccination studies in animal models and clinical studies of passive anti-idiotype monoclonal antibodies. In Initials clinical trials, patient-specific idiotype vaccines have been found to induce anti-idiotype immune responses that correlate with improved disease-free and overall survival and the reduction of the level of detectable residual disease. More recent strategies for improving the potency and practicality of idiotype vaccines are utilization of dendritic cells, recombinant idiotype proteins, and DNA vaccination. Custom-made vaccines utilizing whole autologous tumor cells are also being developed. Given the exciting results of these early lymphoma vaccine studies and the accelerated pace of immunologic research, it is hoped that vaccines will someday expand the armamentarium of effective lymphoma therapies.  相似文献   

18.
The use of dendritic cell (DC)-based cancer vaccines has emerged as a promising area of investigation in the field of tumor immunotherapy. DCs are potent antigen-presenting cells that are essential for the initiation of primary immune responses. DCs that have been manipulated to express tumor antigens are capable of stimulating tumor-specific immunity. The fusion of tumor cells with DCs results in the presentation of a broad spectrum of tumor antigens in the context of the immune-stimulating machinery of the DC. Animal models have demonstrated that vaccination with DC/tumor fusions is protective from a lethal challenge with tumor cells and results in regression of established disease. Preclinical human studies in breast cancer have shown that fusion cells stimulate cellular immune responses capable of lysing autologous tumor cells. Based on these findings, a phase I clinical trial has been conducted in patients with metastatic breast cancer to examine the toxicity profile and immunologic impact associated with vaccination with DC/tumor fusions.  相似文献   

19.
目的:探讨自体热休克凋亡细胞负载的树突状细胞(dendritic cells,DC)治疗大肠癌的临床疗效。方法:采用酶消化法从手术切除的14例大肠癌新鲜组织获得单细胞悬液,热休克处理后用桦脂酸诱导其凋亡制备成细胞抗原;采集外周静脉血,分离单个核细胞,经GM-CSF与IL-4体外诱导成未成熟树突状细胞,负载细胞抗原后制备成DC肿瘤疫苗;对14例大肠癌患者进行4个疗程的DC免疫治疗,观察患者不良反应、敏感程度、生存质量、生存时间、癌胚抗原等临床指标。结果:DC治疗大肠癌未出现明显不良反应,5例患者的DTH检测阳性;14例患者的平均CEA水平由治疗前的99.5ng/ml降至治疗后的71.4ng/ml(P〈0.05);治疗后血清中IL-2、IL-12及IFN-γ浓度均显著高于治疗前,具有统计学差异(P〈0.05);所有患者均生存1年,其中1例患者出现了短暂的后腹膜淋巴结缩小,持续3个月,第2年由于肿瘤的进展生存率下降,由80%降至20%;患者的KPS评分上升,与治疗前比较有所改善(P〈0.05)。结论:自体热休克凋亡细胞负载的DC治疗大肠癌在临床治疗中具较高安全性,可改善患者免疫功能,临床观察显示患者近期临床效果明显;为大肠癌的临床综合治疗提供了一种新方法。  相似文献   

20.
目的:探讨自体热休克凋亡细胞负载的树突状细胞(dendritic cells,DC)治疗大肠癌的临床疗效。方法:采用酶消化法从手术切除的14例大肠癌新鲜组织获得单细胞悬液,热休克处理后用桦脂酸诱导其凋亡制备成细胞抗原;采集外周静脉血,分离单个核细胞,经GM-CSF与IL-4体外诱导成未成熟树突状细胞,负载细胞抗原后制备成DC肿瘤疫苗;对14例大肠癌患者进行4个疗程的DC免疫治疗,观察患者不良反应、敏感程度、生存质量、生存时间、癌胚抗原等临床指标。结果:DC治疗大肠癌未出现明显不良反应,5例患者的DTH检测阳性;14例患者的平均CEA水平由治疗前的99.5ng/ml降至治疗后的71.4ng/ml(P<0.05);治疗后血清中IL-2、IL-12及IFN-γ浓度均显著高于治疗前,具有统计学差异(P<0.05);所有患者均生存1年,其中1例患者出现了短暂的后腹膜淋巴结缩小,持续3个月,第2年由于肿瘤的进展生存率下降,由80%降至20%;患者的KPS评分上升,与治疗前比较有所改善(P<0.05)。结论:自体热休克凋亡细胞负载的DC治疗大肠癌在临床治疗中具较高安全性,可改善患者免疫功能,临床观察显示患者近期临床效果明显;为大肠癌的临床综合治疗提供了一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号