首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cumulating evidence has demonstrated that μ opioid receptor (MOR) agonists promote spinal glial activation, lead to synthesis and release of proinflammatory cytokines and chemokines, and contribute to opioid-induced hyperalgesia and development of opioid tolerance and dependence. However, whether these MOR agonists directly or indirectly act on spinal cord astrocytes and microglial cells in vivo is unclear. In the present study, by combining the techniques of in-situ hybridization of MOR mRNA with immunohistochemistry of glial fibrillary acidic protein (GFAP; an astrocyte marker) and Iba1 (a microglial marker), we examined expression and distribution of GFAP, Iba1, and MOR mRNA in the spinal cord of rats under chronic morphine tolerance conditions. Intrathecal injections of morphine twice daily for 7 days reduced morphine analgesic effect and increased both GFAP and Iba1 immunostaining densities in the spinal cord. Surprisingly, neither GFAP nor Iba1 colocalized with MOR mRNA in spinal cord cells. Our findings indicate that MOR expression is absent from spinal cord astrocytes and microglia, suggesting that these cell types are indirectly activated by MOR agonists under chronic opioid tolerance conditions.  相似文献   

2.
Intraperitoneal (i.p.) injection of toxins, such as the bacterial endotoxin lipopolysaccharide (LPS), is associated with a well-characterized increase in sensitivity to painful stimuli (hyperalgesia) [Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 1995;63:289-302. [53]] and a longer-lasting reduction in opioid analgesia (anti-analgesia) when pain sensitivity returns to basal levels [Johnston IN, Westbrook RF. Acute and conditioned sickness reduces morphine analgesia. Behav Brain Res 2003;142:89-97]. Here we show that this inhibition of morphine analgesia 24 h after a single i.p. injection of LPS involves mechanisms that contribute to illness-induced hyperalgesia and the development of analgesic tolerance to morphine. Specifically, morphine analgesia was restored if LPS was preceded by systemic administration of a non-competitive NMDA receptor antagonist (MK-801), spinal infusion of a glial metabolic inhibitor (fluorocitrate), or intracerebroventricular microinjection of an opioid receptor antagonist (naloxone). Morphine analgesia was also restored if MK-801 was administered after LPS. These results demonstrate that LPS recruits similar, if not the same mechanisms that reduce morphine tolerance following opiate administration: namely, stimulation of opioid and NMDA receptors and recruitment of spinal glia.  相似文献   

3.
Effects of repeated intraperitoneal injections of polyinosine-polycytidylic acid on spinal cord cells were analysed. After each injection, the number of ED-1 microglia significantly increased in rat spinal cords. Expression of endothelial monocyte-activating polypeptide II, however, was not observed. The morphology of microglia indicated an incomplete activation state even after three repeated polyinosine-polycytidylic acid injections. Astrocyte activation was observed after the first injection using glial fibrillary acidic protein staining. Simultaneously with glia activation, hyperalgesia was observed, but the expression of P2X4 receptor, which is considered to be closely associated with hyperalgesia, on microglia was not detected. In sum, our data suggest that repeated peripheral injections of polyinosine-polycytidylic acid might alert the central nervous system through limited activation of microglia and astrocytes.  相似文献   

4.

Objective

Minocycline, a second-generation tetracycline-class antibiotic, has been well established to exert a neuroprotective effect in animal models and neurodegenerative disease through the inhibition of microglia. Here, we investigated the effects of minocycline on motor recovery and neuropathic pain in a rat model of spinal cord injury.

Methods

To simulate spinal cord injury, the rats'' spinal cords were hemisected at the 10th thoracic level (T10). Minocycline was injected intraperitoneally, and was administered 30 minutes prior surgery and every second postoperative day until sacrifice 28 days after surgery. Motor recovery was assessed via the Basso-Beattie-Bresnahan test. Mechanical hyperalgesia was measured throughout the 28-day post-operative course via the von Frey test. Microglial and astrocyte activation was assessed by immunohistochemical staining for ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) at two sites: at the level of hemisection and at the 5th lumbar level (L5).

Results

In rats, spinal cord hemisection reduced locomotor function and induced a mechanical hyperalgesia of the ipsilateral hind limb. The expression of Iba1 and GFAP was also increased in the dorsal and ventral horns of the spinal cord at the site of hemisection and at the L5 level. Intraperitoneal injection of minocycline facilitated overall motor recovery and attenuated mechanical hyperalgesia. The expression of Iba1 and GFAP in the spinal cord was also reduced in rats treated with minocycline.

Conclusion

By inhibiting microglia and astrocyte activation, minocycline may facilitate motor recovery and attenuate mechanical hyperalgesia in individuals with spinal cord injuries.  相似文献   

5.
Probenecid, an agonist of transient receptor vanilloid (TRPV) type 2, was used to evaluate the effects of TRPV2 activation on excitatory and inhibitory synaptic transmission in the dorsal horn (DH) of the rat spinal cord and on nociceptive reflexes induced by thermal heat and mechanical stimuli. The effects of probenecid were compared with those of capsaicin, a TRPV1 agonist. Calcium imaging experiments on rat dorsal root ganglion (DRG) and DH cultures indicated that functional TRPV2 and TRPV1 were expressed by essentially non‐overlapping subpopulations of DRG neurons, but were absent from DH neurons and DH and DRG glial cells. Pretreatment of DRG cultures with small interfering RNAs against TRPV2 suppressed the responses to probenecid. Patch‐clamp recordings from spinal cord slices showed that probenecid and capsaicin increased the frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents in a subset of laminae III–V neurons. In contrast to capsaicin, probenecid failed to stimulate synaptic transmission in lamina II. Intrathecal or intraplantar injections of probenecid induced mechanical hyperalgesia/allodynia without affecting nociceptive heat responses. Capsaicin induced both mechanical hyperalgesia/allodynia and heat hyperalgesia. Activation of TRPV1 or TRPV2 in distinct sets of primary afferents increased the sEPSC frequencies in a largely common population of DH neurons in laminae III–V, and might underlie the development of mechanical hypersensitivity following probenecid or capsaicin treatment. However, only TRPV1‐expressing afferents facilitated excitatory and/or inhibitory transmission in a subpopulation of lamina II neurons, and this phenomenon might be correlated with the induction of thermal heat hyperalgesia.  相似文献   

6.
Peripheral nerve injury commonly leads to neuropathic pain states fostered, in part, by neuroimmunologic events. We used two models of neuropathic pain (L5 spinal nerve cryoneurolysis (SPCN) and chronic constriction injury (CCI)) to assess the role of spinal glial activation responses in producing pain behaviors. Scoring of glial responses subjectively encompassed changes in cell morphology, cell density and intensity of immunoreactivity with specific activation markers (OX-42 and anti-glial fibrillary acidic protein (GFAP) for microglia and astrocytes, respectively). Glial responses were compared with tactile sensitivity (mechanical allodynia) at 1, 3 or 10 days following SPCN and with thermal hyperalgesia at 10 days in the CCI group. Neuropathic pain behaviors preceded and did not closely correlate with microglial responses in either model. Perineural application of bupivacaine prior to SPCN prevented spinal microglial responses but not pain behaviors. Spinal astrocytic responses to SPCN were early, robust and not altered by bupivacaine. The current findings support the use of bupivacaine as a tool to suppress microglial activation and challenge the putative role of microglia in initiating or potentiating pain behaviors which result from nerve injury.  相似文献   

7.
Activated glia play a major role in mediating behavioral hypersensitive state following peripheral inflammation. Electroacupuncture is well known to relieve persistent inflammatory pain. The present study was undertaken to examine whether fluorocitrate, a glial metabolic inhibitor, could synergize electroacupuncture antagonizing thermal hyperalgesia and mechanical allodynia evoked by ankle joint inflammation. Monoarthritis of rat ankle joint was induced by an intra-articular injection of Complete Freund's Adjuvant (CFA). The paw withdrawal latency (PWL) from a thermal stimulus and paw withdrawal threshold (PWT) from von Frey hairs were measured in awake rats. Intrathecal (i.t.) injection of 1 nmol fluorocitrate markedly suppressed monoarthritis-induced thermal hyperalgesia and mechanical allodynia. Unilateral electroacupuncture stimulation of "Huantiao" (GB30) and "Yanglingquan" (GB34) acupuncture points (100/2 Hz alternation, 1-2-3 mA) significantly elevated the PWLs and PWTs for 45 min after cessation of electroacupuncture in monoarthritic rats. Co-application of 0.1 or 1 nmol fluorocitrate with electroacupuncture significantly potentiated electroacupuncture analgesia, although 0.1 nmol fluorocitrate alone had no effect on PWLs and PWTs in monoarthritic rats. These results suggested that electroacupuncture and disrupting glial function could synergistically antagonize inflammatory pain, which might provide a potential strategy for the treatment of arthritic pain.  相似文献   

8.
Activation of the peripheral immune system elicits a coordinated response from the central nervous system. Key to this immune to brain communication is that glia, microglia, and astrocytes, interpret and propagate inflammatory signals in the brain that influence physiological and behavioral responses. One issue in glial biology is that morphological analysis alone is used to report on glial activation state. Therefore, our objective was to compare behavioral responses after in vivo immune (lipopolysaccharide, LPS) challenge to glial specific mRNA and morphological profiles. Here, LPS challenge induced an immediate but transient sickness response with decreased locomotion and social interaction. Corresponding with active sickness behavior (2–12 h), inflammatory cytokine mRNA expression was elevated in enriched microglia and astrocytes. Although proinflammatory cytokine expression in microglia peaked 2‐4 h after LPS, astrocyte cytokine, and chemokine induction was delayed and peaked at 12 h. Morphological alterations in microglia (Iba‐1+) and astrocytes (GFAP+), however, were undetected during this 2–12 h timeframe. Increased Iba‐1 immunoreactivity and de‐ramified microglia were evident 24 and 48 h after LPS but corresponded to the resolution phase of activation. Morphological alterations in astrocytes were undetected after LPS. Additionally, glial cytokine expression did not correlate with morphology after four repeated LPS injections. In fact, repeated LPS challenge was associated with immune and behavioral tolerance and a less inflammatory microglial profile compared with acute LPS challenge. Overall, induction of glial cytokine expression was sequential, aligned with active sickness behavior, and preceded increased Iba‐1 or GFAP immunoreactivity after LPS challenge. GLIA 2016;64:300–316  相似文献   

9.
Nigral cell death in Parkinson's disease is characterized by glial cell activation leading to inflammatory changes. Osteopontin (OPN) is a glycosylated phosphoprotein that is induced by inflammatory mediators and which we have previously shown to be present in the substantia nigra. However, the role of OPN in the nigral inflammation is not known. We now report on the effects of lipopolysaccharide (LPS)-induced glial cell activation in the substantia nigra of rats on OPN expression. LPS administration induced dopaminergic cell death as shown by reduced nigral tyrosine hydroxylase immunoreactivity. There was a corresponding time-dependent increase in both OPN mRNA, which was maximal at 48 h, and protein levels, which peaked at 72 h before returning to control levels by 120 h. This increase was accompanied by marked reactive gliosis as shown by increased OX-42, glial fibrillary acidic protein (GFAP) and ED1 immunoreactivity. OX-42-positive cells increased in a time-dependent manner, peaking at 72 h before returning to control levels at 120 h. Similarly, ED1-positive cells were present in their greatest numbers at 24 h but then gradually declined. These changes mirrored the alterations occurring in OPN protein and OPN mRNA, respectively. In contrast, GFAP-positive cells only started to increase in number at 120 h. Colocalization studies showed that OPN was present in both ED1- and OX-42-positive cells but not in GFAP-positive cells. These data confirm that intranigral injection of LPS induces a rapid and marked gliosis that accompanies the loss of tyrosine hydroxylase-positive neurones and suggest that, after glial cell activation, enhanced expression of OPN occurs linked to increased numbers of microglia and/or macrophages. This suggests that OPN may be functionally important in the control of inflammatory changes.  相似文献   

10.
The use of botulinum neurotoxin type A (BoNT/A) against pain, with emphasis for its possible use in alleviating chronic pain, still represents an outstanding challenge for experimental research. In this study, we examined the effects of BoNT/A on morphine-induced tolerance during chronic morphine treatment in neuropathic CD1 mice subjected to sciatic nerve lesion according to the Chronic Constriction Injury (CCI) model of neuropathic pain. We measured the effects of BoNT/A on CCI-induced allodynia and hyperalgesia and on the expression of glial fibrillary acidic protein (GFAP, marker of astrocytes), complement receptor 3/cluster of differentiation 11b (CD11b, marker of microglia), and neuronal nuclei (NeuN) at the spinal cord level. We also analyzed the colocalized expression of GFAP, CD11b and NeuN with phosphorylated p-38 mitogen-activated protein kinase and with μ-opioid receptor (MOR). A single intraplantar injection of BoNT/A (15 pg/paw) into the injured hindpaw, the day before the beginning of chronic morphine treatment (9 days of twice daily injections of 40 mg/kg morphine), was able to counteract allodynia and enhancement of astrocytes expression/activation induced by CCI. In addition, BoNT/A increased the analgesic effect of morphine and countered morphine-induced tolerance during chronic morphine treatment. These effects were accompanied, in neurons, by re-expression of MORs that had been reduced by repeated morphine administration. The combinatory effects of BoNT/A and morphine could have relevant therapeutic implications for sufferers of chronic pain who could benefit of pain relief reducing tolerance due to repeated treatment with opiates.  相似文献   

11.
Chronic constriction injury (CCI) of the sciatic nerve in rodents produces mechanical and thermal hyperalgesia and is a common model of neuropathic pain. Here we compare the inflammatory responses in L4/5 dorsal root ganglia (DRGs) and spinal segments after CCI with those after transection and ligation at the same site. Expression of ATF3 after one week implied that 75% of sensory and 100% of motor neurones had been axotomized after CCI. Macrophage invasion of DRGs and microglial and astrocytic activation in the spinal cord were qualitatively similar but quantitatively distinct between the lesions. The macrophage and glial reactions around neurone somata in DRGs and ventral horn were slightly greater after transection than CCI while, in the dorsal horn, microglial activation (using markers OX-42(for CD11b) and ED1(for CD68)) was greater after CCI. In DRGs, macrophages positive for OX-42(CD11b), CD4, MHC II and ED1(CD68) more frequently formed perineuronal rings beneath the glial sheath of ATF3+ medium to large neurone somata after CCI. There were more invading MHC II+ macrophages lacking OX-42(CD11b)/CD4/ED1(CD68) after transection. MHC I was expressed in DRGs and in spinal sciatic territories to a similar extent after both lesions. CD8+ T-lymphocytes aggregated to a greater extent both in DRGs and the dorsal horn after CCI, but in the ventral horn after transection. This occurred mainly by migration, additional T-cells being recruited only after CCI. Some of these were probably CD4+. It appears that inflammation of the peripheral nerve trunk after CCI triggers an adaptive immune response not seen after axotomy.  相似文献   

12.
Cervical nerve root injury commonly leads to radicular pain. Normal sensation relies on regulation of extracellular glutamate in the spinal cord by glutamate transporters. The goal of this study was to define the temporal response of spinal glutamate transporters (glial glutamate transporter 1 [GLT‐1], glutamate‐aspartate transporter [GLAST], and excitatory amino acid carrier 1) following nerve root compressions that do or do not produce sensitivity in the rat and to evaluate the role of glutamate uptake in radicular pain by using ceftriaxone to upregulate GLT‐1. Compression was applied to the C7 nerve root. Spinal glutamate transporter expression was evaluated at days 1 and 7. In a separate study, rats underwent a painful root compression and were treated with ceftriaxone or the vehicle saline. Glial glutamate transporter expression, astrocytic activation (glial fibrillary acidic protein [GFAP]), and neuronal excitability were assessed at day 7. Both studies measured behavioral sensitivity for 7 days after injury. Spinal GLT‐1 significantly decreased (P < 0.04) and spinal GLAST significantly increased (P = 0.036) at day 7 after a root injury that also produced sensitivity to both mechanical and thermal stimuli. Within 1 day after ceftriaxone treatment (day 2), mechanical allodynia began to decrease; both mechanical allodynia and thermal hyperalgesia were attenuated (P < 0.006) by day 7. Ceftriaxone also reduced (P < 0.024) spinal GFAP and GLAST expression, and neuronal hyperexcitability in the spinal dorsal horn, restoring the proportion of spinal neurons classified as wide dynamic range to that of normal. These findings suggest that nerve root‐mediated pain is maintained jointly by spinal astrocytic reactivity and neuronal hyperexcitability and that these spinal modifications are associated with reduced glutamate uptake by GLT‐1. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Recent evidence suggests that spinal cord glia can contribute to enhanced nociceptive responses. However, the signals that cause glial activation are unknown. Fractalkine (CX3C ligand-1; CX3CL1) is a unique chemokine expressed on the extracellular surface of spinal neurons and spinal sensory afferents. In the dorsal spinal cord, fractalkine receptors are primarily expressed by microglia. As fractalkine can be released from neurons upon strong activation, it has previously been suggested to be a neuron-to-glial signal that induces glial activation. The present series of experiments provide an initial investigation of the spinal pain modulatory effects of fractalkine. Intrathecal fractalkine produced dose-dependent mechanical allodynia and thermal hyperalgesia. In addition, a single injection of fractalkine receptor antagonist (neutralizing antibody against rat CX3C receptor-1; CX3CR1) delayed the development of mechanical allodynia and/or thermal hyperalgesia in two neuropathic pain models: chronic constriction injury (CCI) and sciatic inflammatory neuropathy. Intriguingly, anti-CX3CR1 reduced nociceptive responses when administered 5-7 days after CCI, suggesting that prolonged release of fractalkine may contribute to the maintenance of neuropathic pain. Taken together, these initial investigations of spinal fractalkine effects suggest that exogenous and endogenous fractalkine are involved in spinal sensitization, including that induced by peripheral neuropathy.  相似文献   

14.

Aims

Neuropathic pain after spinal cord injury (SCI) remains a common and thorny problem, influencing the life quality severely. This study aimed to elucidate the reorganization of the primary sensory cortex (S1) and the regulatory mechanism of the lateral parabrachial nucleus (lPBN) in the presence of allodynia or hyperalgesia after left spinal cord hemisection injury (LHS).

Methods

Through behavioral tests, we first identified mechanical allodynia and thermal hyperalgesia following LHS. We then applied two-photon microscopy to observe calcium activity in S1 during mechanical or thermal stimulation and long-term spontaneous calcium activity after LHS. By slice patch clamp recording, the electrophysiological characteristics of neurons in lPBN were explored. Finally, exploiting chemogenetic activation or inhibition of the neurons in lPBN, allodynia or hyperalgesia was regulated.

Results

The calcium activity in left S1 was increased during mechanical stimulation of right hind limb and thermal stimulation of tail, whereas in right S1 it was increased only with thermal stimulation of tail. The spontaneous calcium activity in right S1 changed more dramatically than that in left S1 after LHS. The lPBN was also activated after LHS, and exploiting chemogenetic activation or inhibition of the neurons in lPBN could induce or alleviate allodynia and hyperalgesia in central neuropathic pain.

Conclusion

The neuronal activity changes in S1 are closely related to limb pain, which has accurate anatomical correspondence. After LHS, the spontaneously increased functional connectivity of calcium transient in left S1 is likely causing the mechanical allodynia in right hind limb and increased neuronal activity in bilateral S1 may induce thermal hyperalgesia in tail. This state of allodynia and hyperalgesia can be regulated by lPBN.  相似文献   

15.
Neuropathic pain remains one of the most difficult clinical pain syndromes to treat. It is traditionally viewed as being mediated solely by neurons; however, glial cells have recently been implicated as powerful modulators of pain. It is known that the analgesic effects of electroacupuncture (EA) are mediated by descending pain inhibitory systems, which mainly involve spinal opioid, adrenergic, dopaminergic, serotonergic, and cholinergic receptors. However, studies investigating the suppressive effects of EA on spinal glial activation are rare. In the present study, we assessed the cumulative analgesic effects of EA on mechanical and warm allodynia in a rat model of neuropathic pain. We investigated the clinical efficacy of EA as long-term therapy and examined its effects on spinal glia, matrix metalloproteinase (MMP)-9/MMP-2, proinflammatory cytokines and serum immunoglobulin G (IgG) concentration. Rats were randomly divided into four groups as follows: the operation group (OP), operation with EA-non acupoint (EA-NA), operation with EA-ST36 acupoint (EA-ST36), and sham operation (shamOP). Following neuropathic or sham surgery, repeated EA was performed every other day after the behavioral test. On day 53 after the behavioral test, rats were perfused for immunohistochemistry and Western blot analysis to observe quantitative changes in spinal glial markers such as OX-42, astrocytic glial fibrillary acidic protein (GFAP), MMP-9/MMP-2, and proinflammatory cytokines. Allodynia and OX-42/GFAP/MMP-9/MMP-2/tumor necrosis factor (TNF)-α/interleukin (IL)-1β activity in the EA-ST36 group was significantly reduced, compared to the OP and EA-NA groups, and IgG in EA-ST36 rats significantly increased. Our results suggest that the analgesic effect of EA may be partly mediated via inhibition of inflammation and glial activation and repeated EA stimulation may be useful for treating chronic pain clinically.  相似文献   

16.
The most common type of chronic pain following spinal cord injury (SCI) is central neuropathic pain and SCI patients typically experience mechanical allodynia and thermal hyperalgesia. The present study was designed to examine the potential role of astrocyte gap junction connectivity in the induction and maintenance of “below-level” neuropathic pain in SCI rats. We examined the effect of intrathecal treatment with carbenoxolone (CARB), a gap junction decoupler, on SCI-induced bilateral thermal hyperalgesia and mechanical allodynia during the induction phase (postoperative days 0 to 5) and the maintenance phase (days 15 to 20) following T13 spinal cord hemisection. Immunohistochemistry was performed to determine potential SCI-induced changes in spinal astrocyte activation and phosphorylation of the NMDA receptor NR1 subunit (pNR1). CARB administered during the induction period dose-dependently attenuated the development of bilateral thermal hyperalgesia and mechanical allodynia. Intrathecal CARB also significantly reduced the bilateral SCI-induced increase in GFAP-immunoreactive (ir) staining and the number of pNR1-ir cell profiles in the spinal cord dorsal horn compared to vehicle-treated rats. In contrast, CARB treatment during the maintenance phase had no effect on the established thermal hyperalgesia and mechanical allodynia nor on spinal GFAP expression or the number of pNR1-ir cell profiles. These results indicate that gap junctions play a critical role in the activation of astrocytes distant from the site of SCI and in the subsequent phosphorylation of NMDA receptors in the lumbar spinal cord. Both of these processes appear to contribute to the induction of bilateral below-level pain in SCI rats.  相似文献   

17.
Background Enteric glial cells (EGCs) have been recently indicated as key regulators of intestinal inflammation in animals. Whether or not this is true and how these cells participate to inflammatory responses in humans is unknown. Methods We isolated primary EGCs from human small bowel and then, we purified and characterized those using specific glial markers, such as S100B and glial fibrillary acidic protein (GFAP). To mimic an inflammatory scenario, we exposed EGCs to exogenous stimuli, such as lipopolysaccharide and interferon‐gamma (LPS and IFN‐γ), alone or in combination, to evaluate glial activation [measuring GFAP, S100B level together with c‐fos, major histocompatibility complex (MHC) class II, inducible nitric oxide (iNOS) proteins expression and nitric oxide (NO) production] and proliferation, respectively. Key Results We showed that, when challenged with a combination of LPS and IFN‐γ, EGCs are significantly activated, as indicated by their positivity to c‐fos and MHC class II. Similarly, pro‐inflammatory stimuli significantly increase the cell proliferation rate, the expression of both S100B and GFAP, and the NO production consequent to the induction of EGCs‐derived iNOS protein, with the last being dependent on S100B‐RAGE (receptor for advanced glycation endproducts) interaction. Conclusions & Inferences Our data provide the first evidence that human EGCs directly respond to pro‐inflammatory stimuli by changing their expression profile and by proliferating. The finding that stimulated EGCs are able to produce NO points to a role of this cell population in the scenario of intestinal inflammation.  相似文献   

18.
We have previously demonstrated that glial inhibitors reduce the development of allodynia and hyperalgesia, potentiating the effect of a single morphine dose in a neuropathic pain model. This study explores the effects of two glial activation inhibitors, minocycline and pentoxifylline, on the development of tolerance to morphine in naive and chronic constriction injury (CCI)-exposed mice. Administration of morphine to naive (20 mg/kg; i.p.) and CCI-exposed mice (40 mg/kg; i.p.) twice daily resulted in tolerance to its anti-nociceptive effect after 6 days. Injections of morphine were combined with minocycline (30 mg/kg, i.p.) or pentoxifylline (20 mg/kg, i.p.) administered as two preemptive doses before first morphine administration in naive or pre-injury in CCI-exposed mice, and repeated twice daily 30 min before each morphine administration. With treatment, development of morphine tolerance was delayed by 5 days (from 6 to 11 days), as measured by the tail-flick test in naive and by tail-flick, von Frey, and cold plate tests in CCI-exposed mice. Western blot analysis of CD11b/c and GFAP protein demonstrated that minocycline and pentoxifylline, at doses delaying development of tolerance to morphine analgesia, significantly diminished the morphine-induced increase in CD11b/c protein level. We found that repeated systemic administration of glial inhibitors significantly delays development of morphine tolerance by attenuating the level of this microglial marker under normal and neuropathic pain conditions. Our results support the idea that targeting microglial activation during morphine therapy/treatment is a novel and clinically promising method for enhancing morphine's analgesic effects, especially in neuropathic pain.  相似文献   

19.
Factors transported centrally from the site of a peripheral nerve injury are known to provide cellular activation signals to the dorsal root ganglion and spinal cord. Yamamoto and Yaksh [35] were able to use colchicine disruption of axonal transport to abolish thermal hyperalgesia after sciatic chronic constriction in the rat. The current study set out to ascertain whether this observation could be reproduced by applying the same pharmacologic paradigm to a complete, segmentally specific, spinal nerve tight ligation (SPTL) and assessing the impact of this treatment on mechanical allodynia and central, spinal glial activation. Mechanical allodynia of the ipsilateral (lesion side) hind paw was measured at 1, 3, 5, 7, 10, and 14 days following SPTL. Spinal astrocytic and microglial activation were assessed immunohistochemically at 5 and 14 days. Colchicine was unable to prevent mechanical allodynia or spinal glial activation when applied perineurally just proximal to the site of SPTL. Administered alone, colchicine (without SPTL) induced both astrocytic and microglial activation, but not mechanical allodynia. Colchicine applied distal to the site of SPTL did not alter mechanical allodynia or glial responses to SPTL. Neuronal tracing experiments were performed to verify segmental disruption of axonal transport by either SPTL or colchicine treatment. Neuronal tracer injected into the sciatic nerve could not be found at the L5 spinal level following perineural colchicine treatment or tight ligation of the L5 spinal nerve, however, tracer was present at the unobstructed L4 spinal level. These results suggest that central astrocytic and microglial responses may be triggered by disruption of transported signals from the periphery, because they are induced by either colchicine or tight ligation. Conversely, axonally transported factors, either from the site of nerve injury or from the periphery, do not appear to be critical for the development of mechanical allodynia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号