首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-11 (IL-11) is a pleiotropic cytokine that supports various types of hematopoietic cell growth and is involved in bone resorption. We report here the involvement of recombinant human IL-11 (rHuIL-11) in osteoblast differentiation in mouse mesenchymal progenitor cells, C3H10T1/2. rHuIL-11 alone increased alkaline phosphatase (ALP) activity and upregulated expression levels of osteocalcin (OC), bone sialo protein (BSP), and parathyroid hormone receptor (PTHR) mRNA. rHuIL-11 had no effect on expression of type II collagen, peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2), adipocyte fatty acid-binding protein P2 (aP2), and myogenic MyoD protein (MyoD). Recombinant human bone morphogenetic protein (rHuBMP)-2 increased ALP activity and mRNA expression of these genes except for MyoD. The expression patterns of ALP activity and osteoblast-specific or chondrocyte-specific genes suggest that rHuIL-11 may be involved in early differentiation of osteoblasts at a step earlier than that which is affected by rHuBMP-2. In support of this hypothesis, combined treatment with rHuIL-11 and rHuBMP-2 synergistically increased ALP activity and mRNA expression of OC and type II collagen, rHuIL-11 also abrogated the increased levels of PPAR-gamma2, aP2 mRNA caused by rHuBMP-2. Our results suggest that rHuIL-11 alone and in combination with rHuBMP-2 can induce osteoblastic differentiation of progenitor cells and plays an important role in osteogenesis.  相似文献   

2.
Nonunion is a common complication in open fractures and other severe bone injuries. Recombinant human bone morphogenetic protein-2 (rhBMP-2) delivered on a collagen sponge enhances healing of fractures. However, the burst release of rhBMP-2 necessitates supra-physiological doses of rhBMP-2 to achieve a robust osteogenic effect, which introduces risk of ectopic bone formation and severe inflammation and increases the cost. Although the concept that the ideal pharmacokinetics for rhBMP-2 includes both a burst and sustained release is generally accepted, investigations into the effects of the release kinetics on new bone formation are limited. In the present study, biodegradable polyurethane (PUR) and PUR/microsphere [PUR/poly(lactic-co-glycolic acid)] composite scaffolds with varying rhBMP-2 release kinetics were compared to the collagen sponge delivery system in a critical-sized rat segmental defect model. Microcomputed tomography analysis indicated that a burst followed by a sustained release of rhBMP-2 from the PUR scaffolds regenerated 50% more new bone than the collagen sponge loaded with rhBMP-2, whereas a sustained release without the burst did not form significantly more bone than the scaffold without rhBMP-2. This study demonstrated that the putative optimal release profile (i.e., burst followed by sustained release) for rhBMP-2 can be achieved using PUR scaffolds, and that this enhanced pharmacokinetics regenerated more bone than the clinically available standard of care in a critical-sized defect in rat femora.  相似文献   

3.
Jeon O  Song SJ  Kang SW  Putnam AJ  Kim BS 《Biomaterials》2007,28(17):2763-2771
In this study, a heparin-conjugated poly(l-lactic-co-glycolic acid) (HP-PLGA) scaffold was developed for the sustained delivery of bone morphogenetic protein-2 (BMP-2), and then used to address the hypothesis that BMP-2 delivered from this scaffold could enhance ectopic bone formation. We found the amount of heparin conjugated to the PLGA scaffolds could be increased up to 3.2-fold by using scaffolds made from star-shaped PLGA, as compared to scaffolds made from linear PLGA, and that the release of BMP-2 from the HP-PLGA scaffold was sustained for at least 14 days in vitro. The BMP-2 released from the HP-PLGA scaffold stimulated an increase in alkaline phosphatase (ALP) activity of osteoblasts for 14 days in vitro, suggesting that the HP-PLGA scaffold delivery system releases BMP-2 in a bioactive form for a prolonged period. By contrast, BMP-2 release from unmodified (no heparin) PLGA scaffolds induced a transient increase in ALP activity for the first 3 days and a decrease thereafter. In vivo bone formation studies showed the BMP-2-loaded HP-PLGA scaffolds induced bone formation to a much greater extent than did either BMP-2-loaded unmodified PLGA scaffolds or unloaded (no BMP-2) HP-PLGA scaffolds, with 9-fold greater bone formation area and 4-fold greater calcium content in the BMP-2-loaded HP-PLGA scaffold group compared to the BMP-2-loaded unmodified PLGA scaffold group. Collectively, these results demonstrate that the HP-PLGA delivery system is capable of potentiating the osteogenic efficacy of BMP-2, and underscore its importance as a possible bone regeneration strategy.  相似文献   

4.
Recombinant human interleukin-11 (rHuIL-11) and recombinant human bone morphogenetic protein-2 (rHuBMP-2) have been shown to act synergistically in the induction of osteoblast differentiation. To determine whether these two proteins can be used clinically in fracture healing and reconstructive surgery, we investigated whether rHuIL-11 and rHuBMP-2 act synergistically to heal segmental bone defects in a rabbit model. A 1.5-cm segmental defect was created in the right ulnar diaphysis of 20 Japanese white rabbits. Polylactic-co-glycolic acid (PLGA)-coated gelatin sponges (PGS) permeated with rHuBMP-2 (n = 8), rHuIL-11 plus rHuBMP-2 (n = 8), or rHuIL-11 (n = 4) were implanted into the bone defects. Radiographs were scored by two independent observers for bone formation and union rates after 2, 3, 4, and 8 weeks. Bone formation was higher in rabbits implanted with rHuBMP-2 plus rHuIL-11 than in those implanted with rHuBMP-2 alone, reaching statistical significance after 4 weeks. At early time points, the union rate in rabbits implanted with rHuBMP-2 plus rHuIL-11 was higher than in rabbits implanted with rHuBMP-2. At 2, 4, and 8 weeks, new bone volume was significantly higher in rabbits administered rHuIL-11 plus rHuBMP-2 than in those given rHuBMP-2 alone. In contrast, mechanical testing after 8 weeks showed that bone strength in the two groups of rabbits was equivalent. These findings show that rHuIL-11 and rHuBMP-2 act synergistically to accelerate bone formation without affecting bone strength. Treatment with a combination of rHuIL-11 and rHuBMP-2 may thus be of great benefit in fracture healing and for patients undergoing reconstructive surgery.  相似文献   

5.
The mechanisms driving bone marrow stem cell mobilization are poorly understood. A recent murine study found that circulating bone marrow-derived osteoprogenitor cells (MOPCs) were recruited to the site of recombinant human bone morphogenetic protein-2 (BMP-2)-induced bone formation. Stromal cell-derived factor-1α (SDF-1α) and its cellular receptor CXCR4 have been shown to mediate the homing of stem cells to injured tissues. We hypothesized that chemokines, such as SDF-1, are also involved with mobilization of bone marrow cells. The CD45(-) fraction is a major source of MOPCs. In this report we determined that the addition of BMP-2 or SDF-1 to collagen implants increased the number of MOPCs in the peripheral blood. BMP-2-induced mobilization was blocked by CXCR4 antibody, confirming the role of SDF-1 in mobilization. We determined for the first time that addition of SDF-1 to implants containing BMP-2 enhances mobilization, homing of MOPCs to the implant, and ectopic bone formation induced by suboptimal BMP-2 doses. These results suggest that SDF-1 increases the number of osteoprogenitor cells that are mobilized from the bone marrow and then home to the implant. Thus, addition of SDF-1 to BMP-2 may improve the efficiency of BMPs in vivo, making their routine use for orthopaedic applications more affordable and available to more patients.  相似文献   

6.
Bone morphogenetic protein-2 (BMP-2) is known to enhance fracture healing when delivered via a bovine collagen sponge. However, collagen rapidly releases BMP-2 with a high burst phase that is followed by a low sustained phase. As a result, supra-physiological doses of BMP-2 are often required to successfully treat bone defects. High BMP-2 dosing can introduce serious side effects that include edema, bone overgrowth, cyst-like bone formation and significant inflammation. As the release behavior of BMP-2 carriers significantly affects the efficacy of fracture healing, we sought to compare the influence of two BMP-2 delivery matrices with contrasting release profiles on BMP-2 bioactivity and ectopic bone formation. We compared a thiol-modified hyaluronan (Glycosil?) hydrogel that exhibits a low burst followed by a sustained release of BMP-2 to a collagen sponge for the delivery of three different doses of BMP-2, the bioactivities of released BMP-2 and ectopic bone formation. Analysis of bone formation by micro-computed tomography revealed that low burst followed by sustained release of BMP-2 from a hyaluronan hydrogel induced up to 456% more bone compared to a BMP-2 dose-matched collagen sponge that has a high burst and sustained release. This study demonstrates that BMP-2 released with a low burst followed by a sustained release of BMP-2 is more desirable for bone formation. This highlights the therapeutic potential of hydrogels, particularly hyaluronan-based, for the delivery of BMP-2 for the treatment of bone defects and may help abrogate the adverse clinical effects associated with high dose growth factor use.  相似文献   

7.
背景:重组人骨形态发生蛋白2在体内半衰期短、易降解代谢,达不到理想的骨再生效果。 目的:制备缓释型重组人骨形态发生蛋白2/壳聚糖生物骨修复材料,并观察其缓释性能、骨诱导活性。 方法:将重组人骨形态发生蛋白2与壳聚糖混合制备壳聚糖膜,涂覆于生物骨修复材料表面,ELISA方法检测其体外释药性能。茜素红染色检测缓释型人骨形态发生蛋白2/壳聚糖生物骨材料、重组人骨形态发生蛋白2生物骨材料、单纯骨填充材料诱导C2C12细胞骨钙蛋白的形成,观察其诱导成骨细胞能力。同时将3种骨修复材料植入清洁级KM小鼠股部肌袋内,2周后检测新生骨Ca2+离子含量,评价其异位骨诱导能力。 结果与结论:材料表面的壳聚糖膜分布均匀,负载的重组人骨形态发生蛋白2呈团簇状。重组人骨形态发生蛋白2/壳聚糖生物骨修复材料体外释药存在突释,前4 d释放量达总药量的50%,持续至12 d,释药量达到90%,第18天时释放完全。与单纯骨填充材料、重组人骨形态发生蛋白2生物骨材料相比,缓释型人骨形态发生蛋白2/壳聚糖生物骨修复材料诱导C2C12细胞向成骨晚期分化能力与异位骨形成能力显著增强(P < 0.05)。结果提示缓释型人骨形态发生蛋白2/壳聚糖生物骨修复材料缓释性能好,促进骨形成能力强。  相似文献   

8.
We have earlier shown that a peptide derived from the bone morphogenetic protein-9 (pBMP-9) stimulates mouse preosteoblasts MC3T3-E1 differentiation in vitro. Here, we evaluated the effects of two delivery systems (DSs) for pBMP-9, one based on collagen and the other on chitosan. The release kinetics of BMP-9 (used as control) and pBMP-9 from these DSs were first determined in vitro by using enzyme-linked immunosorbent assay and high performance liquid chromatography assays, respectively. Micro-computerized tomography and histological analysis were then performed to study in vivo the ectopic ossification induced by both DSs containing these molecules in C57BL/6 mouse quadriceps. We found that collagen DS released in vitro about 35% of its BMP-9 within 1?h, whereas chitosan DS released 80%. The pBMP-9 was released from both DSs more slowly for up to 10 days. These release kinetics seemed to fit the Korsmeyer-Peppas model. Only chitosan DS containing BMP-9 induced strong bone formation in all mice quadriceps within 24 days. All mice quadriceps treated by pBMP-9 trapped in this DS also favored bone structures that started to mineralize. However, pBMP-9 in collagen DS failed to promote ectopic ossification within 24 days in vivo. This study highlights the importance to optimize carrier, thus improving the efficiency of pBMP-9 in vivo.  相似文献   

9.
This study investigated the delivery of plasmid DNA (pDNA) encoding bone morphogenetic protein-2 in the form of polyplexes with a biodegradable branched triacrylate/amine polycationic polymer (TAPP) that were complexed with gelatin microparticles (GMPs) loaded within a porous tissue engineering scaffold. More specifically, the study investigated the interplay between TAPP degradation, gelatin degradation, pDNA release, and bone formation in a critical-size rat cranial defect model. The pDNA release kinetics in vitro were not affected by the crosslinking density of the GMPs but depended, rather, on the degradation rates of the TAPPs. Besides the initial release of polyplexes not bound to the GMPs and the minimal release of polyplexes through diffusion or dissociation from the GMPs, the pDNA was likely released as naked pDNA or as part of an incomplete polyplex, after the degradation of fragments of the polycationic polymer. After 30 days, significantly higher amounts of pDNA were released (93%-98%) from composite scaffolds containing naked pDNA or pDNA complexed with P-AEPZ (synthesized with 1-[2-aminoethyl]piperazine, a faster degrading TAPP) compared with those containing pDNA complexed with P-DED (synthesized with N,N-dimethylethylenediamine, a slower degrading TAPP) (74%-82%). Composite scaffolds containing GMPs complexed with TAPP/pDNA polyplexes did not result in enhanced bone formation, as analyzed by microcomputed tomography and histology, in a critical-size rat cranial defect at 12 weeks postimplantation compared with those loaded with naked pDNA. The results demonstrate that polycationic polymers with a slow degradation rate can prolong the release of pDNA from the composite scaffolds and suggest that a gene delivery system comprising biodegradable polycationic polymers should be designed to release the pDNA in an intact polyplex form.  相似文献   

10.
A biodegradable microsphere/scaffold composite based on the synthetic polymer poly(propylene fumarate) (PPF) holds promise as a scaffold for cell growth and sustained delivery vehicle for growth factors for bone regeneration. The objective of the current work was to investigate the in vitro release and in vivo bone forming capacity of this microsphere/scaffold composite containing bone morphogenetic protein-2 (BMP-2) in combination with autologous bone marrow stromal cells (BMSCs) in a goat ectopic implantation model. Three composites consisting of 0, 0.08, or 8 microg BMP-2 per mg of poly(lactic-co-glycolic acid) microspheres, embedded in a porous PPF scaffold, were combined with either plasma (no cells) or culture-expanded BMSCs. PPF scaffolds impregnated with a BMP-2 solution and combined with BMSCs as well as empty PPF scaffolds were also tested. The eight different composites were implanted subcutaneously in the dorsal thoracolumbar area of goats. Incorporation of BMP-2-loaded microspheres in the PPF scaffold resulted in a more sustained in vitro release with a lower burst phase, as compared to BMP-2-impregnated scaffolds. Histological analysis after 9 weeks of implantation showed bone formation in the pores of 11/16 composites containing 8 microg/mg BMP-2-loaded microspheres with no significant difference between composites with or without BMSCs (6/8 and 5/8, respectively). Bone formation was also observed in 1/8 of the BMP-2-impregnated scaffolds. No bone formation was observed in the other conditions. Overall, this study shows the feasibility of bone induction by BMP-2 release from microspheres/scaffold composites.  相似文献   

11.
Hong SJ  Kim CS  Han DK  Cho IH  Jung UW  Choi SH  Kim CK  Cho KS 《Biomaterials》2006,27(20):3810-3816
In spite of good prospects for bone morphogenetic proteins (BMP) applications, an ideal carrier system for BMPs has not yet been identified. The purpose of this study was to evaluate the osteogenic effect of a fibrin-fibronectin sealing system (FFSS) combined with beta-tricalcium phosphate (beta-TCP) as a carrier system for recombinant human bone morphogenetic proteins (rhBMP-2) in the rat calvarial defect model. Eight-millimeter critical-size calvarial defects were created in 100 male Sprague-Dawley rats. The animals were divided into five groups of 20 animals each. The defects were treated with rhBMP-2/FFSS, rhBMP-2/FFSS/beta-TCP, FFSS and FFSS/beta-TCP carrier control or were left untreated as a sham-surgery control. Defects were evaluated by histologic and histometric parameters following a 2- and 8-week healing interval (10 animals/group/healing intervals). The FFSS/beta-TCP carrier group was significantly greater in new bone area at 2 weeks (p<0.05) and new tissue area at 2 and 8 weeks (p<0.01) relative to the FFSS carrier group. New bone and new tissue area in the rhBMP-2/FFSS/beta-TCP group were significantly greater than in the rhBMP-2/FFSS group at 8 weeks (p<0.01). On histologic observation, FFSS remnants were observed at 2 weeks, but by 8 weeks, the FFSS appeared to be completely resorbed. rhBMP-2 combined with FFSS/beta-TCP produced significantly more new bone and new tissue formation in this calvarial defect model. In conclusion, FFSS/beta-TCP may be considered as an available carrier for rhBMP-2.  相似文献   

12.
E Gratacòs  N Checa  J Alberch 《Neuroscience》2001,104(3):783-790
Bone morphogenetic proteins are members of the transforming growth factor-beta superfamily. They are widely expressed in the mammalian nervous system, where they exert trophic effects on several neuronal populations. We studied the neurotrophic activity of bone morphogenetic protein-2 and bone morphogenetic protein-7 (also called osteogenic protein-1) on cultured striatal cells, previously shown to express bone morphogenetic protein ligands and receptors. Our results indicate that only bone morphogenetic protein-2 promoted the differentiation of GABAergic neurons, especially of the calbindin-positive subpopulation, the subset of projecting striatal neurons that degenerates in Huntington's disease. Bone morphogenetic protein-2 increased the area, perimeter and degree of arborization of GABAergic neurons, promoting calbindin phenotype without altering proliferation or apoptosis. In contrast, neither bone morphogenetic protein-2 nor -7 affected striatal cholinergic interneurons. However, they both increased the number of glial fibrillary acidic protein-positive cells. Suppression of glial proliferation with 5-fluorodeoxyuridine did not abolish bone morphogenetic protein-2 effects on the differentiation of striatal neurons, ruling out an indirect mechanism through astrocytes.In conclusion, our results show that bone morphogenetic protein-2 promotes the differentiation of cultured GABAergic striatal neurons, suggesting that bone morphogenetic proteins are involved in the development of the striatum.  相似文献   

13.
背景:课题组以往研究证实,骨形态发生蛋白4对生长发育期下颌骨的生长有促进作用,而骨形态发生蛋白2是否能与骨形态发生蛋白4相互促进下颌骨生长目前未见有相关报道。 目的:检测生长发育高峰期骨性Ⅱ类错牙合畸形患者血液中骨形态发生蛋白2和骨形态发生蛋白4的表达情况,以探究骨形态发生蛋白2和骨形态发生蛋白4的表达量与下颌骨生长的关系。 方法:生长发育高峰期骨性Ⅰ类错牙合畸形患者为Ⅰ组,以下颌后缩为主的骨性Ⅱ类错牙合畸形患者为Ⅱ组,每组18人。采用实时荧光定量PCR(RT-PCR)分别检测两组血液骨形态发生蛋白2和骨形态发生蛋白4的表达。 结果与结论:骨性Ⅱ类错牙合畸形组中骨形态发生蛋白2 mRNA的表达量明显低于对照组骨性Ⅰ类错牙合畸形组(P < 0.05),骨性Ⅱ类错牙合畸形组中骨形态发生蛋白4 mRNA的表达量明显低于对照组骨性Ⅰ类错牙合畸形组 (P < 0.05),骨性Ⅱ组中骨形态发生蛋白2与骨形态发生蛋白4的表达有显著相关性。结果证实,骨形态发生蛋白2和骨形态发生蛋白4在生长发育高峰期的表达量均降低与下颌骨发育不足有密切关系,且骨形态发生蛋白2和骨形态发生蛋白4相互协同,共同参与调节下颌骨的生长。  相似文献   

14.

Aim of the study

Cartilage has a limited capacity for healing after trauma. Autologous chondrocyte implantation is widely used for the treatment of patients with focal damage to articular cartilage. Chondrocytes are isolated from biopsy specimen, cultured in monolayers on plastic then transplanted over the cartilage defect. However, chondrocyte amplification on plastic triggers their dedifferentiation. This phenomenon is characterized by loss of expression of type II collagen, the most abundant cartilage protein. The challenge for autologous chondrocyte implantation is to provide patients with well-differentiated cells. The aim of the present study was to test the capability of bone morphogenetic protein (BMP)-2 to promote redifferentiation of human chondrocytes after their expansion on plastic.

Materials and methods

Chondrocytes extracted from nasal cartilage obtained after septoplasty were serially cultured in monolayers. After one, two or three passages, BMP-2 was added to the culture medium. The cellular phenotype was characterized at the gene level by using RT-PCR. The expression of genes coding for type II procollagen with the ratio of IIB/IIA forms, aggrecan, Sox9, osteocalcin and type I procollagen was monitored.

Results

Our results show that BMP-2 can stimulate chondrogenic expression of the chondrocytes amplified on plastic, without inducing osteogenic expression. However, this stimulatory effect decreases with the number of passages.

Conclusion

The efficiency of autologous chondrocyte implantation could be improved by using chondrocytes treated with BMP-2 during their in vitro preparation.  相似文献   

15.
Reconstruction of craniofacial defects presents a substantial biomedical burden, and requires complex surgery. Interestingly, children after age 2 years and adults are unable to heal large skull defects. This nonhealing paradigm provides an excellent model system for craniofacial skeletal tissueengineering strategies. Previous studies have documented the in vivo osteogenic potential of adipose-derived stromal (ADS) cells and bone marrow-derived stromal (BMS) cells. This study investigates the ability to accelerate in vivo osteogenesis on ex vivo recombinant human bone morphogenetic protein 2 (BMP-2) and retinoic acid stimulation. Mouse osteoblasts, ADS cells, and BMS cells were seeded onto apatite-coated PLGA scaffolds, stimulated with rhBMP-2 and retinoic acid ex vivo for 4 weeks, and subsequently implanted into critically sized (4 mm) calvarial defects. Samples were harvested after 2, 4, 8, and 12 weeks. Areas of complete bony bridging were noted as early as 2 weeks in vivo; however, osteoclasts were attracted to the scaffold as identified by calcitonin receptor staining and tartrate-resistant acid phosphatase activity staining. Although the optimal method of in vitro osteogenic priming for mesenchymal cells remains unknown, these results provide evidence that BMP-2 and retinoic acid stimulation of multipotent cells ex vivo can subsequently induce significant quantities of bone formation within a short time period in vivo.  相似文献   

16.
Segmental defect regeneration has been a clinical challenge. Current tissue-engineering approach using porous biodegradable scaffolds to delivery osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property, the porous scaffolds were evaluated in non-load bearing area or were stabilized with stress-shielding devices (bone plate or external fixation). In this paper, we tested a scaffold that does not require a bone plate because it has sufficient biomechanical strength. The tube-shaped scaffolds were manufactured from poly(propylene) fumarate/tricalcium phosphate (PPF/TCP) composites. Dicalcium phosphate dehydrate (DCPD) were used as bone morphogenetic protein-2 (BMP-2) carrier. Twenty-two scaffolds were implanted in 5mm segmental defects in rat femurs stabilized with K-wire for 6 and 15 weeks with and without 10 microg of rhBMP-2. Bridging of the segmental defect was evaluated first radiographically and was confirmed by histology and micro-computer tomography (microCT) imaging. The scaffolds in the BMP group maintained the bone length throughout the duration of the study and allow for bridging. The scaffolds in the control group failed to induce bridging and collapsed at 15 weeks. Peripheral computed tomography (pQCT) showed that BMP-2 does not increase the bone mineral density in the callus. Finally, the scaffold in BMP group was found to restore the mechanical property of the rat femur after 15 weeks. Our results demonstrated that the load-bearing BMP-2 scaffold can maintain bone length and allow successfully regeneration in segmental defects.  相似文献   

17.
背景:Bio-oss的颗粒状结构通常应用于洞形缺损的充填性移植,对于三壁以上的缺损修复难以成形。 目的:评价Bio-oss以纤维蛋白胶复合骨形态发生蛋白2作为赋形材料后的成骨性能。 方法:拔除9条杂种犬双侧下颌第2,4前臼齿及第2臼齿,造成1 cm×1 cm的骨缺损区,将Bio-oss+纤维蛋白胶+骨形态发生蛋白2、Bio-oss+纤维蛋白胶及Bio-oss材料分别植入第2,4前臼齿及第2臼齿骨缺损区。 结果与结论:各组软组织均一期愈合。Bio-oss复合纤维蛋白胶后,骨粉结合紧密,不易剥离。术后4,8,12周时 Bio-oss+纤维蛋白胶+骨形态发生蛋白2组新生骨百分率均高于其他两组(P < 0.05)。表明纤维蛋白胶的加入可以解决Bio-oss成形困难的问题,骨形态发生蛋白2的加入可促进成骨效果。  相似文献   

18.
背景:目前研究者尝试使用各种细胞因子、中药单体和组织裂解液等诱导剂作用于其分化过程,用以修复梗死的心肌组织。 目的:探索骨形态发生蛋白2在大鼠骨髓间充质干细胞体外诱导分化为心肌样细胞过程中的作用。 方法:分离培养SD大鼠骨髓间充质干细胞。应用含有骨形态发生蛋白2的培养基定向诱导培养(对照组为普通培养基培养) 72 h,其后换用普通培养基继续培养4周。 结果与结论:初分离的细胞经纯化培养后,显示CD29阳性、CD34阴性,符合骨髓间充质干细胞的特征,生长曲线显示各代细胞生长规律相近。经骨形态发生蛋白2体外诱导培养后,细胞形态狭长,排列紧密、方向一致。分化后的细胞均阳性表达C-TnI、C-TnT 、desmin、α-sarcomeric actin和P38MAPK。空白对照组则基本不表达以上蛋白。提示骨形态发生蛋白2可以诱导大鼠骨髓间充质干细胞体外定向分化为心肌样细胞,是骨髓间充质干细胞体外心肌分化的一种新的有效诱导剂。  相似文献   

19.
In bone tissue engineering, growth factors are widely used. Bone morphogenetic proteins (BMPs) and vascular endothelial growth factor (VEGF) are the most well-known regulators of osteogenesis and angiogenesis. We investigated whether the timing of dual release of VEGF and BMP-2 influences the amount of bone formation in a large-animal model. Poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) were loaded with BMP-2 or VEGF to create sustained-release profiles, and rapidly degrading gelatin was loaded with either growth factor for fast-release profiles. To study in vivo osteogenicity, the two delivery vehicles were combined with biphasic calcium phosphate (BCP) scaffolds and implanted in 10 Beagle dogs for 9 weeks, at both ectopic (paraspinal muscles) and orthotopic sites (critical-size ulnar defect). The 9 ectopic groups contained combined or single BMP/VEGF dosage, in sustained- or fast-release profiles. In the ulnae of 8 dogs, fast VEGF and sustained BMP-2 were applied to one leg, and the other received the opposite release profiles. The two remaining dogs received bilateral control scaffolds. Bone growth dynamics was analyzed by fluorochrome injection at weeks 3, 5, and 7. Postoperative and posteuthanization X-rays of the ulnar implants were taken. After 9 weeks of implantation, bone quantity and bone growth dynamics were studied by histology, histomorphometry, and fluorescence microscopy. The release of the growth factors resulted in both enhanced orthotopic and ectopic bone formation. Bone formation started before 3 weeks and continued beyond 7 weeks. The ectopic BMP-2 fast groups showed significantly more bone compared to sustained release, independent of the VEGF profile. The ulna implants revealed no significant differences in the amount of bone formed. This study shows that timing of BMP-2 release largely determines speed and amount of ectopic bone formation independent of VEGF release. Furthermore, at the orthotopic site, no significant effect on bone formation was found from a timed release of growth factors, implicating that timed-release effects are location dependent.  相似文献   

20.
Shi Q  Li Y  Sun J  Zhang H  Chen L  Chen B  Yang H  Wang Z 《Biomaterials》2012,33(28):6644-6649
Bacterial cellulose (BC) is a nanofibrous biological material with attractive physicochemical properties and biocompatibility. Its fiber is similar to the collagenous fiber of bone. To explore if BC could be utilized as a localized delivery system to increase the local concentration of cytokines for tissue engineering, we prepared the BC scaffold from Acetobacter xylinum X-2 (A.?xylinum X-2) and investigated the osteogenic potential of the BC scaffold coated with bone morphogenetic protein-2 (BMP-2). The data showed that BC had a good biocompatibility and induced differentiation of mouse fibroblast-like C2C12 cells into osteoblasts in the presence of BMP-2 in?vitro, as demonstrated by alkaline phosphatase (ALP) activity assays. Within a certain range (0?~?3?μg/scaffold), the osteogenic activity of induced osteoblasts was positively correlated to the concentrations of BMP-2. In in?vivo subcutaneous implantation studies, BC scaffolds carrying BMP-2 showed more bone formation and higher calcium concentration than the BC scaffolds alone at 2 and 4 weeks, respectively. The ALP activity assay and the measurement of calcium concentration of BC scaffolds also showed that more new bone was developed in the BC scaffolds carrying BMP-2 than in the BC scaffolds alone. Our studies suggest that BC is a good localized delivery system for BMPs and would be a potential candidate in bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号