首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Automated office blood pressure (AOBP) measurement, attended or unattended, eliminates the white coat effect (WCE) showing a strong association with awake ambulatory blood pressure (ABP). This study examined the difference in AOBP readings, with and without 5 minutes of rest prior to three readings recorded at 1‐min intervals. Cross‐sectional data from 100 randomized selected hypertensives, 61 men and 39 women, with a mean age of 52.2 ± 10.8 years, 82% treated, were analyzed. The mean systolic AOBP values without preceding rest were 127.0 ± 18.2 mm Hg, and the mean systolic AOBP values with 5 minutes of preceding rest were 125.7 ± 17.9 mm Hg (P = .05). A significant order effect was observed for the mean systolic BP values when AOBP without 5 minutes of preceding rest was performed as the first measurement (130.0 ± 17.7 vs 126.5 ± 16.2, P = .008). When we used a target systolic AOBP ≥ 130 mm Hg, awake ABP yielded lower readings, while at a target systolic AOBP value of < 130 mm Hg higher awake ABP values were obtained. Our findings indicate that systolic AOBP can be initially checked without any preceding rest and if readings are normal can be accepted. Otherwise, when AOBP is ≥ 130 mm Hg, measurements should be rechecked with 5 minutes of rest.  相似文献   

2.
In SPRINT (Systolic Blood Pressure Intervention Trial), use of the Omron 907XL blood pressure (BP) monitor set at 5 minutes of antecedent rest to record BP produced an automated office BP value 7/6 mm Hg lower than awake ambulatory BP at 27 months. The authors studied the impact on automated office BP of setting the Omron 907XL to 0 minutes instead of 5 minutes of rest in patients with readings in the lower normal BP range, similar to on‐treatment BP in the SPRINT intensive therapy group. Patients (n = 100) in cardiac rehabilitation were randomized to three BP readings at 1‐minute intervals using an Omron 907XL BP device set for 5 or 0 minutes of antecedent rest. Mean (±standard deviation) automated office BP (mm Hg) after 5 minutes of rest (120.2 ± 14.6/66.9 ± 8.6 mm Hg) was lower (P < .001/P < .01) than without rest (124.2 ± 16.4/67.9 ± 9.1 mm Hg). When target BP is in the lower normal range, automated office BP recorded without antecedent rest using an Omron 907XL device should be higher and closer to the awake ambulatory BP, compared with readings taken after 5 minutes of rest.  相似文献   

3.
Accurate assessment of blood pressure (BP) is the cornerstone of hypertension management. The objectives of this study were to quantify the effect of medical personnel presence during BP measurement by automated oscillometric BP (AOBP) and to compare resting office BP by AOBP to daytime average BP by 24‐h ambulatory BP monitoring (ABPM). This study is a prospective randomized cross‐over trial, conducted in a referral population. Patients underwent measurements of casual and resting office BP by AOBP. Resting BP was measured as either unattended (patient alone in the room during resting and measurements) or as partially attended (nurse present in the room during measurements) immediately prior to and after 24‐h ABPM. The primary outcome was the effect of unattended 5‐min rest preceding AOBP assessment as the difference between casual and resting BP measured by the Omron HEM 907XL. Ninety patients consented and 78 completed the study. The mean difference between the casual and Omron unattended systolic BP was 7.0 mm Hg (95% confidence interval [CI] 4.5, 9.5). There was no significant difference between partially attended and unattended resting office systolic BP. Resting office BP (attended and partially attended) underestimated daytime systolic BP load from 24‐h ABPM. The presence or absence of medical personnel does not impact casual office BP which is higher than resting office AOBP. The requirement for unattended rest may be dropped if logistically challenging. Casual and resting office BP readings by AOBP do not capture the complexity of information provided by the 24‐h ABPM.  相似文献   

4.
Automated office blood pressure measurement eliminates the white coat effect and is associated with awake ambulatory blood pressure. This study examined whether automated office blood pressure values at lower limits were comparable to those of awake and mean 24‐hour ambulatory blood pressure. A total of 552 patients were included in the study, involving 293 (53.1%) men and 259 (46.9%) women, with a mean age 55.0 ± 12.5, of whom 36% were treated for hypertension. Both systolic and diastolic automated office blood pressures exhibited lower values compared to awake ambulatory blood pressure among 254 individuals with systolic automated office blood pressure <130 mm Hg (119 ± 8 mm Hg vs 125 ± 11 mm Hg, P < .0001 and 75 ± 9 mm Hg vs 79 ± 9 mm Hg, P < .0001 for systolic and diastolic BPs, respectively). Furthermore, the comparison of systolic automated office blood pressure to the mean 24‐hour ambulatory blood pressure levels also showed lower values (119 ± 8 vs 121 ± 10, P = .007), whereas the diastolic automated office blood pressure measurements were similar to 24‐hour ambulatory blood pressure values. Our findings show that when automated office blood pressure readings express values <130/80 mm Hg in repeated office visits, further investigation should be performed only when masked hypertension is suspected; otherwise, higher automated office blood pressure values could be used for the diagnosis of uncontrolled hypertension, especially in individuals with organ damage.  相似文献   

5.
The recent American hypertension guidelines recommended a threshold of 130/80 mmHg to define hypertension on the basis of office, home or ambulatory blood pressure (BP). Despite recognizing the potential advantages of automated office (AO)BP, the recommendations only considered conventional office BP, without providing supporting evidence and without taking into account the well documented difference between office BP recorded in research studies versus routine clinical practice, the latter being about 10/7 mmHg higher. Accordingly, we examined the relationship between AOBP and awake ambulatory BP, which the guidelines considered to be a better predictor of future cardiovascular risk than office BP. AOBP readings and 24‐hour ambulatory BP recordings were obtained in 514 untreated patients referred for ambulatory BP monitoring in routine clinical practice. The relationship between mean AOBP and mean awake ambulatory BP was examined using linear regression analysis with and without adjustment for age and sex. Special attention was given to the thresholds of 130/80 and 135/85 mmHg, the latter value being the recognized threshold for defining hypertension using awake ambulatory BP, home BP and AOBP in other guidelines. The mean adjusted AOBP of 130/80 and 135/85 mmHg corresponded to mean awake ambulatory BP values of 132.1/81.5 and 134.4/84.6 mmHg, respectively. These findings support the use of AOBP as the method of choice for determining office BP in routine clinical practice, regardless of which of the two thresholds are used for diagnosing hypertension, with an AOBP of 135/85 mmHg being somewhat closer to the corresponding value for awake ambulatory BP.  相似文献   

6.
Manual blood pressure (BP) is gradually disappearing from clinical practice with the mercury sphygmomanometer now considered to be an environmental hazard. Manual BP is also subject to measurement error on the part of the physician/nurse and patient-related anxiety which can result in poor quality BP measurements and office-induced (white coat) hypertension. Automated office (AO) BP with devices such as the BpTRU (BpTRU Medical Devices, Coquitlam, BC) has already replaced conventional manual BP in many primary care practices in Canada and has also attracted interest in other countries where research studies using AOBP have been undertaken. The basic principles of AOBP include multiple readings taken with a fully automated recorder with the patient resting alone in a quiet room. When these principles are followed, office-induced hypertension is eliminated and AOBP exhibits a much stronger correlation with the awake ambulatory BP as compared with routine manual BP measurements. Unlike routine manual BP, AOBP correlates as well with left ventricular mass as does the awake ambulatory BP. AOBP also simplifies the definition of hypertension in that the cut point for a normal AOBP (< 135/85 mm Hg) is the same as for the awake ambulatory BP and home BP. This article summarizes the currently available evidence supporting the use of AOBP in routine clinical practice and proposes an algorithm in which AOBP replaces manual BP for the diagnosis and management of hypertension.  相似文献   

7.
The aim of our study was to estimate the size of regression to the mean with home blood pressure (BP) monitoring and compare with that for office BP. Office and home BP measures were obtained from the BP GUIDE (value of central Blood Pressure for GUIDing managEment for hypertension) study, in which 286 patients had BP measured every 3 months for 12 months. Patients were categorized by 10 mm Hg strata of baseline BP, and regression to the mean measures was calculated for home and office BP. High baseline home BP readings tended to be lower on long‐term follow‐up, and low baseline readings tended to be higher. For example, patients in the group with mean baseline home systolic BP ≥ 150 mm Hg had a mean baseline systolic BP of 156 mm Hg, which fell to 143 mm Hg at 12 months; and patients in the group with mean baseline home systolic BP < 120 mm Hg had a mean baseline systolic BP of 113 mm Hg which rose to 120 mm Hg at 12 months. Similar patterns were seen in intervention and control groups, and for diastolic BP. The regression dilution ratio for home systolic BP and diastolic BP was 0.52 and 0.64, respectively, compared to 0.40 and 0.55 for office systolic BP and diastolic BP, respectively. Home BP is subject to regression to the mean to a similar degree as office BP. These findings have implications for the diagnosis and management of hypertension using home BP.  相似文献   

8.
Wearable blood pressure (BP) monitoring devices which measure BP levels accurately both in and out of the office are valuable for hypertension management using digital technology. The authors have conducted the first comparison study of BPs measured by a recently developed wrist‐worn watch‐type oscillometric BP monitoring (WBPM) device, the “HeartGuide,” versus BPs measured by an ambulatory BP monitoring (ABPM) device, A&D TM‐2441, in the office (total of 4 readings alternately measured in the sitting position) and outside the office (30‐minutes interval measurements during daytime) in 50 consecutive patients (mean age 66.1 ± 10.8 years). The 2 BP monitoring devices were simultaneously worn on the same non‐dominant arm throughout the monitoring period. The mean difference (±SD) in systolic BPs (average of 2 readings) between WBPM and ABPM was 0.8 ± 12.8 mm Hg (P = .564) in the office and 3.2 ± 17.0 mm Hg (P < .001) outside the office. The proportion of differences that were within ±10 mm Hg was 58.7% in the office and 47.2% outside the office. In a mixed‐effects model analysis, the temporal trend in the difference between the out‐of‐office BPs measured by the two devices was not statistically significant. In conclusion, the difference between the WBPM and ABPM device was acceptable both in and out of the office.  相似文献   

9.
Unattended automated office blood pressure (AOBP) measurement has been endorsed as the preferred in‐office measurement modality in recent Canadian and American clinical practice guidelines. However, the difference between AOBP and conventional office blood pressure (CBP) under the environment of a health checkup remains unclear. We aimed to identify the clinical significance of AOBP as compared to CBP under the environment of a health checkup. There were 491 participants (333 females, mean age of 62.5 years) who were at least 20 years old, including 179 participants who were previously diagnosed with hypertension. Mean AOBPs were 131.8 ± 20.9/76.6 ± 11.7 mm Hg, and CBPs were 135.6 ± 21.6/77.3 ± 11.5 mm Hg. There was a difference of 3.9 mm Hg in systolic blood pressure (SBP) and 0.8 mm Hg in diastolic BP between AOBP and CBP. In all participants, SBP and pulse pressure, as well as the white coat effect (WCE), increased with age. The cutoff value used was 140/90 mm Hg for CBP and 135/85 mm Hg for AOBP, and the prevalence of WCE and masked hypertension effect (MHE) was 12.4% and 14.1%, respectively. Even in a health checkup environment of the general population, there was a difference between the AOBP and CBP, and the WCE was observed more strongly in the elderly with a history of hypertension, suggesting that a combination of AOBP with CBP may be useful in detecting WCE and MHE in all clinical scenarios including health checkups, and help solve the “hypertension paradox” not only in Japan but in all over the world.  相似文献   

10.
Manual measurement of blood pressure (BP) in the office (MOBP) is inferior in accuracy when compared with ambulatory BP measurements (ABPM) since it misses white coat and masked effects on BP. BpTRU, an automated office BP device (AOBP), has been reported to reduce white coat effect. We performed a retrospective review of the diagnostic accuracy of MOBP (taken by a trained nurse in clinical hypertension) and AOBP using the Bland-Altman method in hypertensive patients referred to a Renal Hypertension Clinic. In 329 hypertensive patients, the 95% limits of agreement between systolic AOBP and ABPM were ?31 mm Hg to 33 mm Hg and for MOBP and ABPM were ?27.8 mm Hg to 37.4 mm Hg. The bias between systolic MOBP and systolic ABPM was 4.9 mm Hg (95% confidence interval, 3.0–6.6 mm Hg) whereas the bias between the systolic AOBP and the systolic ABPM was ?3.2 (95% confidence interval, ?1.3 to ?5.0). AOBP did not improve treatment relevant classification errors compared with MOBP (28% vs. 23%; P = .052). Our data support findings by others showing that AOBP improves, but does not eliminate, white coat effect. The increased detection of white coat effect appears related to systematic downward bias by BpTRU. As a result, detection of masked effect is undermined by BpTRU.  相似文献   

11.
Factors related to the physician/nurse and patient and their interaction are potential sources of error in manual office blood pressure (MOBP). The use of automated sphygmomanometers to record blood pressure (BP) with the patient alone reduces measurement error and minimizes anxiety‐related increases in BP, thus eliminating the “white‐coat” response. Comparative studies have shown the cut‐point for a normal automated office BP (AOBP), awake ambulatory BP, and home BP (<135/85 mmHg) to be similar, providing the patient does not rest for a prolonged period before the first AOBP reading, as recommended for MOBP measurement. AOBP should now replace MOBP in routine clinical practice.  相似文献   

12.
Unattended automated office blood pressure (BP) measurement (u‐AOBP) improves office BP measurement accuracy and reduces white‐coat BP elevation, but there are reservations about its time efficiency in primary care. We used time‐stamp methodology to measure u‐AOBP procedure times performed without a rest period in 130 patients during routine clinic visits to three primary care clinics with 2.5‐4.9 years u‐AOBP experience. We documented the clinical activities of 30 medical assistants during the u‐AOBP procedures. We also assessed MA and clinician satisfaction and knowledge about u‐AOBP performance and interpretation. Median u‐AOBP procedure time was <5 minutes, and MAs engaged in productive clinical activities during 83% of the procedures. Ninety‐three percent of MAs and 100% of clinicians in the clinics agreed that u‐AOBP is an efficient method to improve hypertension management. Barriers to effective u‐AOBP implementation and ongoing utilization included initial difficulty incorporating u‐AOBP into clinic workflow and medical staff knowledge deficiencies concerning correct u‐AOBP performance and interpretation despite prior training and experience with the procedure. Intensive u‐AOBP education and training programs are needed to facilitate effective u‐AOBP implementation into primary care. The time required to perform u‐AOBP can be utilized productively by staff.  相似文献   

13.
Clinical practice guidelines have traditionally recommended manual blood pressure (BP) measurement in the office setting as the standard method for diagnosing hypertension. In reality, manual BP in routine clinical practice is relatively inaccurate, over-diagnoses hypertension by provoking office-induced increases in BP and correlates poorly with both the awake ambulatory BP and target organ damage. The most recent guidelines recommend 24-h ambulatory BP and home BP for diagnosing hypertension. The advent of automated office BP (AOBP) represents a third alternative to conventional manual BP measurement, one that maintains the role of office BP readings in the diagnosis and management of hypertension. AOBP has three basic principles: multiple readings taken using a fully automated sphygmomanometer with the patient resting quietly alone. AOBP eliminates office-induced hypertension such that the cut-point for a normal AOBP is the same as for the awake ambulatory BP and home BP. As compared to routine manual office BP, AOBP provides more accurate BP readings, is more consistent during repeated office visits and in different settings and correlates better with both the awake ambulatory BP and target organ damage. The advantages of AOBP over manual BP measurement support its use in routine clinical practice.  相似文献   

14.
Unlike other international guidelines but in accord with the earlier Japanese Society of Hypertension (JSH) guidelines, the 2019 JSH guidelines (“JSH 2019”) continue to emphasize the importance of out‐of‐office blood pressure (BP) measurements obtained with a home BP device. Another unique characteristic of JSH 2019 is that it sets clinical questions about the management of hypertension that are based on systematic reviews of updated evidence. JSH 2019 states that individuals with office BP < 140/90 mm Hg do not have normal BP. The final decisions regarding the diagnosis and treatment of hypertension should be performed based on out‐of‐office BP values together with office BP measurements. For hypertensive adults with comorbidities, the office BP goal is usually <130/80 mm Hg and the home BP goal is <125/75 mm Hg. Recommendations of JSH 2019 would be valuable for not only Japanese hypertensive patients but also Asian hypertensive patients, who share the same features including higher incidence of stroke compared with that of myocardial infarction and a steeper blood pressure‐vascular event relationship.  相似文献   

15.
BACKGROUND: Patients often exhibit higher blood pressure (BP) readings in the doctor's office, a phenomenon known as the white coat effect. This study examines the presence of a physician in the examining room as a possible factor in provoking a white coat effect. METHODS: Blood pressure measurements taken by an automated BP recording device, the BpTRU (VSM MedTech Ltd., Vancouver, BC, Canada) with the patient alone in the examining room, were compared with the following: (1) BP taken by the patient's family physician; (2) BP taken on the first visit to a hypertension specialist; (3) BP measured by a trained research technician and (4) the mean awake ambulatory BP (ABP). The BpTRU and trained research technician readings were taken outside of the office (treatment) setting in an ABP research unit. RESULTS: Blood pressure readings (mm Hg, mean +/- SEM) taken by the BpTRU (155 +/- 5/88 +/- 2) tended to be lower than for the family physician (166 +/- 4/89 +/- 3) and the hypertension specialist (174 +/- 5/92 +/- 2; P <.001). However, BP taken by the trained research technician (158 +/- 4/90 +/- 2) was similar to the value obtained by the BpTRU. The mean awake ABP was lower (P < 0.01) than the other four BP values. CONCLUSIONS: Use of an automated BP recording device outside of the office (treatment) setting can partly eliminate the white coat effect. A similar finding was observed with readings taken by a trained research technician under similar conditions. Referral of patients to nonoffice settings for automated BP recordings may provide a more accurate estimate of a patient's BP status, with partial elimination of the white coat effect associated with readings taken by a physician.  相似文献   

16.
Automated office blood pressure (AOBP) measurement with the patient resting alone in a quiet examining room can eliminate the white-coat effect associated with conventional readings taken by manual sphygmomanometer. The key to reducing the white-coat response appears to be multiple blood pressure (BP) readings taken in a non-observer office setting, thus eliminating any interaction that could provoke an office-induced increase in BP. Furthermore, AOBP readings have shown a higher correlation with the mean awake ambulatory BP compared with BP readings recorded in routine clinical practice. Although there is a paucity of studies connecting AOBP with organ damage, AOBP values were recently found to be equally associated with left ventricular mass index as those of ambulatory BP. This concludes that in contrast to routine manual office BP, AOBP readings compare favourably with 24-hour ambulatory BP measurements in the appraisal of cardiac remodelling and, as such, could be complementary to ambulatory readings in a way similar to home BP measurements.  相似文献   

17.
OBJECTIVES:: To determine the prevalence of masked hypertension [normal office blood pressure (BP) with high awake ambulatory BP] using automated office BP (AOBP) or conventional manual office BP (MOBP) measurement in routine clinical practice. METHODS:: The prevalence of masked hypertension was evaluated on three consecutive visits during a median 6 months period in patients with systolic hypertension randomized to management with AOBP (n?=?140) or continued conventional MOBP (n?=?112) in routine primary care practice. AOBP was recorded using the automated BpTRU device with the patient resting alone in a quiet examining room. All patients underwent 24-h ambulatory BP monitoring. RESULTS:: The prevalence of masked hypertension on any one of three visits calculated using only SBP varied between 12 and 17% in the AOBP group compared with 19 and 22 % in the MOBP group. Masked hypertension was present on both of the first two visits in 7 and 12% and on all three visits in 6 and 7% of AOBP and MOBP patients, respectively. The prevalence for masked hypertension based upon both SBP and DBP was similar being 11-15% for AOBP and 19-20% for MOBP patients on single visits, but decreased to 6 and 10% when readings from the first two visits were used and to 4 and 6% when all three visits were used for the AOBP and MOBP groups, respectively. CONCLUSION:: The prevalence of masked hypertension is lower with AOBP compared with MOBP. The number of patients with masked hypertension decreases if the criteria for having this condition need to be met on multiple visits.  相似文献   

18.

Objective

Twenty-four hour ambulatory blood pressure (ABP) is superior to office blood pressure (BP) in predicting cardiovascular events. However, its use to optimise BP control in treated hypertensive patients is less well examined.

Design and method

In this observational study conducted in 899 general practitioners' offices, 4078 hypertensive patients with uncontrolled office BP were included. Antihypertensive therapy was intensified and after 1 year office BP and 24-hour ABP were measured to categorise patients according to the ESC/ESH 2007 guidelines.

Results

In this cohort (mean office BP 156/90 mm Hg, mean ABP 146/85 mm Hg), 2059 out of 4078 patients (50.5%) had controlled office BP (< 140/90 mm Hg) at 1 year examination. Of these apparently controlled patients (N = 2059), 1339 (65.8%) had 24-hour ABP ≥ 130/80 mm Hg, indicating masked hypertension (32.9% of all treated patients). In the prespecified subgroups the prevalence of masked hypertension was the following: diabetes 28.2%, CVD 29.1%, and CKD 32.1%. White coat hypertension (24 h-ABP < 130/80 mm Hg and office BP ≥ 140/90 mm Hg) was found in 12.4% (N = 233) of patients with elevated office BP (6.1% of all treated patients), and in 5.7% of the diabetic subgroup, 5.6% CVD and 7.1% CKD. Discrepancies in BP categorisation between office BP and 24-hour ABP were high; all subjects 52.8%, diabetes 50.0%, CVD 49.0% and CKD 50.4%.

Conclusion

In hypertensive patients on therapy, 2 out of 3 with apparently controlled office BP had masked hypertension, suggesting a more aggressive therapy, and 1 out of 8 with elevated office BP had white coat hypertension potentially falsely forcing physicians to intensify therapy.The 3A Registry is listed under clinicaltrials.gov, NCT01454583.  相似文献   

19.
Manual measurement of blood pressure (BP) during exercise testing is the recommended standard. Automated measurement of BP is an alternative method used during clinical exercise testing, but there is little data comparing manual and automated BP in this setting. The aim of this study was to determine the concordance between manual and automated BP during a standard clinical treadmill exercise test. 416 participants (66 ± 5 years; 54% male) completed a Bruce treadmill exercise test at baseline or follow‐up within a clinical trial of participants with type 2 diabetes mellitus. Manual and automated BP were measured simultaneously at each exercise test stage. Manual BP was measured by a technician blinded to automated BP values (Tango+, Suntech). Concordance between manual and automated BP was assessed using mean differences and intraclass correlations (ICC). Concordance between manual and automated BP across all exercise stages was excellent for systolic BP (overall mean difference: 3 ± 11 mm Hg, P = .598; ICC = 0.964 [95% CI 0.942‐0.977] and pulse pressure (overall mean difference: 2 ± 14 mm Hg, P = .595; ICC = 0.934 [95% CI 0.899‐0.956]). Concordance between manual and automated diastolic BP across all exercise stages was moderate‐to‐good (overall mean difference: 1 ± 9 mm Hg, P = .905; ICC = 0.784 [95% CI 0.672‐0.858]). Automated BP using the Tango + device is concordant with manual BP during early stages of a standard clinical exercise test. Thus, this automated method may be a suitable alternative to manual measurement of BP during clinical exercise testing.  相似文献   

20.
It is recommended that oscillometric devices be calibrated by auscultation when first used, but this is difficult in practice. Here, we introduce a smartphone‐based technique to verify the accuracy of blood pressure monitors (BPMs). We enrolled 99 consecutive subjects and tested 6 brands of BPMs in this study. During measurements of electronic oscillometric BPMs, Korotkoff sounds were simultaneously collected using a stethoscope head beneath a cuff connected to a smartphone, and an app named Accutension Stetho could then yield an auscultatory BP reading as a reference. Next, differences in BP between the different BPMs and Accutension Stetho were determined. The percentage of BP differences falling within 5, 10, and 15 mm Hg; the mean (MD) value; and the standard deviation (SD) of BP differences and deflation errors were analyzed among all the BPMs. We found that the percentages of SBP differences falling within 5 mm Hg of the 6 BPMs were 80%, 79%, 77%, 72%, 68%, and 63%, in turn. The deflation rates among the 6 BPMs were 2.23, 3.48, 6.10, 2.44, 3.66, and 4.85 mm Hg/beat, respectively. Deflation errors, which were defined as deflation prior to the end of the Korotkoff sounds, existed in 4 BPMs. In conclusion, Accutension Stetho could detect BP differences between oscillometric BPM readings and simultaneous auscultatory readings. Diastolic BP was overestimated when the device deflated prior to the end of the Korotkoff sounds. Using the app, it is possible to evaluate the accuracy of BPMs among the same subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号