首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neocortical interactions with the dorsal striatum support many motor and executive functions, and such underlying functional networks are particularly vulnerable to a variety of developmental, neurological, and psychiatric brain disorders, including autism spectrum disorders, Parkinson's disease, and Huntington's disease. Relatively little is known about the development of functional corticostriatal interactions, and in particular, virtually nothing is known of the molecular mechanisms that control generation of prefrontal cortex–striatal circuits. Here, we used regional and cellular in situ hybridization techniques coupled with neuronal tract tracing to show that Cadherin‐8 (Cdh8), a homophilic adhesion protein encoded by a gene associated with autism spectrum disorders and learning disability susceptibility, is enriched within striatal projection neurons in the medial prefrontal cortex and in striatal medium spiny neurons forming the direct or indirect pathways. Developmental analysis of quantitative real‐time polymerase chain reaction and western blot data show that Cdh8 expression peaks in the prefrontal cortex and striatum at P10, when cortical projections start to form synapses in the striatum. High‐resolution immunoelectron microscopy shows that Cdh8 is concentrated at excitatory synapses in the dorsal striatum, and Cdh8 knockdown in cortical neurons impairs dendritic arborization and dendrite self‐avoidance. Taken together, our findings indicate that Cdh8 delineates developing corticostriatal circuits where it is a strong candidate for regulating the generation of normal cortical projections, neuronal morphology, and corticostriatal synapses. J. Comp. Neurol. 523:75–92, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The degree of parallel processing in frontal cortex-basal ganglia circuits is a central and debated issue in research on the basal ganglia. To approach this issue directly, we analyzed and compared the corticostriatal projections of two principal oculomotor areas of the frontal lobes, the frontal eye field (FEF) and the supplementary eye field (SEF). We first identified cortical regions within or adjacent to each eye field by microstimulation in macaque monkeys and then injected each site with either 35S-methionine or WGA-HRP conjugate. We analyzed the corticostriatal projections and also the interconnections of the pairs of cortical areas. We observed major convergence of the projections of the FEF and the SEF within the striatum, principally in the caudate nucleus. In cross sections through the striatum, both projections were broken into a series of discontinuous input zones that seemed to be part of complex three-dimensional labyrinths. Where the FEF and SEF projection fields were both present, they overlapped patch for patch. Thus, both inputs were dispersed within the striatum but converged with one another. Striatal afferents from cortex adjacent to the FEF and the SEF did not show convergence with SEF and FEF inputs, but did, in part, converge with one another. For all pairs of cortical areas tested, the degree of overlap in the corticostriatal projections appeared to be directly correlated with the degree of cortical interconnectivity of the areas injected. All of the corticostriatal fiber projections observed primarily avoided immunohistochemically identified striosomes. We conclude that there is convergence of oculomotor information from two distinct regions of the frontal cortex to the striatal matrix, which is known to project into pallidonigral circuits including the striatonigrocollicular pathway of the saccadic eye movement system. Furthermore, functionally distinct premotor areas near the oculomotor fields often systematically projected to striatal zones adjacent to oculomotor field projections, suggesting an anatomical basis for potential interaction of these inputs within the striatum. We propose that parallel processing is not the exclusive principle of organization of forebrain circuits associated with the basal ganglia. Rather, patterns of both convergence and divergence are present and are likely to depend on multiple functional and developmental constraints.  相似文献   

3.
A landmark of corticostriatal connectivity in nonhuman primates is that cortical connections are organized into a set of discrete circuits. Each circuit is assumed to perform distinct behavioral functions. In animals, most connectivity studies are performed using invasive tracing methods, which are nonapplicable in humans. To test the proposal that corticostriatal connections are organized as multiple circuits in humans, we used diffusion tensor imaging axonal tracking, a new magnetic resonance technique that allows demonstration of fiber tracts in a noninvasive manner. Diffusion tensor imaging-based fiber tracking showed that the posterior (sensorimotor), anterior (associative), and ventral (limbic) compartments of the human striatum have specific connections with the cortex, and particularly the frontal lobes. These results provide the first direct demonstration of distinct corticostriatal connections in humans.  相似文献   

4.
Animal approach‐avoidance conflict paradigms have been used extensively to operationalize anxiety, quantify the effects of anxiolytic agents, and probe the neural basis of fear and anxiety. Results from human neuroimaging studies support that a frontal–striatal–amygdala neural circuitry is important for approach‐avoidance learning. However, the neural basis of decision‐making is much less clear in this context. Thus, we combined a recently developed human approach‐avoidance paradigm with functional magnetic resonance imaging (fMRI) to identify neural substrates underlying approach‐avoidance conflict decision‐making. Fifteen healthy adults completed the approach‐avoidance conflict (AAC) paradigm during fMRI. Analyses of variance were used to compare conflict to nonconflict (avoid‐threat and approach‐reward) conditions and to compare level of reward points offered during the decision phase. Trial‐by‐trial amplitude modulation analyses were used to delineate brain areas underlying decision‐making in the context of approach/avoidance behavior. Conflict trials as compared to the nonconflict trials elicited greater activation within bilateral anterior cingulate cortex, anterior insula, and caudate, as well as right dorsolateral prefrontal cortex (PFC). Right caudate and lateral PFC activation was modulated by level of reward offered. Individuals who showed greater caudate activation exhibited less approach behavior. On a trial‐by‐trial basis, greater right lateral PFC activation related to less approach behavior. Taken together, results suggest that the degree of activation within prefrontal‐striatal‐insula circuitry determines the degree of approach versus avoidance decision‐making. Moreover, the degree of caudate and lateral PFC activation related to individual differences in approach‐avoidance decision‐making. Therefore, the approach‐avoidance conflict paradigm is ideally suited to probe anxiety‐related processing differences during approach‐avoidance decision‐making. Hum Brain Mapp 36:449–462, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
The dorsomedial prefrontal cortex (dmPFC) has been linked to avoidance and decision-making under conflict, key neural computations altered in anxiety disorders. However, the heterogeneity of prefrontal projections has obscured identification of specific top-down projections involved. While the dmPFC–amygdala circuit has long been implicated in controlling reflexive fear responses, recent work suggests that dmPFC–dorsomedial striatum (DMS) projections may be more important for regulating avoidance. Using fiber photometry recordings in both male and female mice during the elevated zero maze task, we show heightened neural activity in frontostriatal but not frontoamygdalar projection neurons during exploration of the anxiogenic open arms. Additionally, using optogenetics, we demonstrate that this frontostriatal projection preferentially excites postsynaptic D1 receptor-expressing neurons in the DMS and causally controls innate avoidance behavior. These results support a model for prefrontal control of defensive behavior in which the dmPFC–amygdala projection controls reflexive fear behavior and the dmPFC–striatum projection controls anxious avoidance behavior.SIGNIFICANCE STATEMENT The medial prefrontal cortex has been extensively linked to several behavioral symptom domains related to anxiety disorders, with much of the work centered around reflexive fear responses. Comparatively little is known at the mechanistic level about anxious avoidance behavior, a core feature across anxiety disorders. Recent work has suggested that the striatum may be an important hub for regulating avoidance behaviors. Our work uses optical circuit dissection techniques to identify a specific corticostriatal circuit involved in encoding and controlling avoidance behavior. Identifying neural circuits for avoidance will enable the development of more targeted symptom-specific treatments for anxiety disorders.  相似文献   

6.
During social interactions, decision‐making involves mutual reciprocity—each individual's choices are simultaneously a consequence of, and antecedent to those of their interaction partner. Neuroeconomic research has begun to unveil the brain networks underpinning social decision‐making, but we know little about the patterns of neural connectivity within them that give rise to reciprocal choices. To investigate this, the present study measured the behaviour and brain function of pairs of individuals (N = 66) whilst they played multiple rounds of economic exchange comprising an iterated ultimatum game. During these exchanges, both players could attempt to maximise their overall monetary gain by reciprocating their opponent's prior behaviour—they could promote generosity by rewarding it, and/or discourage unfair play through retaliation. By adapting a model of reciprocity from experimental economics, we show that players' choices on each exchange are captured accurately by estimating their expected utility (EU) as a reciprocal reaction to their opponent's prior behaviour. We then demonstrate neural responses that map onto these reciprocal choices in two brain regions implicated in social decision‐making: right anterior insula (AI) and anterior/anterior‐mid cingulate cortex (aMCC). Finally, with behavioural Dynamic Causal Modelling, we identified player‐specific patterns of effective connectivity between these brain regions with which we estimated each player's choices with over 70% accuracy; namely, bidirectional connections between AI and aMCC that are modulated differentially by estimates of EU from our reciprocity model. This input‐state‐output modelling procedure therefore reveals systematic brain–behaviour relationships associated with the reciprocal choices characterising interactive social decision‐making.  相似文献   

7.
The dorsocentral striatum (DCS) is the major site of input from medial agranular cortex (AGm) and has been implicated as an associative striatal area that is part of a cortical-subcortical circuit involved in multimodal spatial functions involving directed attention. Anterograde axonal tracing was used to investigate the spatial organization of corticostriatal projections to DCS. Injections of biotinylated dextran amine were made into several cortical areas known to project to DCS based on retrograde tracing data. These included areas AGm, lateral agranular cortex (AGl), orbital cortex, posterior parietal cortex (PPC), and visual association cortex. We discovered a previously undescribed geometry whereby the projection from AGm is prominent within DCS and the main corticostriatal projections from areas other than AGm are situated around the periphery of DCS: visual association cortex dorsomedially, PPC dorsally, AGl laterally, and orbital cortex ventrally. Each of these cortical projections is also represented by less dense aggregates of terminal labeling within DCS, organized as focal patches and more diffuse labeling. Because these cortical areas are linked by corticocortical connections, the present findings indicate that interconnected cortical areas have convergent terminal fields in the region of DCS. These findings suggest that DCS is a central associative region of the dorsal striatum characterized by a high degree of corticostriatal convergence.  相似文献   

8.
Dopaminergic degeneration is a hallmark of Parkinson's disease (PD), which causes various symptoms affected by corticostriatal circuits. So far, the relationship between cortical changes and dopamine loss in the striatum is unclear. Here, we evaluate the gray matter (GM) changes in accordance with striatal dopaminergic degeneration in PD using hybrid PET/MR. Sixteen patients with idiopathic PD underwent 18F‐FP‐CIT PET/MR. To measure dopaminergic degeneration in PD, binding ratio (BR) of dopamine transporter in striatum was evaluated by 18F‐FP‐CIT. Voxel‐based morphometry (VBM) was used to evaluate GM density. We obtained voxelwise correlation maps of GM density according to the striatal BR. Voxel‐by‐voxel correlation between BR maps and GM density maps was done to evaluate region‐specific correlation of striatal dopaminergic degeneration. There was a trend of positive correlation between striatal BR and GM density in the cerebellum, parahippocampal gyri, and frontal cortex. A trend of negative correlation between striatal BR and GM density in the medial occipital cortex was found. Voxel‐by‐voxel correlation revealed that the positive correlation was mainly dependent on anterior striatal BR, while posterior striatal BR mostly showed negative correlation with GM density in occipital and temporal cortices. Decreased GM density related to anterior striatal dopaminergic degeneration might demonstrate degeneration of dopaminergic nonmotor circuits. Furthermore, the negative correlation could be related to the motor circuits of posterior striatum. Our integrated PET/MR study suggests that the widespread structural progressive changes in PD could denote the cortical functional correlates of the degeneration of striatal dopaminergic circuits. Hum Brain Mapp 37:1710–1721, 2016. © 2016 Wiley Periodicals, Inc .  相似文献   

9.
Although temporomandibular disorders (TMD) have been associated with abnormal gray matter volumes in cortical areas and in the striatum, the corticostriatal functional connectivity (FC) of patients with TMD has not been studied. Here, we studied 30 patients with TMD and 20 healthy controls that underwent clinical evaluations, including Helkimo indices, pain assessments, and resting‐state functional magnetic resonance imaging scans. The FCs of the striatal regions with the other brain areas were examined with a seed‐based approach. As seeds, we used the dorsal caudate, ventral caudate/nucleus accumbens, dorsal caudal putamen, and ventral rostral putamen regions. Voxel‐wise comparisons with controls revealed that the patients with TMD exhibited reduced FCs in the ventral corticostriatal circuitry, between the ventral striatum and ventral frontal cortices, including the anterior cingulate cortex and anterior insula; in the dorsal corticostriatal circuitry, between the dorsal striatum and the dorsal cortices, including the precentral gyrus and supramarginal gyrus; and also within the striatum. Additionally, we explored correlations between the reduced corticostriatal FCs and clinical measurements. These results directly supported the hypothesis that TMD is associated with reduced FCs in brain corticostriatal networks and that these reduced FCs may underlie the deficits in motor control, pain processing, and cognition in TMD. Our findings may contribute to the understanding of the etiologies and pathologies of TMD.  相似文献   

10.
The striatum is known to have a compartmental organization in which histochemically defined zones called striosomes form branched 3-dimensional labyrinths embedded within the surrounding matrix. We explored how fiber projections from cortical somatic sensory areas representing cutaneous and deep-receptor inputs are organized in relation to this striatal architecture. Areas SI and 3a were mapped electrophysiologically, and distinguishable anterograde tracers (wheat germ agglutinin-HRP and 35S-methionine) were injected into physiologically identified loci. Primary somatic sensory corticostriatal projections were confined to a small, well-defined sector in the dorsolateral corner of the ipsilateral striatum. The somatic sensory afferents were arranged according to a coherent global body map in which rostral body parts were represented more laterally than caudal body parts. Single cortical loci innervated branched and clustered striatal zones that were reminiscent of the striosomes in their range of sizes and shapes yet lay strictly within the extrastriosomal matrix. In contrast to the global orderliness of the striatal body map, there were clear examples of locally complex patterns in which functionally distinct inputs interdigitated with each other. These patterns were often, but not always, produced when corticostriatal afferents carrying different submodality types were labeled. These findings demonstrate the existence of striosome-like striatal compartments within the seemingly uniform extrastriosomal matrix. The principle of mosaic organization thus holds throughout the tissue of the somatic sensory striatum. The striatal architecture delineated here could provide the anatomical substrate for computations requiring cross-modality comparisons within the framework of an overall somatotopy. If a similar multicompartmental architecture also characterizes other striatal regions, as seems likely, it may set general constraints on the nature of associative processing within the striatum as a whole.  相似文献   

11.
Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico‐basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCLSHELL) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter‐hemispheric circuit: SHELL and dNCLSHELL, as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCLSHELL, and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCLSHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song‐related responses within LMAN‐SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song‐learning regions. Our results suggest that the inter‐hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal‐learning circuitry and coordinate bilateral vocal behavior.  相似文献   

12.
Microstimulation mapping identified vocalization areas in primate anterior cingulate cortex. Rat anterior cingulate and medial prefrontal areas have also been intensely investigated, but we do not know, how these cortical areas contribute to vocalizations and no systematic mapping of stimulation‐evoked vocalizations has been performed. To address this question, we mapped microstimulation‐evoked (ultrasonic) vocalizations in rat cingulate and medial prefrontal cortex. The incidence of evoked vocalizations differed markedly between frontal cortical areas. Vocalizations were most often evoked in posterior prelimbic cortex and cingulate area 2, whereas vocalizations were rarely evoked in dorsal areas (vibrissa motor cortex, secondary motor cortex and cingulate area 1) and anterior areas (anterior prelimbic, medial‐/ventral‐orbital cortex). Vocalizations were observed at intermediate frequencies in ventro‐medial areas (infralimbic and dorsopeduncular cortex). Various complete, naturally occurring calls could be elicited. In prelimbic cortex superficial layer microstimulation evoked mainly fear calls with low efficacy, whereas deep layer microstimulation evoked mainly 50 kHz calls with high efficacy. Vocalization stimulation thresholds were substantial (70–500 μA, the maximum tested; on average ~400 μA) and latencies were long (median 175 ms). Posterior prelimbic cortex projected to numerous targets and innervated brainstem vocalization centers such as the intermediate reticular formation and the nucleus retroambiguus disynaptically via the periaqueductal gray. Anatomical position, stimulation effects and projection targets of posterior prelimbic cortex were similar to that of monkey anterior cingulate vocalization cortex. Our data suggest that posterior prelimbic cortex is more closely involved in control of vocalization initiation than in specifying acoustic details of vocalizations.  相似文献   

13.
The processes involved in value evaluation and self‐control are critical when making behavioral choices. However, the evidence linking these two types of processes to behavioral choices in intertemporal decision‐making remains elusive. As the ventromedial prefrontal cortex (vmPFC), striatum, and dorsolateral prefrontal cortex (dlPFC) have been associated with these two processes, we focused on these three regions. We employed functional magnetic resonance imaging during a delayed discounting task (DDT) using a relatively large sample size, three independent samples. We evaluated how much information about a specific choice could be decoded from local patterns in each brain area using multivoxel pattern analysis (MVPA). To investigate the relationship between the dlPFC and vmPFC/striatum regions, we performed a psychophysiological interaction (PPI) analysis. In Experiment I, we found that the vmPFC and dlPFC, but not the striatum, could determine choices in healthy participants. Furthermore, we found that the dlPFC showed significant functional connectivity with the vmPFC, but not the striatum, when making decisions. These results could be replicated in Experiment II with an independent sample of healthy participants. In Experiment III, the choice‐decoding accuracy in the vmPFC and dlPFC was lower in patients with addiction (smokers and participants with Internet gaming disorder) than in healthy participants, and decoding accuracy in the dlPFC was related to impulsivity in addicts. Taken together, our findings may provide neural evidence supporting the hypothesis that value evaluation and self‐control processes both guide the intertemporal choices, and might provide potential neural targets for the diagnosis and treatment of impulsivity‐related brain disorders.  相似文献   

14.
Our previous data indicate that there are specific features of the corticostriatal pathways from the prefrontal cortex. First, corticostriatal pathways are composed of focal, circumscribed projections and of diffuse, widespread projections. Second, there is some convergence between terminal fields from different functional regions of the prefrontal cortex. Third, anterior cingulate projections from area 24b occupy a large region of the rostral striatum. The goal of this study was to determine whether these features are also common to the corticostriatal projections from area 8A (including the frontal eye field; FEF), the supplementary eye field (SEF), dorsal and rostral premotor cortex (PMdr) and area 24c. Using a new approach of three-dimensional reconstruction of the corticostriatal pathways, along with dual cortical tracer injections, we mapped the corticostriatal terminal fields from areas 9 and 46, 8A-FEF, SEF, PMdr and 24b and c. In addition, we placed injections of retrogradely transported tracers into key striatal regions. The results demonstrated that: (i) a diffuse projection system is a common feature of the corticostriatal projections from different frontal regions; (ii) key striatal regions receive convergent projections from areas 9 and 46 and from areas 8A-FEF, SEF, PMdr and 24c, suggesting a potential pivotal role of these striatal regions in integrating cortical information; (iii) projections from area 24c, like those from area 24b, terminate widely throughout the striatum, interfacing with terminals from several frontal areas. These features of the corticostriatal frontal pathways suggest a potential integrative striatal network for learning.  相似文献   

15.
Tourette syndrome (TS) is an inherited developmental neuropsychiatric disorder characterized by vocal and motor tics. Multiple lines of neurophysiological evidence implicate dysfunction in the corticostriatal‐thalamocortical circuits in the etiology of TS. We recently identified rare sequence variants in the Slit and Trk‐like family member 1 (SLITRK1) gene associated with TS. SLITRK1, a single‐pass transmembrane protein, displays similarities to the SLIT family of secreted ligands, which have roles in axonal repulsion and dendritic patterning, but its function and developmental expression remain largely unknown. Here we provide evidence that SLITRK1 has a developmentally regulated expression pattern in projection neurons of the corticostriatal‐thalamocortical circuits. SLITRK1 is further enriched in the somatodendritic compartment and cytoplasmic vesicles of cortical pyramidal neurons in mouse, monkey, and human brain, observations suggestive of an evolutionarily conserved function in mammals. SLITRK1 is transiently expressed in the striosomal/patch compartment of the mammalian striatum and moreover is associated with the direct output pathway; adult striatal expression is confined to cholinergic interneurons. These analyses demonstrate that the expression of SLITRK1 is dynamic and specifically associated with the circuits most commonly implicated in TS and related disorders, suggesting that SLITRK1 contributes to the development of corticostriatal‐thalamocortical circuits. J. Comp. Neurol. 513:21–37, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
Appropriate decision-making relies on the ability to shift between different behavioral strategies according to the context in which decisions are made. A cohort of subjects exposed to prolonged stress, and respective gender- and age-matched controls, performed an instrumental behavioral task to assess their decision-making strategies. The stressed cohort was reevaluated after a 6-week stress-free period. The behavioral analysis was complemented by a functional magnetic resonance imaging (fMRI) study to detect the patterns of activation in corticostriatal networks ruling goal-directed and habitual actions. Using structural MRI, the volumes of the main cortical and subcortical regions implicated in instrumental behavior were determined. Here we show that chronic stress biases decision-making strategies in humans toward habits, as choices of stressed subjects become insensitive to changes in outcome value. Using functional imaging techniques, we demonstrate that prolonged exposure to stress in humans causes an imbalanced activation of the networks that govern decision processes, shifting activation from the associative to the sensorimotor circuits. These functional changes are paralleled by atrophy of the medial prefrontal cortex and the caudate, and by an increase in the volume of the putamina. Importantly, a longitudinal assessment of the stressed individuals showed that both the structural and functional changes triggered by stress are reversible and that decisions become again goal-directed.  相似文献   

17.
We studied cortical connections of functionally distinct movement zones of the posterior parietal cortex (PPC) in galagos identified by intracortical microstimulation with long stimulus trains (~500 msec). All these zones were in the anterior half of PPC, and each of them had a different pattern of connections with premotor (PM) and motor (M1) areas of the frontal lobe and with other areas of parietal and occipital cortex. The most rostral PPC zone has major connections with motor and visuomotor areas of frontal cortex as well as with somatosensory areas 3a and 1‐2 and higher order somatosensory areas in the lateral sulcus. The dorsal part of anterior PPC region representing hand‐to‐mouth movements is connected mostly to the forelimb representation in PM, M1, 3a, 1‐2, and somatosensory areas in the lateral sulcus and on the medial wall. The more posterior defensive and reaching zones have additional connections with nonprimary visual areas (V2, V3, DL, DM, MST). Ventral aggressive and defensive face zones have reciprocal connections with each other as well as connections with mostly face, but also forelimb representations of premotor areas and M1 as well as prefrontal cortex, FEF, and somatosensory areas in the lateral sulcus and areas on the medial surface of the hemisphere. Whereas the defensive face zone is additionally connected to nonprimary visual cortical areas, the aggressive face zone is not. These differences in connections are consistent with our functional parcellation of PPC based on intracortical long‐train microstimulation, and they identify parts of cortical networks that mediate different motor behaviors. J. Comp. Neurol. 517:783–807, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Psychostimulants and other dopamine agonists produce molecular changes in neurons of cortico-basal ganglia-cortical circuits, and such neuronal changes are implicated in behavioural disorders. Methylphenidate, a psychostimulant that causes dopamine overflow (among other effects), alters gene regulation in neurons of the striatum. The present study compared the effects of acute and repeated methylphenidate treatment on cortical and striatal gene regulation in adolescent rats. Changes in the expression of the immediate-early genes zif 268 and homer 1a were mapped in 23 striatal sectors and 22 cortical areas that provide input to these striatal sectors, in order to determine whether specific corticostriatal circuits were affected by these treatments. Acute administration of methylphenidate (5 mg/kg, i.p.) produced modest zif 268 induction in cortical areas. These cortical zif 268 responses were correlated in magnitude with zif 268 induction in functionally related striatal sectors. In contrast, after repeated methylphenidate treatment (10 mg/kg, 7 days), cortical and striatal gene induction were dissociated. In these animals, the methylphenidate challenge (5 mg/kg) produced significantly greater gene induction (zif 268 and homer 1a) in the cortex. This enhanced response was widespread but regionally selective, as it occurred predominantly in premotor, motor and somatosensory cortical areas. At the same time, striatal gene induction was partly suppressed (zif 268) or unchanged (homer 1a). Thus, repeated methylphenidate treatment disrupted the normally coordinated gene activation patterns in cortical and striatal nodes of corticostriatal circuits. This drug-induced dissociation in cortical and striatal functioning was associated with enhanced levels of behavioural stereotypies, suggesting disrupted motor switching function.  相似文献   

19.
It is argued that the mesolimbic system has a more general function in processing all salient events, including and extending beyond rewards. Saliency was defined as an event that is unexpected due to its frequency of occurrence and elicits an attentional‐behavioral switch. Using functional magnetic resonance imaging (fMRI), signals were measured in response to the modulation of salience of rewarding and nonrewarding events during a reward‐based decision making task, the so called desire‐reason dilemma paradigm (DRD). Replicating previous findings, both frequent and infrequent, and therefore salient, reward stimuli elicited reliable activation of the ventral tegmental area (VTA) and ventral striatum (vStr). When immediate reward desiring contradicted the superordinate task‐goal, we found an increased activation of the VTA and vStr when the salient reward stimuli were presented compared to the nonsalient reward stimuli, indicating a boosting of activation in these brain regions. Furthermore, we found a significantly increased functional connectivity between the VTA and vStr, confirming the boosting of vStr activation via VTA input. Moreover, saliency per se without a reward association led to an increased activation of brain regions in the mesolimbic reward system as well as the orbitofrontal cortex (OFC), inferior frontal gyrus (IFG), and anterior cingulate cortex (ACC). Finally, findings uncovered multiple increased functional interactions between cortical saliency‐processing brain areas and the VTA and vStr underlying detection and processing of salient events and adaptive decision making.  相似文献   

20.
In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor‐related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)‐producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor‐related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane–targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno‐associated virus vector combined with immunodetection of pre‐ and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway‐specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号