首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given the close interaction between tumor cells and stromal cells in the tumor microenvironment (TME), TME‐targeted strategies would be promising for developing integrated cancer immunotherapy. Cancer‐associated fibroblasts (CAFs) are the dominant stromal component, playing critical roles in generation of the pro‐tumorigenic TME. We focused on the immunosuppressive trait of CAFs, and systematically explored the alteration of tumor‐associated immune responses by CAF‐targeted therapy. C57BL/6 mice s.c. bearing syngeneic E.G7 lymphoma, LLC1 Lewis lung cancer, or B16F1 melanoma were treated with an anti‐fibrotic agent, tranilast, to inhibit CAF function. The infiltration of immune suppressor cell types, including regulatory T cells and myeloid‐derived suppressor cells, in the TME was effectively decreased through reduction of stromal cell‐derived factor‐1, prostaglandin E2, and transforming growth factor‐β. In tumor‐draining lymph nodes, these immune suppressor cell types were significantly decreased, leading to activation of tumor‐associated antigen‐specific CD8+ T cells. In addition, CAF‐targeted therapy synergistically enhanced multiple types of systemic antitumor immune responses such as the cytotoxic CD8+ T cell response, natural killer activity, and antitumor humoral immunity in combination with dendritic cell‐based vaccines; however, the suppressive effect on tumor growth was not observed in tumor‐bearing SCID mice. These data indicate that systemic antitumor immune responses by various immunologic cell types are required to bring out the efficacy of CAF‐targeted therapy, and these effects are enhanced when combined with effector‐stimulatory immunotherapy such as dendritic cell‐based vaccines. Our mouse model provides a novel rationale with TME‐targeted strategy for the development of cell‐based cancer immunotherapy.  相似文献   

2.
Non-small cell lung cancer (NSCLC) is a malignant tumor with high morbidity and mortality rates, which seriously endangers human health. Although treatment methods continue to evolve, the emergence of drug resistance is inevitable and seriously hinders the treatment of NSCLC. The tumor microenvironment (TME) protects tumor cells from the effects of chemotherapeutic drugs, which can lead to drug resistance. Cancer-associated fibroblasts (CAFs) are an important component of the TME, and various studies have demonstrated that CAFs play a crucial role in drug resistance in NSCLC. However, the drug resistance mechanism of CAFs and whether CAFs can be used as a target to reverse the resistance of tumor cells remain unclear. The present review discusses this issue and describes the heterogeneity of CAF markers, as well as their origins and resident organs, and the role and mechanism of this heterogeneity in NSCLC progression. Furthermore, the mechanism of CAF-mediated NSCLC resistance to chemotherapy, targeted therapy and immunotherapy is introduced, and strategies to reverse this resistance are described.  相似文献   

3.
The tumor microenvironment (TME) consists of various components including cancer cells, tumor vessels, cancer‐associated fibroblasts (CAFs), and inflammatory cells. These components interact with each other via various cytokines, which often induce tumor progression. Thus, a greater understanding of TME networks is crucial for the development of novel cancer therapies. Many cancer types express high levels of TGF‐β, which induces endothelial‐to‐mesenchymal transition (EndMT), leading to formation of CAFs. Although we previously reported that CAFs derived from EndMT promoted tumor formation, the molecular mechanisms underlying these interactions remain to be elucidated. Furthermore, tumor‐infiltrating inflammatory cells secrete various cytokines, including TNF‐α. However, the role of TNF‐α in TGF‐β‐induced EndMT has not been fully elucidated. Therefore, this study examined the effect of TNF‐α on TGF‐β‐induced EndMT in human endothelial cells (ECs). Various types of human ECs underwent EndMT in response to TGF‐β and TNF‐α, which was accompanied by increased and decreased expression of mesenchymal cell and EC markers, respectively. In addition, treatment of ECs with TGF‐β and TNF‐α exhibited sustained activation of Smad2/3 signals, which was presumably induced by elevated expression of TGF‐β type I receptor, TGF‐β2, activin A, and integrin αv, suggesting that TNF‐α enhanced TGF‐β‐induced EndMT by augmenting TGF‐β family signals. Furthermore, oral squamous cell carcinoma‐derived cells underwent epithelial‐to‐mesenchymal transition (EMT) in response to humoral factors produced by TGF‐β and TNF‐α‐cultured ECs. This EndMT‐driven EMT was blocked by inhibiting the action of TGF‐βs. Collectively, our findings suggest that TNF‐α enhances TGF‐β‐dependent EndMT, which contributes to tumor progression.  相似文献   

4.
5.
Fibroblasts are a key component of the tumor microenvironment (TME) that can serve as a scaffold for tumor cell migration and augment the tumor's ability to withstand harsh conditions. When activated by external or endogenous stimuli, normal fibroblasts become cancer associated fibroblasts (CAFs), a heterogeneous group of stromal cells in the tumor that are phenotypically and epigenetically different from normal fibroblasts. Dynamic crosstalk between cancer cells, immune cells, and CAFs through chemokines and surface signaling makes the TME conducive to tumor growth. When activated, CAFs promote tumorigenesis and metastasis through several phenomena including regulation of tumor immunity, metabolic reprogramming of the TME, extracellular matrix remodeling and contraction, and induction of therapeutic resistance. Ionizing radiation (radiation theraphy [RT]) is a potent immunological stimulant that has been shown to increase cytotoxic Teff infiltration and IFN-I stimulated genes. RT, however, is unable to overcome the infiltration and activation of immunosuppressive cells which can contribute to tumor progression. Another paradox of RT is that, while very effective at killing cancer cells, it can contribute to the formation of CAFs. This review examines how the interplay between CAFs and immune cells during RT contributes to organ fibrosis, immunosuppression, and tumor growth. We focus on targeting mechanistic pathways of CAF formation as a potentially effective strategy not only for preventing organ fibrosis, but also in hampering tumor progression in response to RT.  相似文献   

6.
7.
Most solid tumors contain cancer‐associated fibroblasts (CAFs) that support tumorigenesis and malignant progression. However, the cellular origins of CAFs in epithelial ovarian cancers (EOCs) remain poorly understood, and their utility as a source of clinical biomarkers for cancer diagnosis has not been explored in great depth. Here, we report establishing in vitro and in vivo models of CAFs in ovarian cancer development. Normal ovarian fibroblasts and mesenchymal stem cells cultured in the presence of EOC cells acquired a CAF‐like phenotype, and promoted EOC cell migration in vitro. CAFs also promoted ovarian cancer growth in vivo in both subcutaneous and intraperitoneal murine xenograft assays. Molecular profiling of CAFs identified gene expression signatures that were highly enriched for extracellular and secreted proteins. We identified novel candidate CAF‐specific biomarkers for ovarian cancer including NPPB, which was expressed in the stroma of 60% primary ovarian cancer tissues (n = 145) but not in the stroma of normal ovaries (n = 4). NPPB is a secreted protein that was also elevated in the blood of 50% of women with ovarian cancer (n = 8). Taken together, these data suggest that the tumor stroma is a novel source of biomarkers, including NPPB, that may be of clinical utility for detection of EOC.  相似文献   

8.
肿瘤相关成纤维细胞(CAFs)是肿瘤微环境(TME)中最主要的细胞组分之一,在肿瘤发生、进展中发挥重要作用。微小RNA(miRNAs)参与CAFs的转化与代谢重编程,并可调控CAFs 的干性及其介导的肿瘤细胞增殖、侵袭和化疗耐药等机制,在CAFs 的形成和CAFs 对肿瘤的促进作用中发挥重要功能;而CAFs 释放的miRNAs 可作为肿瘤的诊断、预后及用药选择的参考指标。因此探索miRNAs 在肿瘤细胞与CAFs 相互作用中的功能,揭示其作用机制,对于理解肿瘤的发生和发展具有重要意义;同时也可为新的肿瘤治疗策略提供研究方向。本文将对miRNAs在CAFs的形成及CAFs对肿瘤细胞调控中的作用加以介绍  相似文献   

9.
10.
Cancer‐associated fibroblasts (CAFs) have recently been implicated in tumor growth and metastasis in gastric cancer. Cancer stem cells (CSCs) have been proposed to have an important role in cancer progression. The aim of this study was to clarify the effect of CAFs on CSCs characteristics in gastric carcinoma. Scirrhous gastric cancer cell lines, OCUM‐12 and OCUM‐2MD3, and non‐scirrhous gastric cancer cell lines, MKN‐45 and MKN‐74, were used. OCUM‐12/side population (SP) cells and OCUM‐2MD3/SP cells were sorted by flow cytometry as CSC‐rich cells from the parent cells. CaF‐37 was established from the tumoral gastric specimens as CAFs. Flow cytometric analysis of SP fraction, spheroid colony assay, and RT‐PCR analysis of CSC markers were performed to identify CSCs properties. Effect of CAFs on the tumorigenicity by OCUM‐12/SP cells was examined using nude mice. CAF CM significantly increased the percentages of the SP fraction of OCUM‐12/SP and OCUM‐2MD3/SP cells, but not that of MKN‐45/SP and MKN‐74/SP cells. Taken together, CM from CaF‐37 significantly increased the number of spheroid colonies and the expression level of CSC markers of OCUM‐12/SP and OCUM‐2MD3/SP cells. These stimulating‐activities by CM were significantly decreased by TGFβ inhibitors, but not FGFR and cMet inhibitor. Tumorigenicity by subcutaneous coinoculation of OCUM‐12/SP cells with CAFs was significantly high in comparison with that by OCUM‐12/SP cells alone. Phospho‐Smad2 expression level was significantly increased by co‐inoculation with CAFs. These findings suggested that CAFs might regulate the stemness of CSCs in scirrhous gastric cancer by TGFβ signaling.  相似文献   

11.
Heat shock factor 1 (HSF1) is highly expressed in various malignancies and is a potential modulator of tumor progression. Emerging evidence suggests that HSF1 activation in stromal cells is closely related to poor patient prognosis. However, the role of HSF1 in oral squamous cell carcinoma (OSCC) remains elusive. We aimed to investigate the function of HSF1 in cancer‐associated fibroblasts (CAFs) of the tumor microenvironment (TME) and in tumor development. In the present study, we found that HSF1 was highly expressed in both CAFs and tumor cells, and was significantly correlated with poor prognosis and overall survival. Moreover, HSF1 overexpression in CAFs resulted in a fibroblast‐like phenotype of Cal27 cells, induced epithelial‐mesenchymal transition (EMT), and promoted proliferation, migration and invasion in Cal27 cells. HSF1 knockdown attenuated features of CAFs and reduced EMT, proliferation, migration and invasion in Cal27 cells. Furthermore, HSF1 in CAFs promoted tumor growth in nude mice. Taken together, these data suggest that HSF1 expression in CAFs drive OSCC progression, and could serve as an independent prognostic marker of patients with OSCC. Thus, HSF1 is a potent mediator of OSCC malignancy.  相似文献   

12.
Cancer‐associated fibroblasts (CAFs) are the most abundant cell type in the tumor microenvironment and are responsible for producing the desmoplastic reaction that is a poor prognostic factor in ovarian cancer. Long non‐coding RNAs (lncRNAs) have been shown to play important roles in cancer. However, very little is known about the role of lncRNAs in the tumor microenvironment. We aimed to identify lncRNAs expressed in ovarian CAFs that were associated with patient survival and used computational approaches to predict their function. Increased expression of 9 lncRNAs and decreased expression of 1 lncRNA in ovarian CAFs were found to be associated with poorer overall survival. A “guilt‐by‐association” approach was used to predict the function of these lncRNAs. In particular, MIR155HG was predicted to play a role in immune response. Further investigation revealed high MIR155HG expression to be associated with higher infiltrates of immune cell subsets. In conclusion, these data indicate expression on several lncRNAs in CAFs are associated with patient survival and are likely to play an important role in regulating CAF function.  相似文献   

13.
Multiple juxtacrine and paracrine interactions occur between cancer cells and non-cancer cells of the tumor microenvironment (TME) that direct tumor progression. Cancer Associated Fibroblasts (CAFs) are an integral component of the TME, and the majority of breast tumor stroma is comprised of CAFs. Heterotypic interactions between cancer cells and non-cancer cells of the TME occur via soluble agents, including cytokines, hormones, growth factors, and secreted microRNAs. We previously identified a microRNA signature indicative of hyperactive MAPK signaling (hMAPK-miRNA signature) that significantly associated with reduced recurrence-free and overall survival. Here we report that the hMAPK-miRNA signature associates with a high metric of stromal cell infiltrate, and we investigate the role of microRNAs, particularly hMAPK-microRNAs, secreted by CAFs on estrogen receptor (ER) expression in breast cancer cells. ER-positive MCF-7/ltE2- cells were treated with conditioned media (CM) from CAFs derived from breast cancers of different PAM50 subtypes (CAFBAS, CAFHER2, and CAFLA). CAF CM isolated specifically from ER-negative primary breast tumors led to ER repression in vitro. Nanoparticle tracking analysis and transmission electron microscopy confirmed the presence of CAF-secreted exosomes in CM and the uptake of these exosomes by the ER+ MCF-7/ltE2- cells. Differentially expressed microRNAs in CAF CM as well as in MCF-7/ltE2- cells treated with this CM were identified. Knockdown of miR-221/222 in CAFBAS resulted in knockdown of miR221/222 levels in the conditioned media and the CM from CAFBAS; miR221/222 knockdown rescued ER repression in ER-positive cell lines treated with CAFBAS-CM. Collectively, our results demonstrate that CAF-secreted microRNAs are directly involved in ER-repression, and may contribute to the MAPK-induced ER repression in breast cancer cells.  相似文献   

14.
Cancer‐associated fibroblasts (CAFs) are reportedly involved in invasion and metastasis in several types of cancer, including gastric cancer (GC), through the stimulation of CXCL12/CXCR4 signaling. However, the mechanisms underlying these tumor‐promoting effects are not well understood, which limits the potential to develop therapeutic targets against CAF‐mediated CXCL12/CXCR4 signaling. CXCL12 expression was analyzed in resected GC tissues from 110 patients by immunohistochemistry (IHC). We established primary cultures of normal fibroblasts (NFs) and CAFs from the GC tissues and examined the functional differences between these primary fibroblasts using co‐culture assays with GC cell lines. We evaluated the efficacy of a CXCR4 antagonist (AMD3100) and a FAK inhibitor (PF‐573,228) on the invasive ability of GC cells. High CXCL12 expression levels were significantly associated with larger tumor size, increased tumor depth, lymphatic invasion and poor prognosis in GC. CXCL12/CXCR4 activation by CAFs mediated integrin β1 clustering at the cell surface and promoted the invasive ability of GC cells. Notably, AMD3100 was more efficient than PF‐573,228 at inhibiting GC cell invasion through the suppression of integrin β1/FAK signaling. These results suggest that CXCL12 derived from CAFs promotes GC cell invasion by enhancing the clustering of integrin β1 in GC cells, resulting in GC progression. Taken together, the inhibition of CXCL12/CXCR4 signaling in GC cells may be a promising therapeutic strategy against GC cell invasion.  相似文献   

15.
The tumor microenvironment favors the growth and expansion of cancer cells. Many cell types are involved in the tumor microenvironment such as inflammatory cells, fibroblasts, nerves, and vascular endothelial cells. These stromal cells contribute to tumor growth by releasing various molecules to either directly activate the growth signaling in cancer cells or remodel surrounding areas. This review introduces recent advances in findings on the interactions within the tumor microenvironment such as in cancer‐associated fibroblasts (CAFs), immune cells, and endothelial cells, in particular those established in mouse gastric cancer models. In mice, myofibroblasts in the gastric stroma secrete R‐spondin and support normal gastric stem cells. Most CAFs promote tumor growth in a paracrine manner, but CAF population appears to be heterogeneous in terms of their function and origin, and include both tumor‐promoting and tumor‐restraining populations. Among immune cell populations, tumor‐associated macrophages, including M1 and M2 macrophages, and myeloid‐derived suppressor cells (MDSCs), are reported to directly or indirectly promote gastric tumorigenesis by secreting soluble factors or modulating immune responses. Endothelial cells or blood vessels not only fuel tumors with nutrients, but also interact with cancer stem cells and immune cells by secreting chemokines or cytokines, and act as a cancer niche. Understanding these interactions within the tumor microenvironment would contribute to unraveling new therapeutic targets.  相似文献   

16.
Gastric cancer (GC) is one of the most frequent malignant tumors worldwide and is associated with high invasiveness, high metastasis and poor prognosis. Cancer‐associated fibroblasts (CAFs), residing around tumor cells in tumor stroma, are important modifiers of tumor initiation and progression. However, the molecular mechanisms by which CAF's modulate tumor development have yet not to be characterized in GC. Here we performed tissue assay analyses identifying that Lumican, an extracellular matrix protein, is highly expressed in human gastric CAFs and its expression is positively associated with depth of invasion, lymph node metastasis, TNM stage and poor survival rate of GC. Functional studies revealed that integrin β1‐FAK signaling pathways mediate the promoting effect of Lumican on GC cell proliferation, migration and invasion in vitro. In accordance with these observations, in GC cells co‐cultured with CAFs in which Lumican had been knocked down, decreased gastric tumor growth and metastasis in vivo was apparent. In summary, CAF‐derived Lumican contributes to tumorigenesis and metastasis of GC by activating the integrin β1‐FAK signaling pathway.  相似文献   

17.
18.
肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)主要来源于肿瘤微环境中被激活的正常成纤维细胞和间充质干细胞。CAFs能够通过分泌多种小分子生物活性物质调控肿瘤细胞的增殖、侵袭、耐药等生物学行为,并通过细胞间相互作用影响微环境中免疫细胞的活性,进而影响肿瘤患者的预后。近年来,关于CAFs的标志物、活化机制、生物作用以及单细胞测序的研究取得一些进展,靶向CAFs治疗也有望成为结直肠癌(colorectal cancer,CRC)新的治疗策略。本文主要对CAFs的来源、活化与募集以及这一细胞亚群在CRC中的研究进展进行综述,为CAFs在CRC中的研究及临床应用提供新的视角。  相似文献   

19.
Bone marrow‐derived mesenchymal stem cells (MSCs) are reported to contribute to formation of tumor‐promoting stromal cells. We reported recently that, in an orthotopic nude mice model of colon cancer, MSCs traveled to tumor stroma, where they differentiated into carcinoma‐associated fibroblast (CAF)‐like cells. We also found that CAFs express platelet‐derived growth factor receptor (PDGFR) at a high level and that imatinib therapy targeting PDGFR in CAFs inhibits growth and metastasis of human colon cancer. These findings led us to examine whether the tumor‐promoting effect of MSCs is impaired by blockade of PDGFR signaling achieved with imatinib. Orthotopic transplantation and splenic injection of human MSCs along with KM12SM human colon cancer cells, in comparison with transplantation of KM12SM cells alone, resulted in significantly greater promotion of tumor growth and liver metastasis. The KM12SM + MSC xenograft enhanced cell proliferation and angiogenesis and inhibited tumor cell apoptosis. When tumor‐bearing animals were treated with imatinib, there was no significant increase in primary tumor volume or total volume of liver metastases, despite the KM12SM+MSC xenograft, and survival in the mixed‐cell group was prolonged by imatinib treatment. Moreover, the ability of MSCs to migrate to tumor stroma was impaired, and the number of MSCs surviving in the tumor microenvironment was significantly decreased. In in vitro experiments, treatment with imatinib inhibited migration of MSCs. Our data suggest that blockade of PDGF signaling pathways influences the interaction between bone marrow‐derived MSCs and tumor cells in the tumor microenvironment and, hence, inhibits the progressive growth of colon cancer.  相似文献   

20.
Cancer‐associated fibroblasts (CAFs) are known to contribute to cancer progression. We have reported that cell surface expression of hepatocyte growth factor activator inhibitor 1 (HAI‐1) is decreased in invasive oral squamous cell carcinoma (OSCC) cells. This study examined if HAI‐1‐insufficiency contributes to CAF recruitment in OSCC. Serum‐free conditioned medium (SFCM) from a human OSCC line (SAS) stimulated the migration of 3 human fibroblast cell lines, NB1RGB, MRC5 and KD. SFCM from HAI‐1‐knockdown SAS showed an additive effect on the migration of NB1RGB and MRC5, but not KD. SAS SFCM induced protease‐activated receptor‐2 (PAR‐2) expression in NB1RGB and MRC5, but not in KD, and a PAR‐2 antagonist blocked the stimulatory effect of HAI‐1 knockdown on migration of the PAR‐2 expressing cell lines. Moreover, HAI‐1‐deficient SFCM showed additive stimulatory effects on the migration of wild‐type but not PAR‐2‐deficient mouse fibroblasts. Therefore, the enhanced migration induced by HAI‐1‐insufficiency was mediated by PAR‐2 activation in fibroblasts. This activation resulted from the deregulation of the activity of matriptase, a PAR‐2 agonist protease. HAI‐1 may thus prevent CAF recruitment to OSCC by controlling matriptase activity. When HAI‐1 expression is reduced on OSCC, matriptase may contribute to CAF accumulation by paracrine activation of fibroblast PAR‐2. Immunohistochemical analysis of resected OSCC revealed increased PAR2‐positive CAFs in 35% (33/95) of the cases studied. The increased PAR‐2 positive CAFs tended to correlate with infiltrative histology of the invasion front and shorter disease‐free survival of the patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号