首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic transformation and genome editing technologies have been successfully established in the lepidopteran insect model, the domesticated silkworm, Bombyx mori, providing great potential for functional genomics and practical applications. However, the current lack of cis‐regulatory elements in B. mori gene manipulation research limits further exploitation in functional gene analysis. In the present study, we characterized a B. mori endogenous promoter, Bmvgp, which is a 798‐bp DNA sequence adjacent to the 5′‐end of the vitellogenin gene (Bmvg). PiggyBac‐based transgenic analysis shows that Bmvgp precisely directs expression of a reporter gene, enhanced green fluorescent protein (EGFP), in a sex‐, tissue‐ and stage‐specific manner. In transgenic animals, EGFP expression can be detected in the female fat body from larval?pupal ecdysis to the following pupal and adult stage. Furthermore, in vitro and in vivo experiments revealed that EGFP expression can be activated by 20‐hydroxyecdysone, which is consistent with endogenous Bmvg expression. These data indicate that Bmvgp is an effective endogenous cis‐regulatory element in B. mori.  相似文献   

2.
The diamondback moth, Plutella xylostella, is the most devastating pest of brassica crops worldwide. Although 128 mature microRNAs (miRNAs) have been annotated from this species in miRBase, there is a need to extend and correct the current P. xylostella miRNA repertoire as a result of its recently improved genome assembly and more available small RNA sequence data. We used our new ultra‐deep sequence data and bioinformatics to re‐annotate the P. xylostella genome for high confidence miRNAs with the correct 5p and 3p arm features. Furthermore, all the P. xylostella annotated genes were also screened to identify potential miRNA binding sites using three target‐predicting algorithms. In total, 203 mature miRNAs were annotated, including 33 novel miRNAs. We identified 7691 highly confident binding sites for 160 pxy‐miRNAs. The data provided here will facilitate future studies involving functional analyses of P. xylostella miRNAs as a platform to introduce novel approaches for sustainable management of this destructive pest.  相似文献   

3.
Insecticidal toxins from Bacillus thuringiensis (Bt) are widely used to control pest insects, but evolution of resistance threatens their continued efficacy. The most common type of Bt resistance ('Mode 1') is characterized by recessive inheritance, > 500-fold resistance to at least one Cry1A toxin, negligible cross-resistance to Cry1C, and reduced binding of Bt toxins to midgut membrane target sites. Mutations affecting a Cry1A-binding midgut cadherin protein are linked to laboratory-selected Mode 1 resistance in Heliothis virescens and Pectinophora gossypiella. Here we show that field-evolved Mode 1 resistance in the diamondback moth, Plutella xylostella, has a different genetic basis, indicating that screening for resistance in the field should not be restricted to a previously proposed DNA-based search for cadherin mutations.  相似文献   

4.
The peritrophic matrix (PM) of Plutella xylostella larvae was found to contain twelve integral and eighteen loosely associated proteins. An antiserum against Mamestra configurata integral PM proteins cross-reacted with several P. xylostella PM proteins and was used to isolate a partial cDNA encoding an insect intestinal mucin (PxIIM). PxIIM was expressed primarily in the larval midgut. The deduced protein sequence of the partial cDNA contained three potentially glycosylated, mucin-like domains and six cysteine-rich chitin-binding domains (CBDs). An additional chitin-binding domain was proposed to reside at the amino terminus of the protein based on comparison with other IIM. The organization of mucin domains and CBDs exhibited features, including an internal triplet of regularly spaced CBDs and a carboxyl terminal CBD with two additional conserved cysteine residues, that were found to be common to other lepidopteran IIMs.  相似文献   

5.
Recently, a novel sex‐determination system was identified in the silkworm (Bombyx mori) in which a piwi‐interacting RNA (piRNA) encoded on the female‐specific W chromosome silences a Z‐linked gene (Masculinizer) that would otherwise initiate male sex‐determination and dosage compensation. Masculinizer provides various opportunities for developing improved genetic pest management tools. A pest lepidopteran in which a genetic pest management system has been developed, but which would benefit greatly from such improved designs, is the diamondback moth, Plutella xylostella. However, Masculinizer has not yet been identified in this species. Here, focusing on the previously described ‘masculinizing’ domain of B. mori Masculinizer, we identify P. xylostella Masculinizer (PxyMasc). We show that PxyMasc is Z‐linked, regulates sex‐specific alternative splicing of doublesex and is necessary for male survival. Similar results in B. mori suggest this survival effect is possibly through failure to initiate male dosage compensation. The highly conserved function and location of this gene between these two distantly related lepidopterans suggests a deep role for Masculinizer in the sex‐determination systems of the Lepidoptera.  相似文献   

6.
The diamondback moth, Plutella xylostella, is one of the most economically important agricultural pests. The larvae of this moth cause damage by feeding on the foliage of cruciferous vegetables such as cabbage, broccoli, cauliflower and rapeseed. Control generally comprises chemical treatment; however, the diamondback moth is renowned for rapid development of resistance to pesticides. Other methods, such as biological control, have not been able to provide adequate protection. Germline transformation of pest insects has become available in recent years as an enabling technology for new genetics‐based control methods, such as the Release of Insects carrying a Dominant Lethal (RIDL®). In the present study, we report the first transformation of the diamondback moth, using the piggyBac transposable element, by embryo microinjection. In generating transgenic strains using four different constructs, the function of three regulatory sequences in this moth was demonstrated in driving expression of fluorescent proteins. The transformation rates achieved, 0.48–0.68%, are relatively low compared with those described in other Lepidoptera, but not prohibitive, and are likely to increase with experience. We anticipate that germline transformation of the diamondback moth will permit the development of RIDL strains for use against this pest and facilitate the wider use of this species as a model organism for basic studies.  相似文献   

7.
Colour patterns in butterflies and moths are crucial traits for adaptation. Previous investigations have highlighted genes responsible for pigmentation (ie yellow and ebony). However, the mechanisms by which these genes are regulated in lepidopteran insects remain poorly understood. To elucidate this, molecular studies involving dipterans have largely analysed the cis‐regulatory regions of pigmentation genes and have revealed cis‐regulatory modularity. Here, we used well‐developed transgenic techniques in Bombyx mori and demonstrated that cis‐regulatory modularity controls tissue‐specific expression of the yellow gene. We first identified which body parts are regulated by the yellow gene via black pigmentation. We then isolated three discrete regulatory elements driving tissue‐specific gene expression in three regions of B. mori larvae. Finally, we found that there is no apparent sequence conservation of cis‐regulatory regions between B. mori and Drosophila melanogaster, and no expression driven by the regulatory regions of one species when introduced into the other species. Therefore, the trans‐regulatory landscapes of the yellow gene differ significantly between the two taxa. The results of this study confirm that lepidopteran species use cis‐regulatory modules to control gene expression related to pigmentation, and represent a powerful cadre of transgenic tools for studying evolutionary developmental mechanisms.  相似文献   

8.
9.
10.
Apolygus lucorum is the predominant pest of Bacillus thuringiensis (Bt) cotton in China. 20‐hydroxyecdysone (20E) plays a key role in the reproduction of this insect. To better understand the mechanism underlying 20E‐regulated reproduction, the nuclear hormone receptor E75 isoform‐A of Ap. lucorum (Al‐E75A) was cloned and its expression analysed. A 2241‐bp sequence of Al‐E75A cDNA encoded an open reading frame of a polypeptide with a predicted molecular mass of 69.04 kDa. Al‐E75A mRNA was detected in female adult stages of Ap. lucorum with peak expression in 7‐day‐old animals. Al‐E75A was also expressed in several tissues, particularly in the fat body and ovary. A 3.2 kb Al‐E75A mRNA was detected in all tissues by Northern blot. The fecundity and longevity were significantly decreased in female adults treated with Al‐E75A small interfering RNA. The rates of egg incubation rates were considerably lower in the RNA interference‐treated animals compared to the untreated controls. In order to investigate the molecular mechanism underlying the effects described above, vitellogenin (Al‐Vg) was selected for further investigation. The expression pattern of Al‐Vg was similar to that of Al‐E75A and was up‐regulated by 20E. After knockdown of Al‐E75A, the expression profile of Al‐Vg and the protein levels were down‐regulated. These findings suggest that Al‐E75A plays a crucial role in the regulation of Al‐Vg expression in Ap. lucorum.  相似文献   

11.
12.
13.
Body pigmentation is an important character of insects in adapting to biotic and abiotic environmental challenges. Additionally, based on the relative ease of screening, several genes involved in insect melanization have been used in classic genetic studies or as visual markers in constructing transgenic insects. Here, a homologue of the Bombyx mori melanization-inhibiting gene ebony, associated with the conversion of dopamine to N-β-alanyl dopamine, was identified in a global pest, Plutella xylostella. The CRISPR/Cas9 system was applied to generate multiple Pxebony knockout alleles which were crossed to produce a Pxebony knockout strain, showing darker pigmentation in larvae, pupae and adults, compared with wildtype. Interestingly, we observed that Pxebony heterozygotes displayed an intermediate darkened phenotype, indicating partial dominance between the knockout and wildtype alleles. The fitness costs of Pxebony deficiency were also assessed in the mutant strain, indicating that embryo hatchability and larval survival were significantly reduced, while the eclosion rate was not obviously affected. Our work provides a potential target for exploring CRISPR-based genetics-control systems in this economically important pest lepidopteran.  相似文献   

14.
15.
Sex‐specific regulatory elements are key components for developing insect genetic sexing systems. The current insect genetic sexing system mainly uses a female‐specific modification system whereas little success was reported on male‐specific genetic modification. In the silkworm Bombyx mori, a lepidopteran model insect with economic importance, a transgene‐based, female‐specific lethality system has been established based on sex‐specific alternative splicing factors and a female‐specific promoter BmVgp (vitellogenin promoter) has been identified. However, no male‐specific regulatory elements have yet been identified. Here we report the transgenic identification of two promoters that drive reporter gene expression in a testis‐specific manner in B. mori. Putative promoter sequences from the B. mori Radial spoke head 1 gene (BmR1) and beta‐tubulin 4 gene (Bmβ4) were introduced using piggybac‐based germline transformation. In transgenic silkworms, expression of the reporter gene enhanced green fluorescent protein (EGFP) directed by either BmR1 promoter (BmR1p) or Bmβ4p showed precisely testis‐specific manners from the larval to adult stage. Furthermore, EGFP expression of these two transgenic lines showed different localization in the testis, indicating that BmR1p or Bmβ4p might be used as distinct regulatory elements in directing testis‐specific gene expression. Identification of these testis‐specific promoters not only contributes to a better understanding of testis‐specific gene function in insects, but also has potential applications in sterile insect techniques for pest management.  相似文献   

16.
17.
The diamondback moth, Plutella xylostella, is a global pest of cruciferous vegetables. Abamectin resistance in a field population of P. xylostella was introgressed into the susceptible Roth strain. The resulting introgression strain Roth‐Abm showed 11 000‐fold resistance to abamectin compared with Roth. An A309V substitution at the N‐terminus of the third transmembrane helix (M3) of the glutamate‐gated chloride channel of P. xylostella (PxGluCl) was identified in Roth‐Abm. The frequency of the V309 allele of PxGluCl was 94.7% in Roth‐Abm, whereas no such allele was detected in Roth. A subpopulation of Roth‐Abm was kept without abamectin selection for 20 generations to produce a revertant strain, Roth‐Abm‐D. Abamectin resistance in Roth‐Abm‐D declined to 1150‐fold compared with Roth, with the V309 allele frequency decreased to 9.6%. After treatment of the Roth‐Abm‐D strain with 80 mg/l abamectin the V309 allele frequency in the survivors increased to 55%. This demonstrates that the A309V mutation in PxGluCl is strongly associated with a 10‐fold increase in abamectin resistance in Roth‐Abm relative to Roth‐Abm‐D. Homology modelling and automated ligand docking results suggest that the A309V substitution allosterically modifies the abamectin‐binding site, as opposed to directly eliminating a key binding contact. Other resistance mechanisms to abamectin in Roth‐Abm are discussed besides the A309V mutation of PxGluCl.  相似文献   

18.
G protein‐coupled receptors (GPCRs) are the largest and most versatile superfamily of cell membrane proteins, which mediate various physiological processes including reproduction, development and behaviour. The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), is one of the most notorious insect pests, preferentially feeding on cruciferous plants. P. xylostella is not only one of the world's most widespread lepidopteran insects, but has also developed resistance to nearly all classes of insecticides. Although the mechanisms of insecticide resistance have been studied extensively in many insect species, few investigations have been carried out on GPCRs in P. xylostella. In the present study, we identified 95 putative GPCRs in the P. xylostella genome. The identified GPCRs were compared with their homologues in Bombyx mori and Drosophila melanogaster. Our results suggest that GPCRs in different insect species may have evolved by a birth‐and‐death process. One of the differences among compared insects is the duplication of short neuropeptide F receptor and adipokinetic hormone receptors in P. xylostella and B. mori. Another divergence is the decrease in quantity and diversity of the stress‐tolerance gene, Mth, in P. xylostella. The evolution by the birth‐and‐death process is probably involved in adaptation to the feeding behaviour, reproduction and stress responses of P. xylostella. Some of the genes identified in the present study could be potential targets for the development of novel pesticides.  相似文献   

19.
20.
Epoxy‐carvone (EC) has chiral centers that allow generation of stereoisomers, including (+)‐cis‐EC and (?)‐cis‐EC, whose effects in the kindling tests have never been studied. Accordingly, this study aims to comparatively investigate the effect of stereoisomers (+)‐cis‐epoxy‐carvone and (?)‐cis‐epoxy‐carvone on behavioral changes measured in scores, in the levels of cytokines (IL‐1β, IL‐6, and TNFα) and neuronal protection in the face of continuous treatment with pentylenetetrazol. Swiss mice were divided into five groups (n = 10), receiving vehicle, (+) – cis‐EC, (?) – cis‐EC (both at the dose of 30 mg/kg), and diazepam (4 mg/kg). Thirty minutes after the respective treatment was administered to the animals one subconvulsive dose of PTZ (35 mg/kg). Seven subconvulsives treatments were made on alternate days, in which each treatment several parameters were recorded. In the eighth treatment, the animals receiving the highest dose of PTZ (75 mg/kg) and were sacrificed for quantification of cytokines and histopathologic analysis. All drugs were administered by intraperitoneal route. In the kindling test, (+)‐cis‐EC and (?)‐cis‐EC reduced the average scores. The stereoisomer (+)‐cis‐EC decreased levels of proinflammatory cytokines IL‐1β, IL‐6, and TNFα, whereas comparatively (?)‐cis‐EC did not reduce IL‐1β levels. Histopathological analysis of the mice hippocampi undergoing this methodology showed neural protection for treated with (+)‐cis‐EC. The results suggest that the anticonvulsant effect of (+)‐cis‐EC possibly takes place due to reduction of proinflammatory cytokines involved in the epileptogenic process, besides neuronal protection, yet further investigation of the mechanisms involved is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号