首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cortical electroencephalographic rhythms reactivity may be quantified using event-related desynchronization (ERD) and synchronization (ERS) methods. We therefore studied cortical activation occurring during programming and performance of voluntary movement in healthy subjects. EEG power evolution within the reactive frequency bands (mu and beta central rhythms) was averaged before, during and after a minimum of 50 self-paced flexions of the thumb. Recordings in 18 normal adults showed that ERD (decrease in power) of mu rhythm started 2,000 ms before movement onset, while ERD of beta rhythm started 1,500 ms before movement onset. Early ERD of mu and beta rhythms were located over the contralateral central region covering primary motor cortex. They were followed by bilateral ERD occurring over ipsilateral and contralateral central regions during performance of the movement. At the end of the movement, an ERS (increase in power) of beta rhythm occurred. These results suggest that programming of voluntary movement induces early activation in contralateral sensorimotor areas, while performance of the movement induces bilateral activation in sensorimotor areas. ERS of beta rhythm occurring at the end of the movement could correspond to inactivation of motor areas activated by movement. Based on EEG activity, ERD and ERS prove to be useful methods to analyze cortical activation during programming and performance of voluntary movements with good spatial and temporal resolution.  相似文献   

2.
OBJECTIVE: To use the neural signals preceding movement and motor imagery to predict which of the four movements/motor imageries is about to occur, and to access this utility for brain-computer interface (BCI) applications. METHODS: Eight na?ve subjects performed or kinesthetically imagined four movements while electroencephalogram (EEG) was recorded from 29 channels over sensorimotor areas. The task was instructed with a specific stimulus (S1) and performed at a second stimulus (S2). A classifier was trained and tested offline at differentiating the EEG signals from movement/imagery preparation (the 1.5-s preceding movement/imagery execution). RESULTS: Accuracy of movement/imagery preparation classification varied between subjects. The system preferentially selected event-related (de)synchronization (ERD/ERS) signals for classification, and high accuracies were associated with classifications that relied heavily on the ERD/ERS to discriminate movement/imagery planning. CONCLUSIONS: The ERD/ERS preceding movement and motor imagery can be used to predict which of the four movements/imageries is about to occur. Prediction accuracy depends on this signal's accessibility. SIGNIFICANCE: The ERD/ERS is the most specific pre-movement/imagery signal to the movement/imagery about to be performed.  相似文献   

3.
ObjectiveWe studied the activation of cortical motor and parietal areas during the observation of object related grasping movements. By manipulating the type of an object (realistic versus abstract) and the type of grasping (correct versus incorrect), we addressed the question how observing such object related movements influences cortical rhythmicity, especially the mu-rhythm, in the context of an “extended” human mirror neuron system (MNS).MethodsMultichannel electroencephalogram (EEG) was recorded during the observation of different object-related grasping actions in twenty healthy subjects. Different movies were presented, showing sequences of correct or incorrect hand grasping actions related to an abstract or realistic (daily life) object.ResultsEvent-related de/synchronization (ERD/ERS) analyses revealed a larger ERD in the upper alpha (10–12 Hz), beta (16–20 Hz) and gamma (36–40 Hz) frequency bands over parietal brain regions depending on the type of grasping. The type of object only influenced ERD patterns in the gamma band range (36–40 Hz) at parietal sites suggesting a strong relation of gamma band activity and cortical object representation. Abstract and realistic objects produced lower beta band synchronization at central sites only, whereas depending on the type of grasping an ERS in the upper alpha band (10–12 Hz) was observed.ConclusionDepending on the type of the grasped object and the type of grasping stronger parietal cortical activation occurred during movement observation.SignificanceDiscussing the results in terms of an “extended” human mirror neuron system (MNS), it could be concluded that beside sensorimotor areas a stronger involvement of parietal brain regions was found depending on the type of object and grasping movement observed.  相似文献   

4.
《Clinical neurophysiology》2014,125(8):1689-1699
ObjectiveThis study explored event-related desynchronization (ERD) and synchronization (ERS) in amyotrophic lateral sclerosis (ALS) to quantify cortical sensorimotor processes during volitional movements. We furthermore compared ERD/ERS measures with clinical scores and movement-related cortical potential (MRCP) amplitudes.MethodsElectroencephalograms were recorded while 21 ALS patients and 19 controls performed two self-paced motor tasks: sniffing and right index finger flexion. Based on Wavelet analysis the alpha and beta frequency bands were selected for subsequent evaluation.ResultsPatients generated significantly smaller resting alpha spectral power density (SPD) and smaller beta ERD compared to controls. Additionally patients exhibited merely unilateral post-movement ERS (beta rebound) whereas this phenomenon was bilateral in controls. ERD/ERS amplitudes did not correlate with corresponding MRCPs for either patients or controls.ConclusionsThe smaller resting alpha SPD and beta ERD and asymmetrical appearance of beta ERS in patients compared to controls could be the result of pyramidal cell degeneration and/or corpus callosum involvement in ALS.SignificanceThese results support the notion of reduced movement preparation in ALS involving also areas outside the motor cortex. Furthermore post-movement cortical inhibition seems to be impaired in ALS. ERD/ERS and MRCP are found to be independent measures of cortical motor functions in ALS.  相似文献   

5.
A number of electroencephalographic (EEG) studies report on motor event-related desynchronization and synchronization (ERD/ERS) in the beta band, i.e. a decrease and increase of spectral amplitudes of central beta rhythms in the range from 13 to 35 Hz. Following an ERD that occurs shortly before and during the movement, bursts of beta oscillations (beta ERS) appear within a 1-s interval after movement offset. Such a post-movement beta ERS has been reported after voluntary hand movements, passive movements, movement imagination, and also after movements induced by functional electrical stimulation. The present study compares ERD/ERS patterns in paraplegic patients (suffering from a complete spinal cord injury) and healthy subjects during attempted (active) and passive foot movements. The aim of this work is to address the question, whether patients do have the same focal beta ERD/ERS pattern during attempted foot movement as healthy subjects do. The results showed midcentral-focused beta ERD/ERS patterns during passive, active, and imagined foot movements in healthy subjects. This is in contrast to a diffuse and broad distributed ERD/ERS pattern during attempted foot movements in patients. Only one patient showed a similar ERD/ERS pattern. Furthermore, no significant ERD/ERS patterns during passive foot movement in the group of the paraplegics could be found.  相似文献   

6.
Two methods operating in time–frequency space were applied to analysis of EEG activity accompanying voluntary finger movements. The first one, based on matching pursuit approach provided high-resolution distributions of power in time–frequency space. The phenomena of event related desynchronization (ERD) and synchronization (ERS) were investigated without the need of band-pass filtering. Time evolution of μ- and β-components was observed in a detailed way. The second method was based on a multichannel autoregressive model (MVAR) adapted for investigation of short-time changes in EEG signal. The direction and spectral content of the EEG activity propagation was estimated by means of short-time directed transfer function (SDTF). The evidence of ‘cross-talk’ between different areas of motor and sensory cortex was found. The earlier known phenomena, connected with voluntary movements, were confirmed and a new evidence concerning focal ERD/surround ERS and β activity post-movement synchronization was found.  相似文献   

7.
OBJECTIVE: To study the time course of oscillatory EEG activity and corticospinal excitability of the ipsilateral primary motor cortex (iM1) during self-paced phasic extension movements of fingers II-V. METHODS: We designed an experiment in which cortical activation, measured by spectral-power analysis of 28-channel EEG, and cortical excitability, measured by transcranial magnetic stimulation (TMS), were assessed during phasic self-paced extensions of the right fingers II-V in 28 right-handed subjects. TMS was delivered to iM1 0-1500 ms after movement onset. RESULTS: Ipsilateral event-related desynchronization (ERD) during finger movement was paralleled by increased cortical excitability of iM1 from 0-200 ms after movement onset and by increased intracortical facilitation (ICF) without changes in intracortical inhibition (ICI) or peripheral measures (F waves). TMS during periods of post-movement event-related synchronization (ERS) revealed no significant changes in cortical excitability in iM1. CONCLUSIONS: Our findings indicate that motor cortical ERD ipsilateral to the movement is associated with increased corticospinal excitability, while ERS is coupled with its removal. These data are compatible with the concept that iM1 contributes actively to motor control. No evidence for inhibitory modulation of iM1 was detected in association with self-paced phasic finger movements. SIGNIFICANCE: Understanding the physiological role of iM1 in motor control.  相似文献   

8.
In patients with Gilles de la Tourette syndrome (GTS) alterations of motor cortex (M1) excitability at rest have been evidenced. In contrast, there has so far been little research into changes of motor cortical reactivity during the time course of voluntary movements in GTS patients. The present study investigates neuromagnetic event‐related desynchronization (ERD) and event‐related synchronization (ERS) of bilateral M1 in 11 GTS patients and 11 healthy control subjects. ERD represents motor cortical activation, whereas ERS most likely indicates its inhibition. Subjects performed a self‐paced finger movement task while magnetoencephalography was used to record neuromagnetic activity. In GTS patients, ERD at beta frequency was significantly increased in the contralateral hemisphere before and during movements, whereas ERS following movement termination was increased in M1 ipsilateral. Ipsilateral ERS was inversely correlated with tic severity as determined by the Yale Global Tic Severity Rating Scale. The data of the present study support the hypothesis that during voluntary movements, motor cortical reactivity is pathologically altered in GTS patients. The observed pattern of increased activation (ERD) prior to and during movement execution followed by increased inhibition (ERS) after movement termination at beta frequency suggests abnormally increased motor cortical activation, possibly driving stronger inhibition. The stronger this inhibition is, the better symptoms appear to be controlled. © 2010 Movement Disorder Society  相似文献   

9.
OBJECTIVES: To study cortical activity in different motor tasks, we compared event-related desynchronization (ERD) and event-related potentials (ERPs) in different reaction time (RT) paradigms with the time course of corticospinal excitability. METHODS: Nine right-handed, normal subjects performed right or left thumb extensions in simple, choice and go/no go auditory RT paradigms. Eight subjects had participated in a previous study evaluating changes in corticospinal excitability during the same paradigms. Twenty-nine EEG channels with electrooculogram and bilateral EMG monitoring were collected. ERPs and ERD of 10 and 18-22 Hz bands were obtained with respect to tone administration and EMG onset. RESULTS: Trials with movement showed lateralized ERP components, corresponding to the motor potential (MP), both in the averages on the tone and on EMG. The MP corresponded well in time and location to the rise in corticospinal excitability on the moving side observed in the previous study. Sensorimotor ERD, followed by event-related synchronization (ERS), was present for trials with movements and for the no go. ERD was present contralaterally during movement preparation and in no go trials, while it was bilateral during motor execution. No go ERD was followed more rapidly by ERS than in trials with movement. This finding suggests that in no go trials, there is a brief active process in the sensorimotor areas. ERD and ERS do not correspond, respectively, in time and location to increases and decreases in corticospinal excitability. In fact, ERD is bilateral during movement execution, when corticospinal inhibition of the side at rest is observed. Contralateral no go ERS occurs later than corticospinal inhibition, which is bilateral. CONCLUSIONS: These findings may suggest that ERD is compatible with both corticospinal activation and inhibition, ERS indicating the removal of either, resulting in cortical idling.  相似文献   

10.
《Clinical neurophysiology》2009,120(3):484-496
ObjectiveFor motor activities, visual information is crucial for organizing a movement with respect to a given situation. The present study investigates how cognitive information processing is associated with this visuomotor process.MethodsBrain dynamics in executing two perceptual-motor tasks were examined in terms of event-related synchronization (ERS) and event-related desynchronization (ERD) of EEG. Those tasks were (1) reaching toward and grasping a visual object with a pinch grip, and (2) matching the pinch grip size with respect to the perceived object size.ResultsAccording to the aperture size in the task execution, both the tasks were affected by the perceived object size inducing the Ebbinghaus illusion. The alpha-ERD patterns were associated with the movement execution and appeared to be identical in both the tasks, whilst the gamma-ERS appeared only for the grasping motion.ConclusionsThese results suggest that cognitive processing was involved not only in the matching task but also in the grasping task. These ERD/ERS patterns are thought to reflect the similarity and difference in the perceptual-motor processes between the two tasks.SignificanceThe analysis of ERD/ERS can provide insight on the qualitative feature in a visuomotor process associated with the involvement of cognitive processing.  相似文献   

11.
In the present high-resolution electroencephalographic (EEG) study, event-related desynchronization/synchronization (ERD/ERS) of alpha rhythms was computed during an S1-S2 paradigm, in which a visual cue (S1) predicted a SHORT (600 ms) or LONG (1400 ms) foreperiod, preceding a visual go stimulus (S2) triggering right or left finger movement. Could orienting attention to a selective point in time influence the alpha rhythms as a function of the SHORT vs. LONG foreperiod? Stronger selective attentional modulations were predicted for the SHORT than LONG condition. EEG data from 54 channels were "depurated" from phase-locked visual evoked potentials and spatially enhanced by surface Laplacian estimation (i.e., final data analysis was conducted on 16 subjects having a sufficient number of artifact-free EEG single trials). Low-band alpha rhythms (about 6-10 Hz) were supposed to be related to anticipatory attentional processes, whereas high-band alpha rhythms (10-12 Hz) would indicate task-specific visuo-motor processes. Compared to the LONG condition (foreperiod), the SHORT condition induced a quicker and stronger ERS at low-band alpha rhythm (about 6-8 Hz) over midline and bilateral prefrontal, sensorimotor, and posterior parietal areas. In contrast, the concomitant high-band alpha (about 10-12 Hz) ERD/ERS showed no significant difference between the two conditions. In conclusion, temporal attention for a sub-second delay (800 ms) did modulate low-band alpha rhythm over large regions of both cortical hemispheres.  相似文献   

12.
This study tested the two following hypotheses: (i) compared with non‐athletes, elite athletes are characterized by a reduced cortical activation during the preparation of precise visuo‐motor performance; (ii) in elite athletes, an optimal visuo‐motor performance is related to a low cortical activation. To this aim, electroencephalographic (EEG; 56 channels; Be Plus EB‐Neuro) data were recorded in 18 right‐handed elite air pistol shooters and 10 right‐handed non‐athletes. All subjects performed 120 shots. The EEG data were spatially enhanced by surface Laplacian estimation. With reference to a baseline period, power decrease/increase of alpha rhythms during the preshot period indexed the cortical activation/deactivation (event‐related desynchronization/synchronization, ERD/ERS). Regarding the hypothesis (i), low‐ (about 8–10 Hz) and high‐frequency (about 10–12 Hz) alpha ERD was lower in amplitude in the elite athletes than in the non‐athletes over the whole scalp. Regarding the hypothesis (ii), the elite athletes showed high‐frequency alpha ERS (about 10–12 Hz) larger in amplitude for high score shots (50%) than for low score shots; this was true in right parietal and left central areas. A control analysis confirmed these results with another indicator of cortical activation (beta ERD, about 20 Hz). The control analysis also showed that the amplitude reduction of alpha ERD for the high compared with low score shots was not observed in the non‐athletes. The present findings globally suggest that in elite athletes (experts), visuo‐motor performance is related to a global decrease of cortical activity, as a possible index of spatially selective cortical processes (“neural efficiency”). Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Recent investigations on oscillatory EEG dynamics by means of event-related synchronisation and desynchronisation (ERS/ERD) suggest that first language semantic information processing is primarily reflected in the theta (4-7 Hz) and alpha (7-13 Hz) frequency bands. In this pilot study we explore whether similar ERS/ERD patterns emerge during language translation and which frequency bands sensitively respond to the difficulty of translation and the translation success. Thirteen female students of translation and interpreting were visually presented high and low frequency English words that had to be translated into German. Time-frequency representations of ERS/ERD between 2 and 50 Hz displayed a theta ERS response about 200-600 ms after word presentation, a beta ERD from about 400 ms, and alpha ERS and ERD patterns about 200-400 ms after word presentation. Statistical analyses of the ERS/ERD data in the theta (4-7 Hz), two alpha frequency bands (7-10 Hz and 10-13 Hz), and a beta band (20-30 Hz) predominantly revealed: (a) higher parietal theta ERS and frontal upper alpha ERD during the translation of low as compared to high frequency words, and (b) generally stronger ERD in the lower alpha band and larger left-hemispheric upper alpha ERD for successfully translated in contrast to not translated low frequency words. These findings provide first evidence of the sensitivity of the theta and alpha ERS/ERD measure to lexical-semantic processes involved in language translation.  相似文献   

14.
《Clinical neurophysiology》2009,120(2):239-247
ObjectiveThis study investigates the impact of a continuously presented visual feedback in the form of a grasping hand on the modulation of sensorimotor EEG rhythms during online control of a brain–computer interface (BCI).MethodsTwo groups of participants were trained to use left or right hand motor imagery to control a specific output signal on a computer monitor: the experimental group controlled a moving hand performing an object-related grasp (‘realistic feedback’), whereas the control group controlled a moving bar (‘abstract feedback’). Continuous feedback was realized by using the outcome of a real-time classifier which was based on EEG signals recorded from left and right central sites.ResultsThe classification results show no difference between the two feedback groups. For both groups, ERD/ERS analysis revealed a significant larger ERD during feedback presentation compared to an initial motor imagery screening session without feedback. Increased ERD during online BCI control was particularly found for the lower alpha (8–10 Hz) and for the beta bands (16–20, 20–24 Hz).ConclusionsThe present study demonstrates that visual BCI feedback clearly modulates sensorimotor EEG rhythms. When the feedback provides equivalent information on both the continuous and final outcomes of mental actions, the presentation form (abstract versus realistic) does not influence the performance in a BCI, at least in initial training sessions.SignificanceThe present results are of practical interest for classifier development and BCI use in the field of motor restoration.  相似文献   

15.
OBJECTIVE: We examined whether task-related band power changes (event-related desynchronization/synchronization; ERD/ERS) that have been linked to individual differences in cognitive ability demonstrate satisfying temporal stability and cross-situational consistency. METHODS: Multi-channel EEG recordings from 29 adults, assessed at three different occasions over 2 years were examined. Between-session correlations and consistency coefficients (Cronbach's alpha) across the three experiments were evaluated for both, spectral power features of the resting EEG and ERD/ERS estimates while the participants performed some cognitive task (i.e. different elementary cognitive tasks that put comparable demands on the participants). RESULTS: ERD/ERS values, while subjects performed a cognitive task, demonstrated satisfactory stability and consistency (i.e. >0.7), whereby the degree of consistency varied as a function of frequency band and brain region. Highest consistency was found for the 8-10 Hz ERD in parieto-occipital recording sites (i.e. >0.9). In resting EEG, mean alpha (gravity) frequency was the most stable EEG feature. CONCLUSIONS: The present data suggest that ERD/ERS phenomena in different narrow frequency bands are rather stable over time and across different situations. The relatively high reproducibility of ERD/ERS promotes the usefulness of this measure in assessing individual differences of physiological activation patterns accompanying cognitive performance. SIGNIFICANCE: This study addresses the issue of reproducibility of EEG in general and ERD/ERS experiments in particular, which is a prerequisite for both basic research and clinical studies.  相似文献   

16.
In electroencephalographic (EEG) and magnetoencephalographic (MEG) signals, stimulus‐induced amplitude increase and decrease in the alpha rhythm, known as event‐related synchronization and desynchronization (ERS/ERD), emerge after a task onset. ERS/ERD is assumed to reflect neural processes relevant to cognitive tasks. Previous studies suggest that several sources of alpha rhythm, each of which can serve as an alpha rhythm generator, exist in the cortex. Since EEG/MEG signals represent spatially summed neural activities, ERS/ERD of the alpha rhythm may reflect the consequence of the interactions between multiple alpha rhythm generators. Two candidates modulate the magnitude of ERS/ERD: (1) coherence between the activities of the alpha rhythm generators and (2) mean amplitude of the activities of the alpha rhythm generators. In this study, we use a computational model of multiple alpha rhythm generators to determine the factor that dominantly causes ERS/ERD. Each alpha rhythm generator is modeled based on local column circuits in the primary visual cortex and made to interact with the neighboring generators through excitatory connections. We observe that the model consistently reproduces spontaneous alpha rhythms, event‐related potentials, phase‐locked alpha rhythms, and ERS/ERD in a specific range of connectivity coefficients. Independent analyses of the coherence and amplitude of multiple alpha rhythm generators reveal that the ERS/ERD in the simulated data is dominantly caused by stimulus‐induced changes in the coherence between multiple alpha rhythm generators. Nonlinear phenomena such as phase‐resetting and entrainment of the alpha rhythm are related to the neural mechanism underlying ERS/ERD. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
ObjectivePerforming foot motor imagery is accompanied by a peri-imagery ERD and a post-imagery beta ERS (beta rebound). Our aim was to study whether the post-imagery beta rebound is a suitable feature for a simple “brain switch”. Such a brain switch is a specifically designed brain–computer interface (BCI) with the aim to detect only one predefined brain state (e.g. EEG pattern) in ongoing brain activity.MethodOne EEG (Laplacian) recorded at the vertex during cue-based brisk foot motor imagery was analysed in 5 healthy subjects. The peri-imagery ERD and the post-imagery beta rebound (ERS) were analysed in detail between 6 and 40 Hz and classified with two support vector machines.ResultsThe ERD was detected in ongoing EEG (simulation of asynchronous BCI) with a true positive rate (TPR) of 28.4% ± 13.5 and the beta rebound with a TPR of 59.2% ± 20.3. In single runs with 30 cues each, the TPR for beta rebound detection was 78.6% ± 12.8. The false positive rate was always kept below 10%.ConclusionThe findings suggest that the beta rebound at Cz during foot motor imagery is a relatively stable and reproducible phenomenon detectable in single EEG trials.SignificanceOur results indicate that the beta rebound is a suitable feature to realize a “brain switch” with one single EEG (Laplacian) channel only.  相似文献   

18.
Event-related desynchronization (ERD) and synchronization (ERS) in the individually defined theta, alpha-1, alpha-2, and alpha-3 frequency bands were measured in 22 healthy subjects (Ss) in response to neutral (Neut), emotionally positive (Pos), and negative (Neg) IAPS stimuli. The 62-channel EEG, facial EMG and ECG were simultaneously recorded while subjects viewed sequentially presented pictures and subjectively rated them after each presentation. The obtained findings indicate that differences induced by pictures varying in emotional valence are associated mainly with increased theta and alpha-3 synchronization activity and anterior hemispheric asymmetries. In the anterior temporal leads theta ERS revealed a significant valence by hemisphere interaction showing relatively greater right hemisphere theta ERS for Neg and left hemisphere ERS for Pos stimuli in the time window of 100-700 ms post-stimulus, whereas in the alpha-3 band Neg stimuli induced lateralized time-dependent left hemisphere ERS increased in the time window of 800-1200 ms, were not observed for Neut and Pos stimuli. The obtained results along with earlier observations on EEG correlates of affective processing challenge the notion that affective anterior hemispheric asymmetries are mainly sensitive to wide alpha frequency band. Frequency and time dependence of anterior hemispheric asymmetries in emotional valence discrimination is emphasized.  相似文献   

19.
Objective: This study aimed to investigate changes in spatio-temporal, event-related (de)synchronization (ERD/ERS) patterns recorded with respect to the more akinetic versus the less akinetic side during performance of a visuo-guided targeting movement when compared to an index finger extension.Methods: Twelve de novo parkinsonian patients were recorded. ERD/ERS in mu and beta frequency bands was computed from 21 source derivations.Results: When the index finger extension was performed with the less akinetic limb, mu ERD focused over contralateral central region appeared 2 s before movement. With the targeting movement, additional pre-movement mu ERD was observed over the parietal region, as well as earlier ipsilateral mu ERD. When the same movements were performed with the more akinetic limb, we observed delayed mu ERD over contralateral regions, earlier ipsilateral mu ERD and a lack of contralateral parietal mu ERD before the targeting movement. Following index finger extension for the less akinetic limb, a focused contralateral central beta ERS was recorded, increasing and spreading after the targeting movement. In contrast, for the more akinetic limb, beta ERS was dramatically attenuated and remained unchanged after the targeting movement.Conclusions: These results confirm the fact that motor programming is delayed, and provide some insight into what may well be impaired sensorimotor integration in Parkinson's disease.  相似文献   

20.
BackgroundRestless legs syndrome (RLS) is characterized by closely interrelated motor and sensory disorders. Two types of involuntary movement can be observed: periodic leg movements during wakefulness (PLMW) and periodic leg movements during sleep (PLMS). Basal ganglia dysfunction in primary RLS has often been suggested. However, clinical observations raise the hypothesis of sensorimotor cortical involvement in RLS symptoms. Here, we explored cortical function via movement-related beta and mu rhythm reactivity.MethodsTwelve patients with idiopathic, primary RLS were investigated and compared with 10 healthy subjects. In the patient group, we analyzed event-related beta and mu (de)synchronization (ERD/S) for PLMS and PLMW during a suggested immobilization test (SIT). An ERD/S analysis was also performed in patients and controls during self-paced right ankle dorsal flexion at 8:30 PM (i.e., the symptomatic period for patients) and 8:30 AM (the asymptomatic period).ResultsBefore PLMS, there was no ERD. Intense ERS was recorded after PLMS. As with voluntary movement, cortical ERD was always observed before PLMW. After PLMW, ERS had a diffuse scalp distribution. Furthermore, the ERS and ERD amplitudes and durations for voluntary movement were greater during the symptomatic period than during the asymptomatic period and in comparison with healthy controls, who presented an evening decrease in these parameters. Patients and controls had similar ERD and ERS patterns in the morning.ConclusionOn the basis of a rhythm reactivity study, we conclude that the symptoms of RLS are related to cortical sensorimotor dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号