首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic inflammation and astrocytosis are characteristic histopathological features of Alzheimer's Disease (AD). Astrocytes are one of the predominant cell types in the brain. In AD they are activated and produce inflammatory components such as complement components, acute phase proteins, and cytokines. In this study we analyzed the effect of cytokines on the production of amyloid β (Aβ) in the astrocytoma cell line U373 and in primary human astrocytes isolated postmortem from healthy aged persons as well as from patients with AD. Astrocytes did not produce Aβ in the absence of stimuli or following stimulation with IL-1β, TNFα, IL-6, and TGF-β1. Neither did combinations of TNFα and IL-1β, IL-6 or TGF-β1, or the coadministration of IFNγ and IL-6 or TGF-β1 induce Aβ production. In contrast, pronounced production of Aβ1-40 and Aβ1-42 was observed when primary astrocytes or astrocytoma cells were stimulated with combinations of IFNγ and TNFα or IFNγ and IL-1β. Induction of Aβ production was accompanied by decreased glycosylation of APP as well as by increased secretion of APPsβ. Our results suggest that astrocytes may be an important source of Aβ in the presence of certain combinations of inflammatory cytokines. IFNγ in combination with TNFα or IL-1β seems to trigger Aβ production by supporting β-secretase cleavage of the immature APP molecule.  相似文献   

2.
Overproduction of the peptide amyloid β (Aβ) is a critical event in Alzheimer’s disease (AD). Systemic administration of 3 M1-selective muscarinic agonists, AF102B, AF150S and AF267B, decreased cerebrospinal fluid (CSF) Aβ concentrations; levels of CSF secreted β-APP were not significantly altered. Rabbits treated for 5 days with s.c. injections of each drug (2 mg/kg/day) had levels of CSF Aβ which were between 55 and 71% of control for Aβ 1–40 and between 59 and 84% of control for Aβ 1–42.  相似文献   

3.
Apolipoprotein E (ApoE) is the major genetic risk factor for Alzheimer's disease (AD). The ApoE4 allele is associated with earlier disease onset and greater cerebral deposition of the amyloid beta peptide (Aβ), the major constituent of senile (amyloid) plaques. The molecular mechanism underlying these effects of ApoE4 remains unclear; ApoE alleles could have different influences on Aβ production, extracellular aggregation, or clearance. Because the missense mutations on chromosomes 14 and 21 that cause familial forms of AD appear to lead to increased secretion of Aβ, it is important to determine whether ApoE4 has a similar effect. Here, we have examined the effects of all three ApoE alleles on the processing of βAPP and the secretion of Aβ in intact cells. We established neural (HS683 human glioma) and non-neural (Chinese hamster ovary) cell culture systems that constitutively secrete both ApoE and Aβ at concentrations like those in human cerebrospinal fluid. βAPP metabolites, generated in the presence of each ApoE allele, were analysed and quantified by two methods: immunoprecipitation and phosphorimaging, and ELISA. We detected no consistent allele-specific effects of ApoE on βAPP processing in either cell type. Our data suggest that the higher amyloid burden found in AD subjects expressing ApoE4 is not due to increased amyloidogenic processing of βAPP, in contrast to findings in AD linked to chromosome 14 or 21. These co-expressing cell lines will be useful in the further search for the effects of ApoE on Aβ aggregation or clearance under physiologically relevant conditions.  相似文献   

4.
S-Adenosylhomocysteine (SAH) has been implicated as a risk factor for neurodegenerative diseases such as Alzheimer's disease. As SAH is a potent inhibitor of all cellular methyltransferases, we herein examined the hypothesis that SAH may increase the formation of amyloid β-peptide (Aβ) in BV-2 mouse microglial cells through hypomethylation of presenilin 1 protein (PS1) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1), both of which cleave Aβ precursor protein (APP) to form Aβ. The results showed that SAH increased Aβ protein formation in a concentration-dependent manner (10–500 nM), and this effect of SAH was accompanied by significantly increased expression of APP and PS1 proteins, although SAH only significantly increased the expression of BACE1 at the highest concentration used (500 nM). SAH (500 nM) markedly induced hypomethylation of APP and PS1 gene promoters. Incubation of cells with 5′-azc (20 μM), also an inhibitor of DNA methyltransferases enhanced Aβ protein expression and APP and PS1 gene promoters hypomethylation. By contrast, pre-incubation of cells with betaine (1.0 mM), 30 min followed by incubation with SAH (500 nM) or 5′-azc (20 μM) for 24 h markedly prevented the expression of Aβ protein (by 50%, P < 0.05) and the gene promoter hypomethylation of APP and PS1. Taken together, this study demonstrates that SAH increases the production of Aβ in BV-2 cells possibly by increased expression of APP and induction of hypomethylation of APP and PS1 gene promoters.  相似文献   

5.
Accumulating evidence suggests that β-amyloid (Aβ)-induced inflammatory reactions may partially drive the pathogenesis of Alzheimer's disease (AD). Recent data also implicate similar inflammatory processes in cerebral amyloid angiopathy (CAA). To evaluate the roles of Aβ in the inflammatory processes in vascular tissues, we have tested the ability of Aβ to trigger inflammatory responses in cultured human vascular cells. We found that stimulation with Aβ dose-dependently increased the expression of CD40, and secretion of interferon-γ (IFN-γ) and interleukin-1β (IL-1β) in endothelial cells. Aβ also induced expression of IFN-γ receptor (IFN-γR) both in endothelial and smooth muscle cells. Characterization of the Aβ-induced inflammatory responses in the vascular cells showed that the ligation of CD40 further increased cytokine production and/or the expression of IFN-γR. Moreover, IL-1β and IFN-γ synergistically increased the Aβ-induced expression of CD40 and IFN-γR. We have recently found that Aβ induces expression of adhesion molecules, and that cytokine production and interaction of CD40–CD40 ligand (CD40L) further increase the Aβ-induced expression of adhesion molecules in these same cells. These results suggest that Aβ can function as an inflammatory stimulator to activate vascular cells and induces an auto-amplified inflammatory molecular cascade, through interactions among adhesion molecules, CD40–CD40L and cytokines. Additionally, Aβ1–42, the more pathologic form of Aβ, induces much stronger effects in endothelial cells than in smooth muscle cells, while the reverse is true for Aβ1–40. Collectively, these findings support the hypothesis that the Aβ-induced inflammatory responses in vascular cells may play a significant role in the pathogenesis of CAA and AD.  相似文献   

6.
Presenilin (PSEN)/γ-secretase is a protease complex responsible for the proteolytic processing of numerous substrates. These substrates include the amyloid precursor protein (APP), the cleavage of which by γ-secretase results in the production of β-amyloid (Aβ) peptides. However, exactly where within the neuron γ-secretase processes APP C99 to generate Aβ and APP intracellular domain (AICD) is still not fully understood. Here, we employ novel Förster resonance energy transfer (FRET)-based multiplexed imaging assays to directly “visualize” the subcellular compartment(s) in which γ-secretase primarily cleaves C99 in mouse cortex primary neurons (from both male and female embryos). Our results demonstrate that γ-secretase processes C99 mainly in LysoTracker-positive low-pH compartments. Using a new immunostaining protocol which distinguishes Aβ from C99, we also show that intracellular Aβ is significantly accumulated in the same subcellular loci. Furthermore, we found functional correlation between the endo-lysosomal pH and cellular γ-secretase activity. Taken together, our findings are consistent with Aβ being produced from C99 by γ-secretase within acidic compartments such as lysosomes and late endosomes in living neurons.SIGNIFICANCE STATEMENT Alzheimer''s disease (AD) genetics and histopathology highlight the importance of amyloid precursor protein (APP) processing by γ-secretase in pathogenesis. For the first time, this study has enabled us to directly “visualize” that γ-secretase processes C99 mainly in acidic compartments such as late endosomes and lysosomes in live neurons. Furthermore, we uncovered that intracellular β-amyloid (Aβ) is significantly accumulated in the same subcellular loci. Emerging evidence proposes the great importance of the endo-lysosomal pathway in mechanisms of misfolded proteins propagation (e.g., Tau, α-Syn). Therefore, the predominant processing of C99 and enrichment of Aβ in late endosomes and lysosomes may be critical events in the molecular cascade leading to AD.  相似文献   

7.
The up-regulation of the angiogenic vascular endothelial growth factor (VEGF) in brains of Alzheimer patients in close relationship to β-amyloid (Aβ) plaques, suggests a link of VEGF action and processing of the amyloid precursor protein (APP). To reveal whether VEGF may affect APP processing, brain slices derived from 17-month-old transgenic Tg2576 mice were exposed with 1 ng/ml VEGF for 6, 24, and 72 h, followed by assessing cytosolic and membrane-bound APP expression, level of both soluble and fibrillar Aβ-peptides, as well as activities of α- and β-secretases in brain slice tissue preparations.Treatment of brain slices with VEGF did not significantly affect the expression level of APP, regardless of the exposure time studied. In contrast, VEGF exposure of brain slices for 6 h reduced the formation of soluble, SDS extractable Aβ(1–40) and Aβ(1–42) as compared to brain slice cultures incubated in the absence of any drug, while the fibrillar Aβ peptides did not change significantly. This effect was less pronounced 24 h after VEGF exposure, but was no longer detectable when brain slices were exposed by VEGF for 72 h, which indicates an adaptive response to chronic VEGF exposure. The VEGF-mediated reduction in Aβ formation was accompanied by a transient decrease in β-secretase activity peaking 6 h after VEGF exposure. To reveal whether the VEGF-induced changes in soluble Aβ-level may be due to actions of VEGF on Aβ fibrillogenesis, the fibrillar status of Aβ was examined using the thioflavin-T binding assay. Incubation of Aβ preparations obtained from Tg2576 mouse brain cortex, in the presence of VEGF slightly decreased the fibrillar content with increasing incubation time up to 72 h. The data demonstrate that VEGF may affect APP processing, at least in vitro, suggesting a role of VEGF in the pathogenesis of Alzheimer's disease.  相似文献   

8.
Most of the Alzheimer's disease (AD)-linked mutations in amyloid precursor protein (APP), which cause abnormal production of β-amyloid (Aβ), are localized at the major β-secretase-and γ-secretase cleavage sites. In this study, using an APP-knockout mouse neuronal cell line, our data demonstrated that at the P2-P1 positions of the -cleavage site at Aβ49 and the ζ-cleavage site at Aβ46, aromatic amino acids caused a strong reduction in total Aβ. On the other hand, residues with a long side chain caused a decrease in Aβ40 and a concomitant increase in Aβ42 and Aβ38. These findings indicate that the structures of the substituting residues at these key positions strongly determine the efficiency and preference of γ-secretase-mediated APP processing, which determines the ratio of different secreted Aβ species, a crucial factor in the disease development. Our findings provide new insight into the mechanisms of γ-secretase-mediated APP processing and, specifically, into why most AD-linked APP mutations are localized at major γ-secretase cleavage sites. This information may contribute to the development of methods of prevention and treatment of Alzheimer's disease aimed at modulating γ-secretase activity.  相似文献   

9.
Amyloid deposits, neurofibrillary tangles, and neuronal cell death in selectively vulnerable brain regions are the chief hallmarks in Alzheimer's (AD) brains. Glycogen synthase kinase-3 (GSK-3) is one of the key kinases required for AD-type abnormal hyperphosphorylation of tau, which is believed to be a critical event in neurofibrillary tangle formation. GSK-3 has also been recently implicated in amyloid precursor protein (APP) processing/Aβ production, apoptotic cell death, and learning and memory. Thus, GSK-3 inhibition represents a very attractive drug target in AD and other neurodegenerative disorders. To investigate whether GSK-3 inhibition can reduce amyloid and tau pathologies, neuronal cell death and memory deficits in vivo, double transgenic mice coexpressing human mutant APP and tau were treated with a novel non-ATP competitive GSK-3β inhibitor, NP12. Treatment with this thiadiazolidinone compound resulted in lower levels of tau phosphorylation, decreased amyloid deposition and plaque-associated astrocytic proliferation, protection of neurons in the entorhinal cortex and CA1 hippocampal subfield against cell death, and prevention of memory deficits in this transgenic mouse model. These results show that this novel GSK-3 inhibitor has a dual impact on amyloid and tau alterations and, perhaps even more important, on neuronal survival in vivo further suggesting that GSK-3 is a relevant therapeutic target in AD.  相似文献   

10.
Accumulation of amyloid-β (Aβ) peptides is thought to be a critical event in the pathology of Alzheimer's disease (AD), because they induce multiple neurotoxic effects, including mitochondrial dysfunction and apoptotic cell death. Therefore the reduction of Aβ is considered a primary therapeutic target. Gelsolin, an Aβ binding protein, has been shown to inhibit apoptosis, although the underlying mechanism is unclear. To clarify these effects, we manipulated cytoplasmic gelsolin levels through viral-directed overexpression in the brain of APP/Ps1 transgenic mice. We observed that gelsolin reduces brain Aβ burden in the APP/Ps1 mice, possibly by enhancing Aβ clearance via megalin. The reduction in brain Aβ levels was accompanied by an inhibition of nitric oxide production and cell death, not only in the choroid plexus but also in the cerebral cortex. Notably, overexpressed gelsolin restored the impaired mitochondrial activity in the APP/Ps1 mice, resulting in the increase of cytochrome c oxidase activity. By contrast, RNA interference to block gelsolin expression, confirmed that cytoplasmic gelsolin acts as a modulator of brain Aβ levels and its neurotoxic effects. We conclude that gelsolin might prevent brain amyloidosis and Aβ-induced apoptotic mitochondrial changes. These findings make cytoplasmic gelsolin a potential therapeutic strategy in AD.  相似文献   

11.
Mitochondria are the major source of energy for the normal functioning of brain cells. Increasing evidence suggests that the amyloid precursor protein (APP) and amyloid beta (Aβ) accumulate in mitochondrial membranes, cause mitochondrial structural and functional damage, and prevent neurons from functioning normally. Oligomeric Aβ is reported to induce intracellular Ca2+ levels and to promote the excess accumulation of intracellular Ca2+ into mitochondria, to induce the mitochondrial permeability transition pore to open, and to damage mitochondrial structure. Based on recent gene expression studies of APP transgenic mice and AD postmortem brains, and APP/Aβ and mitochondrial structural studies, we propose that the overexpression of APP and the increased production of Aβ may cause structural changes of mitochondria, including an increase in the production of defective mitochondria, a decrease in mitochondrial trafficking, and the alteration of mitochondrial dynamics in neurons affected by AD. This article discusses some critical issues of APP/Aβ associated with mitochondria, mitochondrial structural and functional damage, and abnormal intracellular calcium regulation in neurons from AD patients. This article also discusses the link between Aβ and impaired mitochondrial dynamics in AD.  相似文献   

12.
Patients with the Lewy body variant (LBV) of Alzheimer's disease (AD) have ubiquitinated intraneuronal and neuritic accumulations of α-synuclein and show less neuron loss and tau pathology than other AD patients. Aged Tg2576 transgenic mice overexpressing human βAPP695. KM670/671NL have limited neuron loss and tau pathology, but frequent ubiquitin- and α-synuclein-positive, tau-negative neurites resembling those seen in the LBV of AD.  相似文献   

13.
The role of interferon-γ (IFN-γ) in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still controversial. We have studied the function of IFN-γ and its receptor in the EAE model using two different IFN-γ receptor knockout (IFN-γ R−/−) mouse types: C57Bl/6×129Sv, with a disruption of the IFN-γ receptor cytoplasmic domain, and 129Sv, homozygous for a disrupted IFN-γ receptor gene. Mice were immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. A subgroup of mice was treated with anti-IFN-γ monoclonal antibodies (mAb) on day 8 postimmunization. Clinical scoring and both histological and immunohistochemical studies were undertaken for all groups. We hereby show that treatment with anti-IFN-γ mAb worsened the disease course of 129Sv wild-type mice. However, it decreased the mean daily score in IFN-γ R−/− 129Sv and the incidence of the disease down to 50% in C57Bl/6×129Sv IFN-γ R−/− mice. Moreover, after anti-IFN-γ mAb treatment, oxidative stress levels, metallothionein I and II antioxidant protein expression, and apoptoticneuronal death were increased in wild-type mice while decreased in IFN-γ R−/− mice. These results suggest a putative alternative mechanism of action of this cytokine that works independent of its receptor.  相似文献   

14.
A transgenic mouse expressing the human β-amyloid precursor protein with the ‘Swedish’ mutation, Tg2576, was used to investigate the mechanism of β-amyloid (Aβ) deposition. Previously, we have reported that the major species of Aβ in the amyloid plaques of Tg2576 mice are Aβ1-40 and Aβ1-42. Moreover, Aβ1-42 deposition precedes Aβ1-40 deposition, while Aβ1-40 accumulates in the central part of the plaques later in the pathogenic process. Those data indicate that Aβ deposits in Tg2576 mice have similar characteristics to those in Alzheimer’s disease. In the present study, to understand more fully the amyloid deposition mechanism implicating Alzheimer’s disease pathogenesis, we examined immunohistochemically the distributions of apolipoprotein E (apoE) and Aβ in amyloid plaques of aged Tg2576 mouse brains. Our findings suggest that Aβ1-42 deposition precedes apoE deposition, and that Aβ1-40 deposition follows apoE deposition during plaque maturation. We next examined the relationship between apoE and astrogliosis associated with amyloid plaques using a double-immunofluorescence method. Extracellular apoE deposits were always associated with reactive astrocytes whose processes showed enhancement of apoE-immunoreactivity. Taken together, the characteristics of amyloid plaques in Tg2576 mice are similar to those in Alzheimer’s disease with respect to apoE and astrogliosis. Furthermore, apoE deposition and astrogliosis may be necessary for amyloid plaque maturation.  相似文献   

15.
The ε4 allele of apolipoprotein E (apoE) is associated with increased risk for the development of Alzheimer's disease (AD), possibly due to interactions with the β-amyloid (Aβ) protein. The mechanism by which these two proteins are linked to AD is still unclear. To further assess their potential relationship with the disease, we have determined levels of apoE and Aβ isoforms from three brain regions of neuropathologically confirmed AD and non-AD tissue. In two brain regions affected by AD neuropathology, the hippocampus and frontal cortex, apoE levels were found to be decreased while Aβ1–40 levels were increased. Levels of apoE were unchanged in AD cerebellum. Furthermore, levels of apoE and Aβ1–40 were found to be apoE genotype dependent, with lowest levels of apoE and highest levels of Aβ1–40 occurring in ε4 allele carriers. These results suggest that reduction in apoE levels may give rise to increased deposition of amyloid peptides in AD brain.  相似文献   

16.
Brain amyloid precursor protein (APP), a normal constituent of neurons, glial cells and cerebrospinal fluid, has several proposed functions (e.g., in neuronal growth and survival). It appears, however, that altered processing of APP is an initial or downstream step in the neuropathology of brain aging, Alzheimer's disease (AD), and Down's syndrome (DS). Some studies suggest that proteolytic cleavage of APP, producing β-amyloid (Aβ1–42), could have neurotoxic or neuroprotective effects. In this study, we utilized antibodies to human APP695 and Aβ1–42, and Congo red staining, to search for amyloid deposition in the brain of semelparous spawning kokanee salmon (Oncorhynchus nerka kennerlyi). Intracellular APP695 immunoreactivity (APP-ir) was observed in brain regions involved in gustation (glomerulosus complex), olfaction (putative hippocampus, olfactory bulb), vision (optic tectum), the stress response (nucleus preopticus and nucleus lateralis tuberis), reproductive behavior (nucleus preopticus magnocellularis, nucleus preopticus periventricularis, ventral telencephalon), and coordination (cerebellum). Intra- and extra-neuronal Aβ1–42 immunoreactivity (Aβ-ir) were present in all APP-ir regions except the nucleus lateralis tuberis and Purkinje cells of the cerebellum (coordination). Thus, the relationship between APP and Aβ deposition during brain aging could shed light on the processing of APP into Aβ, neurodegeneration, and possible protection of neurons that are functioning in spawning but senescent salmon. Pacific salmon, with their predictable and synchronized life history, could provide research options not available with the existing models for studies of brain aging and amyloidosis.  相似文献   

17.
Transgenic mice expressing mutant human amyloid precursor protein (APP) develop an age-dependent amyloid pathology and memory deficits, but no overt neuronal loss. Here, in mice overexpressing wild-type human APP (hAPPwt) we found an early memory impairment, particularly in the water maze and to a lesser extent in the object recognition task, but β-amyloid peptide (Aβ42) was barely detectable in the hippocampus. In these mice, hAPP processing was basically non-amyloidogenic, with high levels of APP carboxy-terminal fragments, C83 and APP intracellular domain. A tau pathology with an early increase in the levels of phosphorylated tau in the hippocampus, a likely consequence of enhanced ERK1/2 activation, was also observed. Furthermore, these mice presented a loss of synapse-associated proteins: PSD95, AMPA and NMDA receptor subunits and phosphorylated CaMKII. Importantly, signs of neurodegeneration were found in the hippocampal CA1 subfield and in the entorhinal cortex that were associated to a marked loss of MAP2 immunoreactivity. Conversely, in mice expressing mutant hAPP, high levels of Aβ42 were found in the hippocampus, but no signs of neurodegeneration were apparent. The results support the notion of Aβ-independent pathogenic pathways in Alzheimer's disease.  相似文献   

18.
Although much maligned, the amyloid-β (Aβ) protein has been shown to possess a number of trophic properties that emanate from the protein’s ability to bind Cu, Fe and Zn. Aβ belongs to a group of proteins that capture redox metal ions (even under mildly acidotic conditions), thereby preventing them from participating in redox cycling with other ligands. The coordination of Cu appears to be crucial for Aβ’s own antioxidant activity that has been demonstrated both in vitro as well as in the brain, cerebrospinal fluid and plasma. The chelation of Cu by Aβ would therefore be predicted to dampen oxidative stress in the mildly acidotic and oxidative environment that accompanies acute brain trauma and Alzheimer’s disease (AD). Given that oxidative stress promotes Aβ generation, the formation of diffuse amyloid plaques is likely to be a compensatory response to remove reactive oxygen species. This review weighs up the evidence supporting both the trophic and toxic properties of Aβ, and while evidence for direct Aβ neurotoxicity in vivo is scarce, we postulate that the product of Aβ’s antioxidant activity, hydrogen peroxide (H2O2), is likely to mediate toxicity as the levels of this oxidant rise with the accumulation of Aβ in the AD brain. We propose that metal ion chelators, antioxidants, antiinflammatories and amyloid-lowering drugs that target the reduction of H2O2 and/or Aβ generation may be efficacious in decreasing neurotoxicity. However, given the antioxidant activity of Aβ, we suggest that the excessive removal of Aβ may prevent adequate chelation of metal ions and removal of O2, leading to enhanced, rather than reduced, neuronal oxidative stress.  相似文献   

19.
Chronic inflammation is known to occur in the brains of Alzheimer's Disease (AD) patients, including the presence of activated microglia close to amyloid plaques. We utilised real time autoradiography and immunohistochemistry to investigate microglial activation and the potential anti-inflammatory effects of PPARγ agonists in the Thy-1 APP695swe/Thy-1 PS-1.M146V (TASTPM) overexpressing transgenic mouse model of AD. An age dependent increase in specific [3H](R)-PK11195 binding to peripheral benzodiazepine receptors (PBR)/translocator protein (18 kDa) (TSPO) was observed in the cortex of TASTPM mice compared to wild type mice, indicative of microglial activation. This was consistent with immunohistochemical data showing age-dependent increases in CD68 immunoreactivity co-localised with amyloid β (Aβ) deposits. In 10 month old TASTPM mice, pioglitazone (20 mg/kg) and ciglitazone (50 mg/kg) significantly reduced [3H](R)-PK11195 and [3H]DPA-713 binding in cortex and hippocampus, indicative of reduced microglial activation. In AD brain, significant [3H](R)-PK11195 and [3H]DPA-713 binding was observed across all stages of the disease. These results support the use of PBR/TSPO autoradiography in TASTPM mice as a functional readout of microglial activation to assess anti-inflammatory drugs prior to evaluation in AD patients.  相似文献   

20.
“β Amyloid (Aβ)-induced free radical-mediated neurotoxicity” is a leading hypothesis as a cause of Alzheimer's disease (AD). Aβ increased free radical production and lipid peroxidation in PC12 nerve cells, leading to increased 4-hydroxy-2-nonenal (HNE) production and modification of specific mitochondrial target proteins, apoptosis and cell death. Pretreatment of the cells with isolated ginkgolides, the anti-oxidant component of Ginkgo biloba leaves, or vitamin E, prevented the Aβ-induced increase of reactive oxygen species (ROS). Ginkgolides, but not vitamin E, inhibited the Aβ-induced HNE modification of mitochondrial proteins. However, treatment with these anti-oxidants did not rescue the cells from Aβ-induced apoptosis and cell death. These results indicate that free radicals and lipid peroxidation may not mediate Aβ-induced neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号