首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injections into the midbrain median raphe nucleus (MR) of the metabolically stable substance P analogue, DiMe-C7, produce dose-dependent increases in locomotor activity (LMA). Ibotenic acid (8.0 micrograms in 2.0 microliter vehicle) lesions of the MR block the hyperkinetic effects of optimal doses of both DiMe-C7 (1.0 microgram in 0.5 microliter vehicle) and the GABAA agonist, muscimol (100 ng in 0.5 microliter vehicle). This observation indicates that the increases in LMA produced by intra-MR DiMe-C7 and muscimol infusion are not due to diffusion to sites outside the MR. Intra-MR administration of the selective serotonin (5-HT) neurotoxin, 5,7-dihydroxytryptamine (6.0 micrograms in 1.5 microliter vehicle), following pretreatment with the norepinephrine and dopamine reuptake inhibitor, nomifensine maleate (15 mg/kg, i.p.), blocked the hyperactivity induced by intra-MR infusions of DiMe-C7 (1.0 microgram) but not that of muscimol (100 ng). These observations suggest that the LMA effects of intra-MR DiMe-C7 and muscimol administration are mediated by different neural mechanisms. The LMA effects of DiMe-C7 depend on intact 5-HT neurons in the MR, whereas the effects of muscimol depend on intact non-5-HT MR cells.  相似文献   

2.
The autoradiographic distribution of the selective NK-3 tachykinin agonist [3H]senktide was investigated in rat brain. [3H]Senktide bound with high affinity (KD less than 2.5 nM) and high specificity (greater than 75%) to cerebral cortex and numerous subcortical sites, including the substantia nigra pars compacta. In addition, moderately dense binding was seen in the median but not the dorsal raphe nucleus, and this was disrupted by 5,7-dihydroxytryptamine (5,7-DHT)-induced destruction of 5-HT neurons. 5,7-DHT lesions did not affect the binding of [3H]senktide to forebrain regions, suggesting that 5-HT terminals are devoid of NK-3 receptors.  相似文献   

3.
To study the involvement of serotonin (5-HT) receptor subtypes in behavioral supersensitivity following neonatal 5,7-dihydroxytryptamine (5,7-DHT) lesions, we measured acute behavioral responses to a single dose of selective 5-HT1A (8-OH-DPAT) or 5-HT2,1C (DOI) agonist compared to 5-hydroxytryptophan (5-HTP) in rats injected with 5,7-DHT intraperitoneally or intracisternally 14 weeks earlier. Only intraperitoneal 5,7-DHT injection resulted in brainstem 5-HT hyperinnervation, but cortical 5-HT depletions were also less. Effects of DOI, such as shaking behavior and forepaw myoclonus, were enhanced by 5,7-DHT lesions made intracisternally not intraperitoneally, whereas 8-OH-DPAT-evoked behaviors, such as forepaw myoclonus and head weaving, were enhanced more by the intraperitoneal route. The main consequence of intraperitoneal compared to intracisternal 5,7-DHT injection on supersensitivity to 5-HT agonists was increased presynaptic 5-HT1A responses and decreased 5-HT2,1C responses. In contrast, 5-HTP evoked more shaking behavior and less of the serotonin syndrome with the intraperitoneal compared to the intracisternal route of 5,7-DHT injection. Behavioral supersensitivity to 5-HTP, which was attributable to 5-HT1A, 5-HT2,1C, and possibly to other 5-HT receptors, was orders of magnitude greater than that elicited by direct receptor agonists and more clearly differentiated between rats with 5,7-DHT lesions and their controls, and between routes of 5,7-DHT injections, than responses to 5-HT agonists at the dose studied. 5,7-DHT induced dysregulation of 5-HT receptors, including both presynaptic and postsynaptic changes and altered interactions between receptor subtypes, better explains these data than postsynaptic changes alone.  相似文献   

4.
Rats underwent one of the following treatments: (1) electrocoagulation of both the dorsal and median midbrain raphe nuclei; (2) 5,7-dihydroxytryptamine creatinine sulfate (5,7-DHT) injection (10 mug, as the salt, in 5 mul vehicle) into the vicinity of each midbrain raphe nucleus; (3) intra-brain stem vehicle (5 mul of 0.2% ascorbic acid in isotonic saline) injections; or, (4) a control operation. Open field activity and one-way avoidance conditioning were examined on postoperative days 16-23. Regional central 5-hydroxytryptamine (5-HT) and catecholamine (CA) concentrations were determined 25-27 days postoperatively. Regional 5-HT levels were greatly reduced following 5,7-DHT administration and electrolytic raphe lesions. The 5,7-DHT rats also showed a reduction in spinal 5-HT content. Central CA concentrations were not affected. Variation in the pattern of regional 5-HT changes after 5,7-DHT treatment was observed but appeared to be related to the adequacy of the dorsal raphe (B7) injection. Only the electrolytic raphe lesion animals, however, showed increased locomotor activity and retarded acquisition and forced-extinction of the one-way avoidance response. In contrast, no significant differences were observed in the open field and avoidance behavior of the 5,7-DHT, vehicle, and control groups. The hyperactivity and impaired one-way avoidance performance observed after electrolytic midbrain raphe lesions are not related simply to reductions in regional forebrain 5-HT and may well be due to damage of non-serotonergic neural systems. Clearly, the behavioral effects of central 5-HT depletion depend on the method employed. The role of 5-HT in regulating activity level and mediating avoidance behavior, furthermore, remains to be determined.  相似文献   

5.
M Wienrich  H Kettenmann 《Glia》1989,2(3):155-160
Cultured astrocytes from rat cortex and spinal cord responded with different types of membrane potential changes upon brief (10 seconds) applications of the natural neurokinin agonists substance P and neurokinin A. The most prominent type of response was a long-lasting membrane depolarization. In some cells, an initial rapid depolarization followed by a partial repolarization preceded the slow depolarizing event. Few astrocytes responded with a hyperpolarization of the membrane. Selective agonists at the NK-1 receptive site, substance P-methyl ester (SP-OME) and septide, mimicked the response to the natural neurokinins as did DiMe-C7, a selective NK-3 receptor agonist. A putative neurokinin antagonist, (D-Arg1,D-Pro2,D-Trp7,9,Leu11)SP (DADPDT) partially blocked membrane potential responses induced by substance P, SP-OME, septide, DiMe-C7, and NKA. The authors conclude that astrocytes express NK-1 and NK-3 receptors, which upon activation affect the electrical properties of these cells.  相似文献   

6.
Previous studies have shown that rats with electrolytic lesions of the nucleus medianus raphe (MR) show alterations in spontaneous alternation and in the acquisition of a delayed spatial alternation task. The current study was designed to investigate whether these changes are secondary to forebrain serotonin depletion or if they are due to the destruction of MR cells or fibers of passage within the region of the MR. To this end, rats were prepared with either an electrolytic lesion of the nucleus, or were given an intra-MR injection of either the serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or the excitotoxin ibotenate. Rats were then tested for the presence of spontaneous alternation in a T-maze, and were subsequently also trained on a contingently-reinforced delayed alternation task. Only the group with electrolytic lesions showed significant response perseveration in the spontaneous alternation task, although both the electrolytic and ibotenate groups were impaired in acquiring the delayed alternation task. Rats with 5,7-DHT injections performed comparable to controls in both tasks despite the fact that forebrain serotonin levels in this group were reduced at least as much as in the other two lesioned groups. These results suggest that these behavioral effects of MR lesions are due to the destruction of non-serotonergic fibers and/or cells within the region of the nucleus.  相似文献   

7.
There have been few previous studies of the functional significance of 5,7-dihydroxytryptamine (5,7-DHT) lesions made in neonatal rats. To study the role of serotonin (5-HT) in recovery of function, rat pups and adult rats were injected intracisternally with 5,7-DHT or saline and challenged acutely with the 5-HT precursor 5-hydroxytryptophan (5-HTP) 4 weeks later as a test of behavioral supersensitivity. Compared to 5,7-DHT lesions in adults, neonatal lesions induced significantly greater 5-HT depletions in brainstem, but 5-HT depletions in other regions were not significantly different in the two groups. Rats with early 5,7-DHT lesions displayed supersensitive behavioral responses to 5-HTP, consisting of all the component myoclonic-serotonergic behaviors seen in rats with 5,7-DHT lesions made as adults. However, there was significantly less 5-HTP-evoked head weaving, truncal myoclonus and shaking behavior in rats treated with 5,7-DHT as neonates. Body weight was reduced both in rats with early and late 5,7-DHT lesions, but reduction persisted in rats with early lesions. These data indicate overall similarity with some differences between neurochemical and behavioral effects of early and late 5,7-DHT lesions made by the intracisternal route. They suggest that recovery mechanisms did not occur or failed to reverse the neurochemical or behavioral consequences of early 5,7-DHT lesions.  相似文献   

8.
While there is abundant evidence for a role of 5-HT and the amygdala in anxiety and depression, the role of 5-HT in this brain region in schizophrenia is less well understood. We therefore examined the effects of local 5-HT depletion in the amygdala on psychotomimetic drug-induced locomotor hyperactivity and prepulse inhibition, two animal model of aspects of schizophrenia. Pentobarbital-anaesthetized (60 mg/kg, i.p.) male Sprague-Dawley rats were stereotaxically micro-injected with 0.5 microl of a 5 microg/mul solution of the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into either the basolateral (BLA) or central nucleus of amygdala (CeN). Two weeks after the surgery, rats with BLA lesions did not show changes in either psychotomimetic drug-induced locomotor hyperactivity or prepulse inhibition. In contrast, rats with CeN lesions showed significant disruption of prepulse inhibition, but no changes in psychotomimetic drug-induced locomotor hyperactivity. Neurochemical analysis and autoradiographic labelling of 5-HT transporter sites showed that a good degree of anatomical selectivity was obtained. Following administration of 5,7-DHT into the amygdala, the concentration of 5-HT was significantly reduced. Similarly, 5-HT transporter autoradiographs showed differential and selective lesions of 5-HT innervation in targeted subregions of the amygdala. These results provide evidence for differential involvement of 5-HT projections within the amygdala in prepulse inhibition but not locomotor hyperactivity. Thus, the present study supports the view that 5-HT in the amygdala may be involved in aspects of schizophrenia and a target for antipsychotic drug action.  相似文献   

9.
The effects of selective NK-1, NK-2 and NK-3 tachykinin agonists in midbrain dopamine cell containing regions were investigated in the rat. The NK-3 agonist senktide induced locomotion, rearing and sniffing following infusion into the substantia nigra pars compacta, and to a lesser extent in the ventral tegmental area. These behavioural responses were not seen following infusion of the selective NK-1 agonist [Sar9,Met (O2)11]SP or the NK-2 agonist [N1e10]NKA4-10. In contrast, grooming was induced only by the NK-1 agonist administered into the substantia nigra. Yawning, chewing mouth movements and wet dog shakes were all seen following infusion of senktide into the ventral tegmental area. These findings suggest that (i) dopamine-mediated behavioural responses seen following tachykinin administration into the midbrain are dependent upon stimulation of NK-3 tachykinin receptors, (ii) tachykinin-induced grooming is mediated by stimulation of NK-1 receptors and (iii) some of the previously described 5-HT mediated behaviours seen following administration of NK-3 tachykinin agonists are probably generated by stimulation of 5-HT cell bodies in the ventral tegmental area.  相似文献   

10.
Rat pups were injected intracisternally (i.c.) or intraperitoneally (i.p.) with 5,7-dihydroxytryptamine (5,7-DHT) or saline and challenged 2 and 14 weeks later with the 5-HT precursor 5-hydroxytryptophan (5-HTP), which evokes behavioral supersensitivity in adult rats, 5,7-DHT induced transient postinjection convulsions in rats injected i.c. but not i.p. Rats with either type of 5,7-DHT lesions displayed supersensitive behavioral responses to 5-HTP. However, rats lesioned by i.p. injections exhibited significantly greater shaking behavior (+1445%) in response to 5-HTP than their i.c. counterparts, who instead showed more forepaw myoclonus (+250%) and head weaving (+270%), the core features of the 5-HT syndrome. Differences in 5-HT syndrome behaviors were already present 2 weeks after lesioning, whereas the difference in shaking behavior was not. After 14 weeks, 5-HT was selectively depleted (-43 to -92%) in hippocampus, spinal cord, and frontal cortex, and differences between i.c. and i.p. 5,7-DHT routes were insignificant except in frontal cortex. Brainstem 5-HT concentrations were significantly increased (+35%) after i.p. 5,7-DHT injections in contrast to reduction (-89%) after i.c. 5,7-DHT; 5-hydroxyindole acetic acid/5-hydroxytryptamine (5-HIAA/5-HT) ratios were decreased (-20%) with either route. These data suggest that brainstem 5-HT hyperinnervation following i.p. 5,7-DHT injection modifies the functional consequences of injury in abating the 5-HT syndrome, but does not result in complete recovery since shaking behavior is enhanced. Loss of presynaptically mediated autoregulation or receptor dysregulation may play a major role in behavioral supersensitivity induced by 5-HTP in rats with 5,7-DHT lesions. To the extent that the 5-HT syndrome is mediated by 5-HT1A receptors and shaking behavior by 5-HT2 sites, differential responses to injury of 5-HT1A and 5-HT2 receptors may contribute to these behavioral differences.  相似文献   

11.
The time course of degeneration and regeneration of serotonin (5-HT) fibers in the rat hypothalamus was studied with 5-HT immunocytochemistry and [3H]5-HT uptake following unilateral injections of 5,7-dihydroxytryptamine (5,7-DHT) into the dorsolateral hypothalamus. Within 3 days of the lesion, 5-HT fibers in the ipsilateral hypothalamus were swollen and darkly stained for 5-HT. In the contralateral hypothalamus few swollen fibers were apparent and these were generally restricted to the area adjacent to the fornix. Swollen 5-HT fibers were evident in the ipsilateral hypothalamus 3-19 days post-lesion in the medial forebrain bundle (MFB) during which time there was a gradual decrease in their density. In the medial and periventricular areas of the ipsilateral hypothalamus there were essentially no 5-HT fibers 7-30 days post-lesion. Sprouting 5-HT fibers were observed 12-19 days post-lesion. Thirty days post-lesion the density of 5-HT fibers in the MFB appeared normal; however, medial and periventricular areas remained denervated. Fifty days post-lesion there was an apparent bilateral hyperinnervation in the lateral and dorsomedial hypothalamic areas of 5,7-DHT-injected animals as compared to sham-injected animals. The morphological data were paralleled by changes in [3H]5-HT uptake. Seven days post-lesion specific high affinity uptake was reduced to 27% of sham in the ipsilateral hypothalamus and to 53% of sham in the contralateral hypothalamus. By 50 days post-lesion, specific high affinity uptake of [3H]5-HT was 141% of sham in the ipsilateral hypothalamus and 96% of sham in the contralateral hypothalamus.  相似文献   

12.
The pharmacological profiles of two novel neurokinin agonists have been investigated. delta Ava[L-Pro9,N-MeLeu10]SP(7-11) (GR73632) and [Lys3,Gly8-R-gamma-lactam-Leu9] NKA(3-10) (GR64349) are potent and selective agonists at NK-1 and NK-2 receptors respectively. In the guinea-pig isolated trachea preparation, contractions induced by these agonists were largely unaffected by inclusion of peptidase inhibitors in the bathing medium, indicating that these agonists are resistant to metabolism by peptidases. In the anaesthetised guinea-pig, both agonists were more potent bronchoconstrictor agents than either NKA or the SP analogue, SP methylester. In the anaesthetised rat, the NK-1 agonist, GR73632 was more potent than SP, NKA or NKB at causing the histamine-independent extravasation of plasma proteins into the skin after intradermal administration. The NK-2 agonist, GR64349 and the NK-3 agonist, senktide were without significant effect in this model. These agonists are useful tools for characterizing neurokinin receptor-mediated actions both in vitro and in vivo.  相似文献   

13.
Hyperactivity is thought to be associated with an alteration of dopamine (DA) neurochemistry in brain. This conventional view became solidified on the basis of observed hyperactivity in DA-lesioned animals and effectiveness of the dopaminomimetics such amphetamine (AMP) in abating hyperactivity in humans and in animal models of hyperactivity. However, because AMP releases serotonin (5-HT) as well as DA, we investigated the potential role of 5-HT in an animal model of hyperactivity. We found that a greater intensity of hyperactivity was produced in rats when both DA and 5-HT neurons were damaged at appropriate times in ontogeny. Therefore, previously we proposed this as an animal model of attention deficit hyperactivity disorder (ADHD) - induced by destruction of dopaminergic neurons with 6-hydroxydopamine (6-OHDA) (neonatally) and serotoninergic neurons with 5,7-dihydroxytryptamine (5,7-DHT) (in adulthood). In this model effects similar to that of AMP (attenuation of hyperlocomotion) were produced by m-chlorophenylpiperazine (m-CPP) but not by 1-phenylbiguanide (1-PG), respective 5-HT2 and 5-HT3 agonists. The effect of m-CPP was shown to be replicated by desipramine, and was largely attenuated by the 5-HT2 antagonist mianserin. These findings implicate 5-HT neurochemistry as potentially important therapeutic targets for treating human hyperactivity and possibly childhood ADHD.  相似文献   

14.
An overall and marked serotonin (5-HT) depletion of the brain was found to facilitate initiation of mouse-killing behavior in the rat, whereas more selective 5-HT depletions within forebrain structures such as the septum, hippocampus, cingular cortex and amygdala, did not have such an effect. In order to further investigate the topography of the 5-HT pathways and terminals thought to be involved in an inhibitory control over this behavior, localized lesions of the serotonergic system(s) were performed by means of bilateral 5,7-dihydroxytryptamine (5,7-DHT) injections (5 μg/μl) into the hypothalamus in naive rats. 5,7-DHT injections into the medial hypothalamus did not affect the initiation of mouse-killing behavior, whereas the reflexive startle responses to air puffs were increased. The animals' open-field behavior remained unchanged. Forebrain 5-HT content was reduced by 50% in this group. 5,7-DHT injections into the lateral hypothalamus increased the proportion of killers to 46% as compared to 10% in the control group, in spite of a reduced activity in the open-field and unchanged startle responses. Forebrain 5-HT content was reduced by 88%. As the lateral hypothalamus contains afferents from both the dorsal and the median raphe nuclei, it is likely that 5-HT terminals modulate some hypothalamic mechanism involved in the control of mouse-killing behavior.  相似文献   

15.
Animals in which 5,7-dihydroxytryptamine (5,7-DHT) was bilaterally injected into the median forebrain bundle (MFB) and sham lesioned animals were allowed access to an apparatus which delivered, upon lever pressing, intravenousd-amphetamine injections. MFB lesioned rats achieved stable self-injections patterns and self-administered more drug per test session than controls. A number of agents known to either directly or indirectly affect 5-hydroxytryptamine (5-HT) receptor function were administered prior tod-amphetamine access. The responses to these pretreatments in lesioned vs non-lesioned rats were markedly different. Pretreatment withl-tryptophan reduced the number ofd-amphetamine self-injections in sham lesioned rats but had no effect in MFB lesioned animals. Fluoxetine pretreatment, likewise, reduced responding in non-lesioned rats and had no observable effect in lesioned animals. Quipazine markedy reduced self-injection in control rats but was not evaluated in the lesioned group. The putative 5-HT antagonists utilized, cyproheptadine and methysergide, unpredictably reduced self-injection frequency of non-lesioned animals in a dose related manner. When MFB lesioned animals were pretreated with cyproheptadine, rapid bursts of lever pressing were observed and 3 of 6 animals thus treated died as a result (presumably amphetamine overdose). In the remaining animals, methysergide produced a similar marked increase in self-injection rate. While these data may suggest that, in some instances, non-serotonergic mechanisms are involved, for the most part it would appear that 5-HT containing neurons are of major import in some aspect ofd-amphetamine self-administration.  相似文献   

16.
To delineate the involvement of spinal 5-HT1C receptors in supersensitivity and recovery following neonatal 5,7-DHT lesions, we injected rats on postnatal days 2 and 5 with 5,7-DHT or vehicle by intraperitoneal (IP) or intracisternal (IC) injection. [3H]Mesulergine-labelled sites measured 4 or 14 weeks later exhibited a significant increase (+35% for IP and 27% for IC) in Bmax without changes in Kd or nH. Spinal 5-HT content was significantly reduced (-80 to 89%) by either route of 5,7-DHT injection. These data describe novel upregulation of spinal 5-HT1C receptors in rats with neonatal 5,7-DHT lesions. Spinal 5-HT1C receptor upregulation may contribute to the behavioral supersensitivity to L-5-hydroxytryptophan (L-5-HTP) in rats with 5,7-DHT lesions. It does not explain the behavioral recovery we found previously only after IP 5,7-DHT injection.  相似文献   

17.
The effects of various manipulations of brain 5-HT mechanisms on the behavioural responses induced by the selective NK-3 tachykinin agonist senktide in rodents were assessed. Senktide elicited wet dog shakes in the rat which were attenuated by the 5-HT1C/2 antagonist mianserin and the selective 5-HT2 antagonist altanserin. Senktide-induced forepaw treading was stereospecifically attenuated by the 5-HT1A + B antagonist (-)-alprenolol. Senktide also elicited chewing mouth movements and yawning, which were unaffected by mianserin, altanserin, (+)- or (-)-alprenolol, or the selective 5-HT3 antagonist ICS 205-930, but attenuated by the muscarinic antagonist scopolamine. Penile grooming elicited by senktide was attenuated by mianserin, but was unaffected by the other antagonists. Senktide-induced wet dog shakes were enhanced by the 5-HT reuptake inhibitors citalopram and fluoxetine, suppressed by the monoamine oxidase (MAO)-B inhibitor pargyline, but unaffected by the MAO-A inhibitor clorgyline. Forepaw treading was potentiated by citalopram and clorgyline, but not significantly altered by fluoxetine or pargyline. Depletion of 5-HT by p-chlorophenylalanine (PCPA) in the rat attenuated senktide-induced wet dog shakes and forepaw treading. Neither PCPA nor 5,7-dihydroxytryptamine affected senktide-induced behaviours in the mouse, but the degree of brain 5-HT depletion caused by these treatments in mice was relatively small. These findings indicate that stimulation of NK-3 tachykinin receptors by senktide results in a complex behavioural syndrome which is mediated by multiple 5-HT receptors, and dependent upon intact stores of endogenous 5-HT. Independent stimulation of brain cholinergic mechanisms by senktide is also confirmed.  相似文献   

18.
Animals in which 5,7-dihydroxytryptamine (5,7-DHT) was bilaterally injected into the median forebrain bundle (MFB) and sham lesioned animals were allowed access to an apparatus which delivered, upon lever pressing, intravenous D-amphetamine injections. MFB lesioned rats achieved stable self-injections patterns and self-administered more drug per test session than controls. A number of agents known to either directly or indirectly affect 5-hydroxytryptamine (5-HT) receptor function were administered prior to D-amphetamine access. The responses to these pretreatments in lesioned vs non-lesioned rats were markedly different. Pretreatment with L-tryptophan reduced the number of D-amphetamine self-injections in sham lesioned rats but had no effect in MFB lesioned animals. Fluoxetine pretreatment, likewise, reduced responding in non-lesioned rats and had no observable effect in lesioned animals. Quipazine markedly reduced self-injection in control rats but was not evaluated in the lesioned group. The putative 5-HT antagonists utilized, cyproheptadine and methysergide, unpredictably reduced self-injection frequency of non-lesioned animals in a dose related manner. When MFB lesioned animals were pretreated with cyproheptadine, rapid bursts of lever pressing were observed and 3 of 6 animals thus treated died as a result (presumably amphetamine overdose). In the remaining animals, methysergide produced a similar marked increase in self-injection rate. While these data may suggest that, in some instances, non-serotonergic mechanisms are involved, for the most part it would appear that 5-HT containing neurons are of major import in some aspect of D-amphetamine self-administration.  相似文献   

19.
Transgenic mice overexpressing S100beta were used to examine whether the chronic elevation of this protein alters the response to selective partial serotonergic lesions produced by bilateral intracerebroventricular injections of 5,7-dihydroxytryptamine (5,7-DHT). Basal levels of S100beta mRNA examined by in situ hybridization were two- to threefold higher throughout the brain in transgenic than in control mice, whereas 5-HT levels in forebrain were similar in both. After the 5,7-DHT-induced lesions, no differences were found in the S100beta mRNA levels in either normal or transgenic mice. At 5 and 60 days after the lesion, forebrain 5-HT levels were reduced by 56% and 35%, respectively, in control mice and by 51% and 35%, respectively, in the transgenic mice. Analysis of the 5-HT immunostaining showed a marked decrease of the immunoreactivity in various brain regions, which was comparable at the two intervals postlesion. One exception was the medial hypothalamus, where an almost complete disappearance of 5-HT immunoreactivity was observed in the medial region at 5 days after lesion, followed by a marked reinnervation 60 days later. These hypothalamic changes were seen in both controls and S100beta-overexpressing transgenic mice. Quantitative analysis of the density of 5-HT transporter sites using [(3)H]citalopram binding, a marker of serotonergic terminals, showed a marked decrease in different brain regions at both 5 and 60 days after 5,7-DHT injections. No difference in basal and postlesion levels of [(3)H]citalopram binding was seen between transgenic and control mice. In conclusion, this study demonstrates that constitutive overexpression of S100beta in transgenic mice does not modify serotonin levels during development, nor does it protect the serotonergic neurons from selective neurotoxicity or modify the serotonergic sprouting induced by partial lesion.  相似文献   

20.
《Brain research》1997,747(1):60-69
We used quantitative autoradiography to measure the contribution of the 5-hydroxytryptamine (5-HT, serotonin) innervation of rat telencephalon to the synthesis of dopamine (DA) from exogenous l-DOPA. One week after stereotaxic infusions of 5,7-dihydroxytryptamine (5,7-DHT, 1.6 μg) into the right medial forebrain bundle (MFB), rats received [3H]DOPA (200 μCi, i.v.), which circulated for 90 min. The specific bindings in vitro of the 5-HT uptake site ligand [3H]citalopram and the DA uptake site ligand [125I]RTI-55 were measured in cryostat sections from the prosencephalon. In most structures ipsilateral to the lesion, [3H]citalopram specific binding was substantially reduced (50–90%). In the lateral habenula specific binding declined by only 30–40%, reflecting the presence of a 5-HT pathway deviating from the MFB at the mesencephalic flexure. [125I]RTI-55 binding in the basal ganglia was reduced by 50% on the side of the 5,7-DHT lesion, but was unperturbed in rats pretreated with desmethylimipramine (DMI). 5,7-DHT infusions decreased the synthesis of [3H]DA from [3H]DOPA in vivo in the basal ganglia by (40–90%). Pretreatment with DMI protected [3H]DA synthesis in the basal ganglia, but not in the olfactory tubercle and amygdala ipsilateral to the lesion. Whereas the 5-HT innervation does not contribute greatly to [3H]DA synthesis in the basal ganglia, a substantial proportion of [3H]DA synthesis in olfactory tubercle and amygdala requires an intact 5-HT innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号