首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incidence of cardiovascular disease is increasing with the aging population. This has stimulated a need for innovative means to evaluate and develop therapeutic strategies intended to improve patient care. Positron emission tomography (PET) imaging is an advanced nuclear imaging technology. The advantage of PET over other non-invasive imaging modalities is its ability to accurately measure tissue concentrations of specific radiolabeled compounds. These radioligands can be used as molecular probes to quantify physiological processes and the effects of therapy. Molecular imaging with PET has been applied to evaluate new and established drugs and therapies, as well as their effects on physiological parameters. New radiolabeled receptor ligands will also allow in vivo pharmacokinetic studies following drug treatment, yielding insights into drug delivery, optimal drug occupancy, and mechanism of action at the receptor level. These exciting tissue pharmacokinetic data could revolutionize evaluation of drug therapies in cardiovascular diseases. In addition, serial evaluations of these processes are now possible in both animals and humans permitting sensitive means to evaluate disease progression and therapies. New tools for imaging such as PET/CT and small animal PET broaden the potential of PET in drug evaluation. This review will describe the accuracy of PET as a non-invasive modality to quantify various parameters, and the application of PET in evaluating new and established therapies. This paper will also review the application of receptor ligand imaging and the principles of using surrogate physiological end-points in early drug development and evaluation.  相似文献   

2.
Controversial aspects of the regulatory framework for compounding drug products used in positron emission tomography (PET) are discussed. The Food and Drug Administration Modernization Act of 1997 (FDAMA), which amends the Federal Food, Drug, and Cosmetic Act (FFDCA), required that FDA establish approval (new drug application [NDA] and abbreviated new drug application [ANDA]) procedures and current good manufacturing practice (CGMP) requirements for PET drugs; this seems to conflict with differentiation between manufacturing and compounding in FFDCA. Compounding by pharmacists is implied in the FDAMA section on PET, but specific mention of "pharmacist" needs to be included. Congress apparently did not intend for compounded PET drugs to be regulated differently from other drugs. Although FDA has waived NDA and ANDA fees for three PET radiopharmaceuticals, revision of FDAMA to exempt PET drug products from regulations placed on manufacturing is needed. Without relief from the current regulations, many academic PET centers are likely to close; this would violate FDAMA's stated intent of making PET available to patients at reasonable cost. Also problematic is FDAMA's prohibition of compounding "regularly or in inordinate amounts" a product that is commercially available; the common PET radiopharmaceutical fludeoxyglucose F 18 injection, for example, is commercially available. A sensible alternative to NDA or ANDA and CGMP requirements would be the enforcement of USP standards for PET drugs by state boards of pharmacy.  相似文献   

3.
《Drug discovery today》2022,27(1):280-291
Positron emission tomography (PET) is an extensively used nuclear functional imaging technique, especially for central nervous system (CNS) and oncological disorders. Currently, drug development is a lengthy and costly pursuit. Imaging with PET radiotracers could be an effective way to hasten drug discovery and advancement, because it facilitates the monitoring of key facets, such as receptor occupancy quantification, drug biodistribution, pharmacokinetic (PK) analyses, validation of target engagement, treatment monitoring, and measurement of neurotransmitter concentrations. These parameters demand careful analyses for the robust appraisal of newly formulated drugs during preclinical and clinical trials. In this review, we discuss the usage of PET imaging in radiopharmaceutical development; drug development approaches with PET imaging; and PET developments in oncological and cardiac drug discovery.  相似文献   

4.
Positron emission tomography (PET) is increasingly used in drug discovery and development for evaluation of CNS drug disposition and for studies of disease biomarkers to monitor drug effects on brain pathology. The quantitative analysis of PET data is based on kinetic modeling of radioactivity concentrations in plasma and brain tissue compartments. A number of quantitative methods of analysis have been developed that allow the determination of parameters describing drug pharmacokinetics and interaction with target binding sites in the brain. The optimal method of quantification depends on the properties of the radiolabeled drug or radioligand and the binding site studied. We here review the most frequently used methods for quantification of PET data in relation to CNS drug discovery and development. The utility of PET kinetic modeling in the development of novel CNS drugs is illustrated by examples from studies of the brain kinetic properties of radiolabeled drug molecules.  相似文献   

5.
The realisation that new chemical entities under development as drug candidates fail in three of four cases in clinical trials, together with increased costs and increased demands of reducing preclinical animal experiments, have promoted concepts for improvement of early screening procedures in humans. Positron emission tomography (PET) is a non-invasive imaging technology, which makes it possible to determine drug distribution and concentration in vivo in man with the drug labelled with a positron-emitting radionuclide that does not change the biochemical properties. Recently, developments in the field of rapid synthesis of organic compounds labelled with positron-emitting radionuclides have allowed a substantial number of new drug candidates to be labelled and potentially used as probes in PET studies. Together, these factors led to the logical conclusion that early PET studies, performed with very low drug doses—PET-microdosing—could be included in the drug development process as one means for selection or rejection of compounds based on performance in vivo in man. Another important option of PET, to evaluate drug interaction with a target, utilising a PET tracer specific for this target, necessitates a more rapid development of such PET methodology and validations in humans. Since only very low amounts of drugs are used in PET-microdosing studies, the safety requirements should be reduced relative to the safety requirements needed for therapeutic doses. In the following, a methodological scrutinising of the concept is presented. A complete pre-clinical package including limited toxicity assessment is proposed as a base for the regulatory framework of the PET-microdosing concept.  相似文献   

6.
Drug discovery and development is time consuming and a costly procedure. The challenges for the pharmaceutical industry range from the evaluation of potential new drug candidates, the determination of drug pharmacokinetics/pharmacodynamics, the measurement of receptor occupancy as a determinant of drug efficacy, and the pharmacological characterisation of mechanisms of action. Positron emission tomography (PET) is a powerful quantitative imaging technique for looking at biochemical pathways, molecular interactions, drug pharmacokinetics and pharmacodynamics. Recent advances in emission tomography, particularly the development of small animal PET scanners, image reconstruction and animal models of disease have led to the development of extremely sensitive and specific tools for imaging biochemical processes in vivo, therefore representing a new means of providing information for drug development and evaluation. Many human genes have a related mouse gene, allowing mice to be used as a platform for mimicking human disease, using knock-out and knock-in gene technology. Consequently PET imaging of rodents is emerging as a cost effective means of screening new pharmaceuticals and decreasing the time required for new drug development.  相似文献   

7.
Positron Emission Tomography (PET) is a sophisticated nuclear imaging modality that affords researchers the ability to conduct both functional and molecular imaging on biological and biochemical processes in vivo. In functional imaging, biological parameters such as metabolic rate and perfusion that can be altered by disease or treatment are monitored. In molecular imaging, PET can be used to examine and quantify cellular events such as cell trafficking, receptor binding and gene expression. Therefore, PET is an important tool to elucidate mechanisms associated with diseases and drug actions. In addition to PET, microPET is designed to image small animals. A great tool to facilitate preclinical studies and basic research, it can eliminate the need of sacrificing the animal by enabling noninvasive, longitudinal, and serial studies. The results from preclinical studies using microPET can be directly correlated with clinical studies using PET, thus bridging the chasm that used to separate the 2 pivotal phases in drug development. This review first describes the basic principles of PET and compares it to other imaging modalities. Then, PET procedures and PET isotopes and tracers synthesis are outlined. Next, functional and molecular PET imaging applications in the fields of oncology, neurology, and cardiology in both humans and animals are presented. Spanning a wide range, these applications demonstrate the versatility of PET and how it can be used to accelerate drug discovery and development. Finally, the advantages and limitations of PET and how it can be used in the future to minimize risks of drug development are discussed.  相似文献   

8.
The selection of therapeutic dose for the most effective treatment of tumours is an intricate interplay of factors. Molecular imaging with positron emission tomography (PET) or single–photon emission computed tomography (SPECT) can address questions central to this selection: Does the drug reach its target? Does the drug engage with the target of interest? Is the drug dose sufficient to elicit the desired pharmacological effect? Does the dose saturate available target sites? Combining functional PET and SPECT imaging with anatomical imaging technologies such as magnetic resonance imaging (MRI) or computed tomography (CT) allows drug occupancy at the target to be related directly to anatomical or physiological changes in a tissue resulting from therapy. In vivo competition studies, using a tracer amount of radioligand that binds to the tumour receptor with high specificity, enable direct assessment of the relationship between drug plasma concentration and target occupancy. Including imaging studies in early drug development can aid with dose selection and suggest improvements for patient stratification to obtain higher effective utility from a drug after approval. In this review, the potential value of including translational receptor occupancy studies and molecular imaging strategies early on in drug development is addressed.  相似文献   

9.
Positron emission tomography (PET) imaging uses minute amounts of radiolabeled drug tracers and thereby meets the criteria for clinical microdose studies. The advantage of PET, when compared to other analytical methods used in microdose studies, is that the pharmacokinetics (PK) of a drug can be determined in the tissue targeted for drug treatment. PET microdosing already offers interesting applications in clinical oncology and in the development of central nervous system pharmaceuticals and is extending its range of application to many other fields of pharmaceutical medicine. Although requirements for preclinical safety testing for microdose studies have been cut down by regulatory authorities, radiopharmaceuticals increasingly need to be produced under good manufacturing practice (GMP) conditions, which increases the costs of PET microdosing studies. Further challenges in PET microdosing include combining PET with other ultrasensitive analytical methods, such as accelerator mass spectrometry (AMS), to gain plasma PK data of drugs, beyond the short PET examination periods. Finally, conducting clinical PET studies with radiolabeled drugs both at micro- and therapeutic doses is encouraged to answer the question of dose linearity in clinical microdosing.  相似文献   

10.
Clinical imaging offers a range of methods for the support of drug development that are able to address major questions related to target validation and molecule biodistribution, target interactions and pharmacodynamics. Here we review recent innovative applications of positron emission tomography (PET) and magnetic resonance imaging (MRI). New approaches to human target validation exploring MRI or PET biomarker changes related to allelic variation at candidate target loci can contribute to human target validation. PET molecular imaging can define molecule biodistribution directly and, if an appropriate, target-specific radioligand is available, be employed in small experimental medicine studies to provide plasma pharmacokinetic-target occupancy data to guide dose selection. An enlarging range of imaging biomarkers for pharmacodynamic studies is enabling imaging experimental medicine studies to assess the potential efficacy of new therapeutic molecules. Integration of these approaches promises improvements in therapeutic molecule differentiation and may contribute in ways that would improve the value proposition for use of a new drug through patient stratification.  相似文献   

11.
The purpose of this study was to evaluate the attitudes of drug treatment program providers concerning human immunodeficiency virus (HIV) post-exposure therapy (PET) for drug users enrolled in drug treatment. This was a cross-sectional evaluation of drug treatment program providers in four methadone maintenance programs (MMPs) in New Haven, Connecticut. Thirty-five MMP providers including: 29 MMP treatment staff (physicians, nurses, counselors) and 6 primary care provider staff (physicians, nurse practitioners, and nurses) participated in the study. The providers were presented with four case vignettes of individuals exposed to HIV through a needle stick ("stick"): a phlebotomist with occupational exposure (Case A) and three drug users with nonoccupational exposure to HIV (Cases B, C, and D). Case B had the same estimated future risk as Case A (three sticks/4 years) and the other cases had increased risk: Case C (four to six sticks/year) and Case D (monthly "sticks"). For each vignette, providers were asked whether they would offer HIV PET ("yes" or "no"). In addition, focus groups were held within each group of providers who were asked: "What role should drug treatment programs play in the implementation of PET?" All MMP staff (29/29) and primary care providers (6/6) felt that the phlebotomist with occupational exposure should be offered PET. The percent of MMP and Primary care provider staff recommending PET for the other cases were: Case B (MMP staff: 86% [25/29], PCPs: 100% [6/6]), Case C (MMP staff: 69% [20/29], PCPs: 33% [2/6]), and Case D (MMP staff: 59% [17/29], PCPs: 17% [1/6]). The "common themes" that were identified in the focus groups included: concern that MMPs lack resources to provide PET, the ethics of withholding PET, the "limit" on the number of times PET should be offered, and the role of PET in the overall HIV prevention message. Both MMP staff and PCPs felt that MMPs should have an "indirect" role in providing HIV PET by providing education and referral only. MMP staff and PCPs differed in their likelihood of offering HIV PET to drug users enrolled in MMPs. The possibility of HIV PET for drug users in treatment raises significant implementation issues for MMPs that will require further study if HIV PET becomes widely used in drug users.  相似文献   

12.
Positron emission tomography (PET) is a sophisticated method for the quantitative and noninvasive imaging of biological functions by monitoring the delivery of tracers labeled with positron emitters (1C, 'aN, '"O, and 8F). The distribution and kinetic patterns of a labeled compound in relation to the specific biomolecule in the target tissue are assumed to reflect specific biological functions in the living body. A wide variety of labeled compounds as molecular probes have been developed to measure biochemical and physiological parameters, such as blood flow, glucose and oxygen metabolism, protein synthesis, and neurotransmitter receptor functions. Recently, PET has gradually been introduced into the research field of drug development both in pre-clinical and clinical stages. In the present chapter, the applications of animal PET with small animals (rats and mice) and non-human primates in drug development in the pre-clinical stage will be discussed based on our own experiences. In the course of drug development, the pre-clinical studies with experimental animals are indispensable, and these studies are expected to provide useful information to facilitate the development of drug candidates with more efficacy and fewer adverse effects in the clinical stage with  相似文献   

13.
Use of positron emission tomography in anticancer drug development   总被引:3,自引:0,他引:3  
Positron emission tomography (PET) is increasingly being used in anticancer drug development. The technique is applicable to studies of drug delivery, and where specific probes are available, to provide pharmacodynamic readouts noninvasively in patients. Mathematical modeling of the imaging data enhances the quality of information that is obtained from such studies. This section provides a review of the PET methodologies that have been used for the development of new cancer therapies. Other than imaging of radiolabeled drugs, PET modeling has found extensive application in studies with 2-[11C]thymidine, [18F]fluorodeoxyglucose, H2 15O, C15O, and receptor ligands.  相似文献   

14.
Neurochemical imaging studies can identify molecular targets of abused drugs and link them to the underlying pathology associated with behaviors such as drug dependence, addiction and withdrawal. positron emission tomography (PET) is opening new avenues for the investigation of the neurochemical disturbances underlying drug abuse and addiction and the in vivo mechanisms by which medications might ameliorate these conditions. PET can identify vulnerable human populations, treatment strategies and monitor treatment efficacy. Thus, with this tool and the knowledge it provides, the potential for developing novel drugs and treatment strategies for drug addiction is now close at hand.  相似文献   

15.
Non-Invasive Radiotracer Imaging (NIRI) uses either short-lived positron-emitting isotopes, such as 11C and 18F, for Positron Emis ion Tomography (PET) or single photon emitting nuclides, e.g., 123I, which provide images using planar imaging or Single-Photon Emission Computed Tomography (SPECT). These high-resolution imaging modalities provide anatomical distribution and localization of radiolabeled drugs, which can be used to generate real time receptor occupancy and off-rate studies in humans. This can be accomplished by either isotopically labeling a potential new drug (usually with 11C), or indirectly by studying how the unlabelled drug inhibits specific radioligand binding in vivo. Competitive blockade studies can be accomplished using a radiolabeled analogue which binds to the site of interest, rather than a radiolabeled version of the potential drug. Imaging, particularly PET imaging, can be used to demonstrate the effect of a drug through a biochemical marker of processes such as glucose metabolism or blood flow. NIRI as a development tool in the pharmaceutical industry is gaining increased acceptance as its unique ability to provide such critical information in human subjects is recognized. This section will review recent examples that illustrate the utility of NIRI, principally PET, in drug development, and the potential of imaging advances in the development of cancer drugs and gene therapy. Finally, we provide a brief overview of the design of new radiotracers for novel targets.  相似文献   

16.
Positron-emission tomography (PET) is a noninvasive real-time functional imaging system and is expected to be useful for the development of new drug candidates in clinical trials. For its application with preformulated liposomes, we devised an optimized [18F]-compound and developed a direct liposome modification method that we termed the "solid-phase transition method". We were successful in using 1-[18F]fluoro-3,6-dioxatetracosane ([18F]7a) for in vivo trafficking of liposomes. This method might be a useful tool in preclinical and clinical studies of lipidic particle-related drugs.  相似文献   

17.
Human in vivo molecular imaging with positron emission tomography (PET) enables a new kind of 'precision pharmacology', able to address questions central to drug development. Biodistribution studies with drug molecules carrying positron-emitting radioisotopes can test whether a new chemical entity reaches a target tissue compartment (such as the brain) in sufficient amounts to be pharmacologically active. Competition studies, using a radioligand that binds to the target of therapeutic interest with adequate specificity, enable direct assessment of the relationship between drug plasma concentration and target occupancy. Tailored radiotracers can be used to measure relative rates of biological processes, while radioligands specific for tissue markers expected to change with treatment can provide specific pharmacodynamic information. Integrated application of PET and magnetic resonance imaging (MRI) methods allows molecular interactions to be related directly to anatomical or physiological changes in a tissue. Applications of imaging in early drug development can suggest approaches to patient stratification for a personalized medicine able to deliver higher value from a drug after approval. Although imaging experimental medicine adds complexity to early drug development and costs per patient are high, appropriate use can increase returns on R and D investment by improving early decision making to reduce new drug attrition in later stages. We urge that the potential value of a translational molecular imaging strategy be considered routinely and at the earliest stages of new drug development.  相似文献   

18.
Positron emission tomography in drug development and drug evaluation   总被引:2,自引:0,他引:2  
Positron Emission Tomography (PET) is an imaging modality which can determine biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labeled with positron emitting radionuclides as (11)C, (13)N, (15)O and (18)F and by measuring the annihilation radiation using a coincidence technique. This includes also measurement of the pharmacokinetics of labeled drugs and the assessment of the effects of drugs on metabolism. Because only very low amounts of the radiolabeled drug have to be administered, far below toxicity levels, human studies can be carried out even before the drug is entered in Phase I. Such studies can provide cost-effective predictive toxicology data and information on the metabolism and mode of action of drugs. PET is also very useful to study the metabolic consequences of gene expression or gene defects. In the last decade many genetically engineered small animal models have been developed. The study of these animals with high resolution small animal PET cameras provides new opportunities in drug development. Especially valuable is the contribution of PET to bridge the gap between molecular biology, understanding of pathology and to the design of a new generation of drugs.  相似文献   

19.
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer''s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson''s disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.KEY WORDS: TSPO, Microglial activation, Neuroinflammation, Positron emission tomography (PET), CNS disorders  相似文献   

20.
新药研发是一个耗时长且风险高的过程,需要大量资源的投入。“0期临床研究”(phase 0 clinical trails)的主要目的是通过“微剂量”研究快速获得人体药代动力学及药效学等重要信息,为后期的药物临床研究及开发节约资源。正电子发射断层显像(positron emission tomography,PET)是一种非侵入性的分子显像技术,仅需注射极低化学计量的放射性示踪剂即可获取关于候选药物及其对应生物靶点在分子水平的定量信息。该技术可快速应用于人体,加速药物开发过程,减少开发风险。目前,已经有不少的新药研发试验使用了这项技术,我国尚在起步阶段。本文将对PET在药物开发0期临床研究中的应用进行简要介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号