首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveDuring COVID-19, Harvard Medical School pivoted to online learning. A large student cohort took a completely virtual Radiology clerkship with daily programming including virtual small group teaching sessions or “homerooms.”Materials and methodsOne hundred and eleven medical students were divided into 12 virtual small group sessions which emphasized foundational concepts. Uniform teaching materials were used across all homerooms in order to deepen understanding and allow insight into the working methods of radiologists. Students evaluated the homeroom learning and teachers for utility and benefit to their educational experience.ResultsMost students (93%) felt the homerooms provided an educational benefit and reinforced topics studied (77%). Most students (84%) felt the leaders created an environment conducive to learning. Despite being virtual, students were able to form interpersonal connections with the homeroom leaders.ConclusionsIncorporating virtual small group learning can be a valuable component of a virtual or hybrid Radiology clerkship, solidifying foundational concepts with the homeroom leaders playing a major role. While developed by necessity due to COVID-19, virtual small group learning with engaged leaders is an educational strategy whose benefit can continue even as there is return to in-person learning.  相似文献   

2.
PurposeProper selection of imaging examinations and basic image interpretation skills are essential for all physicians, yet only approximately 25% of US medical schools require clerkships in radiology. Although there is limited time in most medical school curricula to allow the addition of a required radiology clerkship, the authors developed one that is vertically integrated over a two-year period. This clerkship includes one week of contact with radiologists distributed over the M2 and M3 years, podcasts, online modules, required readings, and presentations. A standard national examination is administered at the end of the clerkship period. This clerkship was designed to address the educational needs of students while occupying minimal time in the curriculum. The purpose of this study was to determine if students completing this clerkship perform as well on a national radiology examination as students from other medical schools, regardless of their curricula.MethodsAt the end of the M3 year, these students take a computer-based radiology examination developed by the Alliance of Medical Student Educators in Radiology and used by students at multiple medical schools nationally. The mean and median scores of these students were compared with those of students at these other institutions.ResultsThe mean and median scores of the students were 74% and 74% (standard deviation, 7.5%) compared with 74% and 50% (standard deviation, 8.4%) at other institutions.ConclusionsStudents completing this vertically integrated radiology clerkship had test scores comparable with those of students at other medical schools.  相似文献   

3.
Rationale and ObjectivesTo highlight radiology's merits and boost appeal to medical students in the digital era, it is increasingly important for radiology departments to be readily accessible to medical students. We report the results of a multivariate analysis of the virtual presence of radiology medical student education of 152 allopathic United States (US) medical schools, the first report of its kind to the authors’ knowledge. We detail eight elements to include when optimizing a radiology medical student education website.MethodsIn August 2020, the Department of Radiology websites at 152 allopathic US medical schools were assessed for the presence of a medical student radiology education website and accessibility of collated information about preclinical and clinical course offerings, radiology interest groups, and outreach initiatives in the form of student radiology mentorship, shadowing, and research opportunities.Results65.1% (99/152) of allopathic US medical schools’ radiology departments have a dedicated medical student radiology education website, one of which was excluded from further review due to password protected content. 58.2% (57/98) of departmental websites include information about preclinical radiology coursework and 90.8% (89/98) of departments provide information about clinical courses. Details about interest groups were found on 26.5% (26/98) of departmental websites. Information about mentorship and shadowing was identified on less than half of departmental websites. 51% (50/98) of Department of Radiology websites provide information about research opportunities for students.ConclusionsThis study demonstrates that the majority of allopathic US medical schools’ radiology departments lack full information of relevance to medical students. To engage today's and tomorrow's medical learners digitally, there is opportunity and need to improve the online availability of information about preclinical and clinical radiology courses, student interest groups, shadowing opportunities, student mentorship, and student research. We detail eight elements to include when optimizing a radiology medical student education website. In most instances, this can be accomplished by revising an existing radiology department website in a manner that engages, educates, and recruits medical students. As a specialty, radiology must expand our digital footprint to reach tomorrow's colleagues and leaders.  相似文献   

4.
PurposeAs a digital presence rapidly becomes more important for educators, Twitter continues to emerge as a compelling source for publishing educational content. The social media platform has also evolved into a popular source for medical and radiology education. We examined how Twitter is used in the radiology sphere and introduce ways of optimizing Twitter for radiology education.MethodsWe evaluated our Twitter account (@ctisus), dedicated to radiology education and based in the Russell H. Morgan Department of Radiology and Radiological Science at Johns Hopkins Hospital, to learn from our users and evaluate how best to leverage the platform for radiology education. We culled analytics for all 1584 tweets we released from July to December 2019 and divided them into seven educational categories for analysis: case images; illustrations and infographics; slide images (taken from educational PowerPoints); case question videos; scroll-through videos; links to educational content on our website (lectures, quizzes, etc.) or online databases; and news links, including published journal articles and general medical and/or radiology news.ResultsNews links (links to other news sites) received the fewest engagements (11.2), the fewest retweets (0.5), and the fewest likes (1.4). Scroll-through videos landed the highest average retweets (5.6), likes (21), and impressions (2290.7). Case images received the highest average engagements at 165.4 per tweet.ConclusionOur experience suggests that users prefer content to be directly available in a tweet and supports the notion that the radiology community is on Twitter to enhance radiology education. Twitter can be used to provide information in many ways: images, videos, text, links, or any combinations of these options. This allows educators to provide content for multiple different learning styles, further rendering Twitter a more accessible platform. As a valuable resource in radiology education, Twitter warrants even broader use in an era increasingly reliant on digital communication. By optimizing tweets for education, users can find their content helpful for radiology students and professionals alike.  相似文献   

5.
ObjectivesOur institution has developed an educational program in which first-year radiology residents teach first-year medical students during gross anatomy laboratory sessions. The purpose of this study is to assess the impact of this program on medical student knowledge and perceptions of radiology, and on resident attitudes toward teaching.Materials and MethodsFirst-year resident pairs taught small groups of medical students during weekly 15-minute interactive sessions, and were evaluated on teaching skills by senior residents. A survey about attitudes toward radiology and a knowledge quiz were sent to the medical students, and a survey about attitudes toward teaching was sent to the first-year radiology residents, both pre-course and post-course.ResultsStudents’ radiology knowledge significantly increased between the pre-course and post-course survey across all categories tested (P < 0.001). Additionally, there were significant improvements in terms of students’ confidence in radiologic anatomy skills, perceived importance of radiology for medical training, familiarity with the field of radiology, and perception that radiologists are friendly (P < 0.001). Radiology residents felt more confident in their teaching proficiency (P < 0.001) by the conclusion of the course.ConclusionsResident-led small-group teaching sessions during anatomy laboratory are mutually beneficial for medical students and radiology residents. The program also allows radiology residents to be exposed early on in residency to teaching and academic medicine.  相似文献   

6.
7.
PurposeTraditionally, the pediatric radiology elective for medical students and pediatric residents constituted a morning teaching session focused mainly on radiography and fluoroscopy. A more structured elective was desired to broaden the exposure to more imaging modalities, create a more uniform educational experience, and include assessment tools.MethodsIn 2012, an introductory e-mail and formal syllabus, including required reading assignments, were sent to participants before the start date. A rotating weekly schedule was expanded to include cross-sectional imaging (ultrasound, CT, MR) and nuclear medicine. The schedule could accommodate specific goals of the pediatric resident or medical student, as requested. Starting in 2013, an online pre-test and post-test were developed, as well as an online end-of-rotation survey specific to the pediatric radiology elective. Taking the Image Gently pledge was required. A scavenger hunt tool, cue cards, and electronic modules were added.ResultsPre-test and post-test scores, averaged over 2 years, showed improvement in radiology knowledge, with scores increasing by 27% for medical students and 21% for pediatric residents. Surveys at the end of the elective were overwhelmingly positive, with constructive criticism and complimentary comments.ConclusionsWe have successfully created an elective experience in radiology that dedicates time to education while preserving the workflow of radiologists. We have developed tools to provide a customized experience with many self-directed learning opportunities. Our tools and techniques are easily translatable to a general or adult radiology elective.  相似文献   

8.
PurposeThis study aimed to assess the efficacy of a virtual information session hosted by a diagnostic radiology residency program at addressing applicant concerns about the 2020-2021 interview cycle and highlighting key aspects of the residency program.MethodsParticipants were recruited to attend the virtual information session over a 2-week period via social media and communication with medical school radiology interest groups. Attendees were able to submit questions or topics of interest prior to the session. The virtual information session was hosted by trainees and faculty from a radiology residency. Data regarding the demographics of the attendees and the efficacy of the session were obtained through interactive live polling during the virtual session and a voluntary anonymous postsession survey.ResultsA total of 171 attendees participated in the virtual information session. Of the attendees, 42% learned about the session from Twitter and 72% were fourth-year medical students applying for residency. Among topics addressed during the session, attendees indicated that they were most interested in learning about “Application strategies during COVID-19” during an in-session poll. On the post-session survey, 96% of attendees reported being more knowledgeable about the residency program culture and the breadth of research and educational opportunities.ConclusionGiven the virtual nature of the 2020-2021 residency application cycle, utilization of web-based platforms for recruitment will be essential. Virtual information sessions can be effective at providing insight into aspects of a residency program that are typically gained during the in-person interview experience.  相似文献   

9.
PurposeTo evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital.Material and methodsA total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations).ResultsMedical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P < 0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P < 0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P < 0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey.ConclusionsRadiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological examinations. Both undergraduate and postgraduate teaching needs to be effectively implemented with radiation safety courses.  相似文献   

10.
PurposeAn unmet need for radiology education exists even in this era of medical school curricular renewal. The authors examined the radiology clerkship requirements in Canadian and US medical schools to interpret radiology residency applicant trends.MethodsThe curricula of Canadian and US medical schools were reviewed for radiology rotation requirements. The radiology residency applicant trends for 2010 to 2019 were analyzed using linear regression. The number of radiology electives taken by matched radiology applicants was examined. Regression analysis was performed to assess the impact of radiology rotation requirements on residency application.ResultsOnly 1 of 17 Canadian medical schools required a radiology rotation despite major curricular renewal at the majority of medical schools. Approximately 20% of US medical schools required radiology rotations, without a significant change from 2011 to 2018, whereas the duration of required radiology rotations increased significantly. The numbers of total and first-choice radiology applicants showed significant decreases from 2010 to 2019 in Canada but not in the United States. Nearly all matched radiology applicants took electives in radiology, the majority of whom took three or more electives. Both the presence and duration of radiology rotation requirements showed significant, positive relationships with the number of radiology applicants.ConclusionsOnly a minority of medical schools in North America have radiology clerkship requirements, both the presence and duration of which significantly affect students’ choice of radiology as a career. Radiology clerkship requirements can be a solution to meet the expanding demand for diagnostic imaging in modern medicine.  相似文献   

11.
PurposeThe aim of this study was to develop, implement, and evaluate the effectiveness of an online multidisciplinary approach for teaching diagnostic radiology to medical students.MethodsAn online 10-session case-based learning course was designed and taught by a multidisciplinary team of radiologists, surgeons, and internists. Session topics included common clinical case scenarios for different systems and were hosted on a videoconferencing platform. Students from six medical schools across Texas enrolled in the course. The effectiveness of each session was evaluated using a pretest-posttest design. Students completed a final survey after the course to evaluate their experience.ResultsAn average of 108 attended the live sessions, with attendance peaking at 220. On average, 75 students completed both the pretest and posttest of each session. Posttest scores were an average of 46% higher than pretest scores. A total of 109 students completed the final survey; more than 90% of participants agreed that the program was relevant, that its multidisciplinary approach was valuable, and that it increased their knowledge of imaging as a diagnostic tool. Seventy-four percent said that the program increased their interest in radiology. Almost all participants said that the topics presented were thought to be “excellent and clinically important to learn” by most of the students (70%). Participants reported increased confidence in basic radiology skills after completion of the program.ConclusionsAn online multidisciplinary approach can be feasibly implemented to address the radiology education needs of a large number of medical students across a group of medical schools.  相似文献   

12.
RATIONALE AND OBJECTIVES: The purpose of this study was to investigate the ability of medical students who had already completed medicine and surgery clerkships to identify life-threatening abnormalities on conventional chest radiographs. MATERIALS AND METHODS: From May 2000 to August 2001, 72 consecutive 3rd- and 4th-year medical students enrolled in the radiology clerkship at Rhode Island Hospital completed examinations before and after the radiology clerkship. During the examination, they were asked to identify acute abnormalities on five conventional chest radiographs. Only students who had already completed both medicine and surgery clerkships were included in this prospective study. RESULTS: Before the radiology clerkship, the frequency of correct diagnoses of pneumothorax, pneumoperitoneum, congestive heart failure, misplaced endotracheal tube, and misplaced feeding tube were 40%, 61%, 57%, 6%, and 6%, respectively. After the radiology clerkship, these findings were correctly identified more than 94% of the time (P < .001). CONCLUSION: Learning to identify life-threatening abnormalities on conventional chest radiographs through medicine and surgery clerkships is insufficient. The radiology clerkship provides a unique educational experience that significantly improves these abilities.  相似文献   

13.
ObjectiveA recent study has shown that the averaged time tabled teaching for a medical student across 5 years in the UK was 4629 hours. Radiology has been demonstrated to be an excellent teaching source, yet the number of hours allocated to this has never been calculated.The aims of this study were to evaluate and quantify the hours allocated to radiology teaching in Scottish Medical Schools and to evaluate if they can fulfil requirements expected from other Clinical disciplines and the upcoming General Medical Council Medical Licensing Assessment (GMC MLA).MethodsData pertaining to timetabled teaching for Radiology in Scottish Universities were obtained from the authors of the Analysis of Teaching of Medical Schools (AToMS) survey. In addition, University Lead Clinician Teachers were surveyed on the radiological investigations and skills medical students should have at graduation.ResultsMedical students in Scottish Universities were allocated 59 h in Radiology (0.3%) out of a total 19,325 h of timetabled teaching. Hospital-based teaching was variable and ranged from 0 to 31 h. Almost half (15 of 31) of Clinician Teachers felt that there was insufficient radiology teaching in their specialty. Thirteen of 30 conditions included in the GMC MLA were listed by Clinician Teachers, while 23 others not listed by the GMC were considered important and cited by them.ConclusionThis study demonstrates that medical students do not receive enough radiology teaching. This needs to be addressed by Universities in collaboration with the NHS in an effort to bring up this up to line with other developed countries and prepare students for the GMC MLA.Advances in knowledge(1) There is insufficient time allocated in Medical Students’ curriculum to Radiology.(2) Radiology teaching in medical schools fall short of University Lead Clinician Teachers’ and GMC expectations of medical students at graduation.  相似文献   

14.
Rationale and objectivesDuring the COVID-19 pandemic, medical educators and students are facing unprecedented challenges while navigating the new virtual landscape that social-distancing policies mandate. In response to these challenges, a new virtual introduction to radiology elective was established with unique online resources and curriculum.Materials and methodsA previously in-person 2-week introductory radiology elective was converted into a completely virtual experience using an internally developed, open-source, peer-reviewed, web-based teaching modules combined with virtual lectures, interdisciplinary conferences, and readout sessions of de-identified cases loaded to a DICOM viewer. Students from the first four months of course enrollment completed a multiple choice pre- and post-course knowledge assessments and a 5-point Likert Scale survey as part of their educational experience.ResultsIn total, 26 4th-year medical students participated over 4 separate 2-week sessions from July to October of 2020. This included 12 students from the home intuition and 14 visiting students. On average, students scored 62.2% on the 55-question pre-test and 89.0% on the same test upon completion of the course, a statistically significant increase (p < 0.001). All 26 students felt engaged throughout the course. All 26 agreed (23 “strongly agreed”) that they were more comfortable looking at imaging studies following the course. All 26 also agreed (21 “strongly agreed”) that the course helped them prepare for their future clinical rotations and careers.ConclusionInitial pilot program using unique web-based resources and student encounters during a two-week virtual introductory radiology elective proved to be a positive educational experience for the first 26 students enrolled.  相似文献   

15.
PurposeTo determine the initial digital breast tomosynthesis (DBT) performance of radiology trainees with varying degrees of breast imaging experience.MethodsTo test trainee performance with DBT, we performed a reader study, after obtaining IRB approval. Two medical students, 20 radiology residents, 4 nonbreast imaging fellows, 3 breast imaging fellows, and 3 fellowship-trained breast imagers reviewed 60 unilateral DBT studies (craniocaudal and medio-lateral oblique views). Trainees had no DBT experience. Each reader recorded a final BI-RADS assessment for each case. The consensus interpretations from fellowship-trained breast imagers were used to establish the ground truth. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were calculated. For analysis, first- through third-year residents were classified as junior trainees, and fourth-year residents plus nonbreast imaging fellows were classified as senior trainees.ResultsThe AUCs were .569 for medical students, .721 for junior trainees, .701 for senior trainees, and .792 for breast imaging fellows. The junior and senior trainee AUCs were equivalent (P < .01) using a two one-sided test for equivalence, with a significance threshold of 0.1. The sensitivities and specificities were highest for breast imaging fellows (.778 and .815 respectively), but similar for junior (.631 and .714, respectively) and senior trainees (.678 and .661, respectively).ConclusionsInitial performance with DBT among radiology residents and nonbreast imaging fellows is independent of years of training. Radiology educators should consider these findings when developing educational materials.  相似文献   

16.
IntroductionConcerns about radiologists being replaced by artificial intelligence (AI) from the lay media could have a negative impact on medical students’ perceptions of radiology as a viable specialty. The purpose of this study was to evaluate United States of America medical students’ perceptions about radiology and other medical specialties in relation to AI.MethodsAn anonymous, web-based survey was sent to 32 radiology interest groups at United States medical schools. The survey was comprised of 6 questions assessing medical student perceptions of AI and its potential impact on radiology and other medical specialties. Responses were voluntary and collected over a 6-month period from November 2017 to April 2018.ResultsA total of 156 students responded with representation from each year of medical school. Over 75% agreed that AI would have a significant role in the future of medicine. Most (66%) agreed that diagnostic radiology would be the specialty most greatly affected. Nearly half (44%) reported that AI made them less enthusiastic about radiology. The majority of students (57%) obtained their information about AI from online articles. Thematic analysis of free answer comments revealed mostly neutral comments towards AI, however, the negative responses were the strongest and most detailed.ConclusionsUS medical students believe that AI will play a significant role in medicine, particularly in radiology. However, nearly half are less enthusiastic about the field of radiology due to AI. As the majority receive information about AI from online articles, which may have negative sentiments towards AI's impact on radiology, formal AI education and medical student outreach may help combat misinformation and help prevent the dissuading of medical students who might otherwise consider the specialty.  相似文献   

17.
PurposeTo highlight perspectives about differing medical degrees and graduate medical education amongst current allopathic (MD) and osteopathic (DO) radiology residents.Materials and MethodTwo hundred sixty-eight radiology residents were interviewed using an approved Association of Program Coordinators in Radiology (APCR) survey designed to evaluate perceptions of allopathic and osteopathic radiology residents regarding type of medical degree and their career development. The surveys were kept anonymous with no identifiable information. Residents in their first through fourth years of training replied with an approximate equal distribution amongst the different years.ResultsBased on the 268 respondents, DOs’ more so than MDs’, reported that their degree type altered their medical careers (P < 0.0001) and that they were advised to not pursue a radiology residency based on degree type (P< 0.0001). In addition, a large majority of both DOs’ and MDs’ felt that residency selection is favored towards the allopathic degree (P= 0.0451).ConclusionThis survey-based study does reveal perceived differences in the residency recruitment process based on degree type. Future discussions to bridge this perceived gap will be important, especially in light of the recent ACGME merger between the 2 educational pathways.  相似文献   

18.
BackgroundThe transition toward value-based payment models increases focus on the radiologist's direct impact on hospital-provided patient care. Radiology trainees understand inpatient hospital workflows and decision-making paradigms and are well positioned to interface directly with hospital physicians regarding clinical decision making related to diagnostic imaging and/or image guided interventions. A radiology resident-led project with internal medicine residents focused on Clinical Decision Support was designed, implemented, and reviewed, with the objectives of educating clinical teams and positively impacting patient care.Materials and MethodsDuring the 2017-2018 academic year, senior radiology residents (PGY-5) led weekly rounds with medicine residents rotating through inpatient floor units. During these rounds, they discussed indications for and types of hospital inpatient imaging studies, exchanged clinical information, directed further imaging workup, and taught the essentials of image interpretation. Participating medical residents’ degree of radiology-awareness and opinions were systematically surveyed at the conclusion of the academic year. Thirty-four out of a total of 161 (21%) Internal Medicine residents responded to the survey. Thirty one percent of these residents could identify an instance where radiology-led rounds altered patient management and 94% acknowledged an increase in medical knowledge. Sixty-one percent believed evidence-based choice for imaging orders was enhanced by attending radiology-led rounds and 64% developed a better understanding of resources available to guide image ordering. Forty-nine percent of residents made suggestions to their Internal Medicine attending physician or more senior trainee or otherwise applied something learned during radiology-led rounds and 42% cancelled or ordered a study based on what they learned or discussed in radiology rounds. Thirty-nine percent of medicine residents stated that these rounds changed their perception of the role of the radiologist and 75% expressed the desire to see increased participation by radiologists in their daily workflow. Radiology resident-led educational medicine rounds promote cross-specialty collaboration, further educate trainees, and directly affect patient management. It is therefore valuable for radiology trainees to directly engage in the teaching of other medical providers, to enhance their own consultative skill set, promote face-to-face interactions with other physicians, and to directly impact patient care.  相似文献   

19.
ObjectiveTo understand how women and historically underrepresented minority medical students perceive radiology as a potential career choice.MethodsMedical students representing a broad spectrum of radiology exposure from a single institution were invited to participate in a mixed-methods study. Participants completed a 16-item survey about demographics and perceptions of radiology. Ten focus groups were administered to probe decision making regarding career selection. The themes influencing women and historically underrepresented minority students are presented.ResultsForty-nine medical students, including 29 (59%) women and 17 (35%) underrepresented minorities, participated. Most participants (28 of 48, 58%) reported men outnumbered women in radiology. Female participants reported a lack of mentorship and role models as major concerns. Outreach efforts focused on the family-friendly nature of radiology were viewed as patronizing. Demographic improvements in the field were viewed as very slow. Forty-six percent (22 of 48) of participants indicated that radiology had a less underrepresented racial or ethnic workforce than other medical specialties. Minority participants especially noted a lack of radiology presence in mainstream media, so students have few preconceived biases. A failure to organically connect with the mostly White male radiologists because of a lack of shared background was a major barrier. Finally, participants described a hidden curriculum that pushes minority medical students away from specialty fields like radiology and toward primary care fields to address underserved communities and health care disparities.DiscussionWomen and historically underrepresented minority medical students perceive major barriers to choosing a career in radiology. Radiology departments must develop sophisticated multilevel approaches to improve diversity.  相似文献   

20.
IntroductionThe formation of integrated interventional radiology (IR) residency programs has changed the training paradigm. This change mandates the need to provide adequate exposure to allow students to explore IR as a career option and to allow programs to sufficiently evaluate students. This study aims to highlight the availability of medical student education in IR and proposes a basic framework for clinical rotations.Materials and MethodsThe Liaison Committee on Medical Education (LCME) website was utilized to generate a list of accredited medical schools in the United States. School websites and course listings were searched for availability of IR and diagnostic radiology rotations. The curricula of several well-established IR rotations were examined to identify and categorize course content.ResultsIn all, 140 LCME-accredited medical schools had course information available. Of those schools, 70.5% offered an IR rotation; 84.6% were only available to senior medical students and only 2% were offered for preclinical students; and 8.1% of courses were listed as subinternships. Well-established IR clerkships included a variety of clinical settings, including preprocedure evaluation, experience performing procedures, postprocedure management, and discharge planning.ConclusionMedical student exposure to IR is crucial to the success of integrated IR residency programs. Current research shows few institutions with formal IR subinternship rotations. Although 70.5% of institutions have some form of nonstandardized IR course, 84.6% are available only to fourth-year students, and 2% are offered to preclinical students. This suggests there is a significant opportunity for additional formal exposure to IR through increasing availability of IR rotations and exposure during the clinical and preclinical years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号