首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence shows that gut microbiota may play important roles in schizophrenia pathogenesis via the “gut-brain” axis, but the mechanisms remain unclear. Here, eighty-four patients with schizophrenia and 84 sex- and age-matched healthy controls were enrolled. Shotgun metagenomic sequencing and 16S rRNA sequencing were performed, and the gut microbiota-associated epitopes (MEs) were predicted, which, together with IgA content, were used to determine the gut microbiota composition associated with gut immune status. Patients with schizophrenia had significantly reduced gut microbiota richnesses compared with those of the healthy controls, and the gut microbiota compositions clearly distinguished the patients with schizophrenia from the healthy controls. Based on two-stage metagenomic-wide association studies, nineteen gut microbiota taxonomies were associated with schizophrenia, and the microbial dysbiosis (MD) index was calculated based on the abundance of differential taxonomies. We found that MD index was positively correlated with MEs diversity and gut IgA levels, and negatively correlated with gut microbiota richness. Glutamate synthase (GOGAT) was more active in the guts of patients with schizophrenia than in those of healthy controls, and high GOGAT activity was associated with altered gut microbiota taxonomies associated with gut IgA levels. Our results may imply a role of the microbiome in the etiology of schizophrenia and contribute to the development of microbiome targeted interventions for schizophrenia.  相似文献   

2.
One-third of epilepsy patients have drug-resistant epilepsy (DRE), which is often complicated by polydrug toxicity and psychiatric and cognitive comorbidities. Advances in understanding the microbiome and gut-brain-axis are likely to shed light on epilepsy pathogenesis, anti-seizure medication (ASM) resistance, and potential therapeutic targets. Gut dysbiosis is associated with inflammation, blood-brain barrier disruption, and altered neuromodulators. High-throughput and metagenomic sequencing has advanced the characterization of microbial species and functional pathways. DRE patients show altered gut microbiome composition compared to drug-sensitive patients and healthy controls. The ketogenic and modified Atkins diets can reduce seizures in some patients with DRE. These low-carbohydrate dietary therapies alter the taxonomic and functional composition of the gut microbiome, and composition varies between diet responders and nonresponders. Murine models suggest that specific phyla are necessary to confer efficacy from the diet, and antibiotic treatment may eliminate efficacy. The impact of diet might involve alterations in microbiota, promotion of select microbial interactions, and variance in brain neurotransmitter levels that then influence seizures. Understanding the mechanics of how diet manipulates seizures may suggest novel therapies. Most ASMs act on neuronal transmission via effects on ion channels and neurotransmitters. However, ASMs may also assert their effects via the gut microbiota. In animal models, the microbiota composition (eg, abundance of certain phyla) can vary with ASM active drug metabolites. Given the developing understanding of the gut microbiome in DRE, probiotics are another potential therapy. Probiotics alter the microbiota composition, and small studies suggest that these supplements can reduce seizures in some patients. DRE has enormous consequences to patients and society, and the gut microbiome holds promise as a potential therapeutic target. However, the exact mechanism and recognition of which patients are likely to be responders remain elusive. Further studies are warranted.  相似文献   

3.
Neurodegenerative disease etiology is still unclear, but different contributing factors, such as lifestyle and genetic factors are involved. Altered components of the gut could play a key role in the gut-brain axis, which is a bidirectional system between the central nervous system and the enteric nervous system. Variations in the composition of the gut microbiota and its function between healthy people and patients have been reported for a variety of human disorders comprising metabolic, autoimmune, cancer, and, notably, neurodegenerative disorders. Diet can alter the microbiota composition, affecting the gut-brain axis function. Different nutraceutical interventions have been devoted to normalizing gut microbiome dysbiosis and to improving biological outcomes in neurological conditions, including the use of probiotics. Preclinical and clinical investigations discussed in this review strengthen the correlation between intestinal microbiota and brain and the concept that modifying the microbiome composition may improve brain neurochemistry, modulating different pathways. This review will discuss the potential use of probiotics for Parkinson’s disease prevention or treatment or as adjuvant therapy, confirming that gut microbiota modulation influences different pro-survival pathways. Future investigations in Parkinson’s disease should consider the role of the gut-brain axis and additional comprehension of the underlying mechanisms is extremely necessary.  相似文献   

4.

Background and purpose

The gut microbiome is involved in autoimmunity. Data on its composition in chronic inflammatory demyelinating polyneuropathy (CIDP), the most common chronic autoimmune disorder of peripheral nerves, are currently lacking.

Methods

In this monocentric exploratory pilot study, stool samples were prospectively collected from 16 CIDP patients (mean age 58 ± 10 years, 25% female) before and 1 week after administration of intravenous immunoglobulin (IVIg). Gut microbiota were analyzed via bacterial 16S rRNA gene sequencing and compared to 15 age-matched healthy subjects (mean age 59 ± 15 years, 66% female).

Results

The gut microbiota of CIDP patients showed an increased alpha-diversity (p = 0.005) and enrichment of Firmicutes, such as Blautia (p = 0.0004), Eubacterium hallii (p = 0.0004), or Ruminococcus torques (p = 0.03), and of Actinobacteriota (p = 0.03) compared to healthy subjects. IVIg administration did not alter the gut microbiome composition in CIDP in this short-term observation (p = 0.95).

Conclusions

The gut microbiome in IVIg-treated CIDP shows distinct features, with increased bacterial diversity and enrichment of short-chain fatty acid producing Firmicutes. IVIg had no short-term impact on the gut microbiome in CIDP patients. As the main limitation of this exploratory pilot study was small cohort size, future studies also including therapy-naïve patients are warranted to verify our findings and to explore the impact of long-term IVIg treatment on the gut microbiome in CIDP.  相似文献   

5.
The gut microbiome appears to play an important role in human health and disease. However, only little is known about how variability in the gut microbiome contributes to individual differences during early and sensitive stages of brain and behavioral development. The current study examined the link between gut microbiome, brain, and behavior in newborn infants (N = 63; M [age] = 25 days). Infant gut microbiome diversity was measured from stool samples using metagenomic sequencing, infant functional brain network connectivity was assessed using a resting state functional near infrared spectroscopy (rs-fNIRS) procedure, and infant behavioral temperament was assessed using parental report. Our results show that gut microbiota composition is linked to individual variability in brain network connectivity, which in turn mediated individual differences in behavioral temperament, specifically negative emotionality, among infants. Furthermore, virulence factors, possibly indexing pathogenic activity, were associated with differences in brain network connectivity linked to negative emotionality. These findings provide novel insights into the early developmental origins of the gut microbiome-brain axis and its association with variability in important behavioral traits. This suggests that the gut microbiome is an important biological factor to consider when studying human development and health.  相似文献   

6.
7.
Neurodegenerative disease etiology is still unclear, but different contributing factors, such as lifestyle and genetic factors are involved. Altered components of the gut could play a key role in the gut-brain axis, which is a bidirectional system between the central nervous system and the enteric nervous system. Variations in the composition of the gut microbiota and its function between healthy people and patients have been reported for a variety of human disorders comprising metabolic, autoimmune, cancer, and, notably, neurodegenerative disorders. Diet can alter the microbiota composition, affecting the gutbrain axis function. Different nutraceutical interventions have been devoted to normalizing gut microbiome dysbiosis and to improving biological outcomes in neurological conditions, including the use of probiotics. Preclinical and clinical investigations discussed in this review strengthen the correlation between intestinal microbiota and brain and the concept that modifying the microbiome composition may improve brain neurochemistry, modulating different pathways. This review will discuss the potential use of probiotics for Parkinson's disease prevention or treatment or as adjuvant therapy, confirming that gut microbiota modulation influences different pro-survival pathways. Future investigations in Parkinson's disease should consider the role of the gut-brain axis and additional comprehension of the underlying mechanisms is extremely necessary.  相似文献   

8.
The gut–brain axis augments the bidirectional communication between the gut and brain and modulates gut homeostasis and the central nervous system through the hypothalamic–pituitary–adrenal axis, enteroendocrine system, neuroendocrine system, inflammatory and immune pathways. Preclinical and clinical reports showed that gut dysbiosis might play a major regulatory role in neurological diseases such as epilepsy, Parkinson's, multiple sclerosis, and Alzheimer's disease. Epilepsy is a chronic neurological disease that causes recurrent and unprovoked seizures, and numerous risk factors are implicated in developing epilepsy. Advanced consideration of the gut–microbiota–brain axis can reduce ambiguity about epilepsy pathology, antiepileptic drugs, and effective therapeutic targets. Gut microbiota sequencing analysis reported that the level of Proteobacteria, Verrucomicrobia, Fusobacteria, and Firmicutes was increased and the level of Actinobacteria and Bacteroidetes was decreased in epilepsy patients. Clinical and preclinical studies also indicated that probiotics, ketogenic diet, faecal microbiota transplantation, and antibiotics can improve gut dysbiosis and alleviate seizure by enhancing the abundance of healthy biota. This study aims to give an overview of the connection between gut microbiota, and epilepsy, how gut microbiome changes may cause epilepsy, and whether gut microbiome restoration could be used as a treatment for epilepsy.  相似文献   

9.

Background

The gut microbiome is altered in several neurologic disorders, including Parkinson's disease (PD).

Objectives

The aim is to profile the fecal gut metagenome in PD for alterations in microbial composition, taxon abundance, metabolic pathways, and microbial gene products, and their relationship with disease progression.

Methods

Shotgun metagenomic sequencing was conducted on 244 stool donors from two independent cohorts in the United States, including individuals with PD (n = 48, n = 47, respectively), environmental household controls (HC, n = 29, n = 30), and community population controls (PC, n = 41, n = 49). Microbial features consistently altered in PD compared to HC and PC subjects were identified. Data were cross-referenced to public metagenomic data sets from two previous studies in Germany and China to determine generalizable microbiome features.

Results

We find several significantly altered taxa between PD and controls within the two cohorts sequenced in this study. Analysis across global cohorts returns consistent changes only in Intestinimonas butyriciproducens. Pathway enrichment analysis reveals disruptions in microbial carbohydrate and lipid metabolism and increased amino acid and nucleotide metabolism in PD. Global gene-level signatures indicate an increased response to oxidative stress, decreased cellular growth and microbial motility, and disrupted intercommunity signaling.

Conclusions

A metagenomic meta-analysis of PD shows consistent and novel alterations in functional metabolic potential and microbial gene abundance across four independent studies from three continents. These data reveal that stereotypic changes in the functional potential of the gut microbiome are a consistent feature of PD, highlighting potential diagnostic and therapeutic avenues for future research. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.  相似文献   

10.

Introduction

Gut microbial disturbance has been established as potential pathogenesis of mental disorders. However, the signatures and differences regarding patients with schizophrenia (SCH) or bipolar disorder (BD) in emerging adulthood as well as their subtypes have been poorly addressed.

Methods

In the present study, stool samples obtained from 63 emerging adult patients with schizophrenia (SCH), 50 with bipolar disorder (BD), and 40 healthy controls (HC) were analyzed by 16 S rRNA gene sequencing; psychiatric symptoms and psychological, social, and professional functioning were also assessed.

Results

We found that gut microbiota composition was remarkably changed in the patients with SCH and BD. Moreover, the distinct gut microbiome signatures and their potential function in bipolar depression (BP-D) and SCH with predominantly negative symptoms (SCH-N) as well as bipolar mania (BP-M) and SCH with predominantly positive symptoms (SCH-P) were also observed. Furthermore, we identified diagnostic potential biomarkers that can distinguish BD from HC (38 genera, AUC = 0.961), SCH from HC (32 genera, AUC = 0.962), and BD from Scheme (13 genera, AUC = 0.823). Potential diagnostic biomarkers that can distinguish BD-D from SCH-N (16 genera, AUC = 0.969) and BD-M from SCH-P (31 genera, AUC = 0.938) were also identified.

Conclusion

This study provides further understanding of abnormal gut microbiome in emerging adulthood patients with SCH and BD and lay the potential foundation for the development of microbe-based clinical diagnosis for BD and SCH.  相似文献   

11.

Background and purpose

Gut microbiota dysbiosis may lead to proinflammatory conditions contributing to multiple sclerosis (MS) etiology. Pediatric-onset MS patients are close to biological disease onset and less exposed to confounders. Therefore, this study investigated gut microbiota composition and functional pathways in pediatric-onset MS, compared to monophasic acquired demyelinating syndromes (mADS) and healthy controls (HCs).

Methods

Pediatric participants were selected from the Dutch national prospective cohort study including ADS patients and HCs <18 years old. Amplicon sequence variants (ASVs) were generated from sequencing the V3/4 regions of the 16S rRNA gene. Functional MetaCyc microbial pathways were predicted based on Enzyme Commission numbers. Gut microbiota composition (alpha/beta diversity and individual microbe abundance at ASV to phylum level) and predicted functional pathways were tested using nonparametric tests, permutational multivariate analysis of variance, and linear regression.

Results

Twenty-six pediatric-onset MS (24 with disease-modifying therapy [DMT]), 25 mADS, and 24 HC subjects were included. Alpha/beta diversity, abundance of individual resident microbes, and microbial functional features were not different between these participant groups. Body mass index (BMI) showed significant differences, with obese children having a lower alpha diversity (Chao1 Index p = 0.015, Shannon/Simpson Diversity Index p = 0.014/p = 0.023), divergent beta diversity (R2 = 3.7%, p = 0.013), and higher abundance of numerous individual resident microbes and functional microbial pathways.

Conclusions

Previous results of gut microbiota composition and predicted functional features could not be validated in this Dutch pediatric-onset MS cohort using a more sensitive 16S pipeline, although it was limited by sample size and DMT use. Notably, several other host-related factors were found to associate with gut microbiota variation, especially BMI.  相似文献   

12.
AimsThere is growing evidence that the gut microbiota plays a significant part in the pathophysiology of chronic stress. The dysbiosis of the gut microbiota closely relates to dysregulation of microbiota–host cometabolism. Composition changes in the gut microbiota related to perturbations in metabolic profiles are vital risk factors for disease development. Hyperbaric oxygen therapy is commonly applied as an alternative or primary therapy for various diseases. Therefore, a metabolic and gut bacteria perspective is essential to uncover possible mechanisms of chronic stress and the therapeutic effect of hyperbaric oxygenation. We determined that there were significantly disturbed metabolites and disordered gut microbiota between control and chronic stress group. The study aims to offer further information on the interactions between host metabolism, gut microbiota, and chronic stress.MethodsAt present, chronic unpredictable mild stress is considered the most widespread method of modeling chronic stress in animals, so we used a chronic unpredictable mild stress mouse model to characterize changes in the metabolome and microbiome of depressed mice by combining 16S rRNA gene sequencing and UHPLC–MS/MS‐based metabolomics. Pearson''s correlation‐based clustering analysis was performed with above metabolomics and fecal microbiome data to determine gut microbiota‐associated metabolites.ResultsWe found that 18 metabolites showed a significant correlation with campylobacterota. Campylobacterota associated metabolites were significantly enriched mainly in the d‐glutamate and d‐glutamine metabolism. Hyperoxia treatment may improve depression‐like behaviors in chronic stress model mice through regulating the disrupted metabolites.ConclusionsHyperbaric oxygen improves depression‐like behaviors in chronic stress model mice by remodeling Campylobacterota associated metabolites.  相似文献   

13.
Many recent studies have shown that the gut microbiome plays important roles in human physiology and pathology. Also, microbiome-based therapies have been used to improve health status and treat diseases. In addition, aging and neurodegenerative diseases, including Alzheimer''s disease and Parkinson''s disease, have become topics of intense interest in biomedical research. Several researchers have explored the links between these topics to study the potential pathogenic or therapeutic effects of intestinal microbiota in disease. But the exact relationship between neurodegenerative diseases and gut microbiota remains unclear. As technology advances, new techniques for studying the microbiome will be developed and refined, and the relationship between diseases and gut microbiota will be revealed. This article summarizes the known interactions between the gut microbiome and neurodegenerative diseases, highlighting assay techniques for the gut microbiome, and we also discuss the potential therapeutic role of microbiome-based therapies in diseases.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12264-021-00730-8.  相似文献   

14.
Over the last decade, emerging studies have related the gut microbiome and gut dysbiosis to sleep and sleep disorders. For example, intermittent hypoxia associated with obstructive sleep apnea was shown to reproducibly alter the gut microbiome. Circadian rhythm disorders (CRD) (eg, shift work disorders, delayed sleep phase syndrome, and advanced sleep phase syndrome) constitute another group of conditions that might be influenced by gut dysbiosis. Indeed, both central and peripheral clocks can affect and be affected by gut microbiota and their metabolites. In addition, the tight rhythmic regulation of almost all metabolic pathways involved in the anabolism and catabolism of carbohydrates, protein, and lipids in addition to detoxification processes that take place in specific cells could be ultimately linked to changes in the microbiota. Since there are no studies to date examining the impact of gut dysbiosis on delayed sleep phase and advanced sleep phase syndrome, and considering the ever-increasing number of people engaging in shift work, more accurate and informed delineation of the association between gut dysbiosis and shift work can provide guidance and opportunities for new avenues of treating circadian rhythm disorders and preventing the metabolic complications of shiftwork via restoration of gut dysbiosis. In this review, the potential bidirectional relationships between gut dysbiosis and circadian rhythm misalignment, their impact on different metabolic pathways, and the potential development of metabolic and systemic disorders, especially in shift work models are critically assessed.  相似文献   

15.
Autism spectrum disorder (ASD) is one of the most severe developmental disorders, affecting on average 1 in 150 children worldwide. There is a great need for more effective strategies to improve quality of life in ASD subjects. The gut microbiome has emerged as a potential therapeutic target in ASD. A novel modulator of the gut microbiome, the traditionally fermented milk drink kefir, has recently been shown to modulate the microbiota and decrease repetitive behaviour, one of the hallmarks of ASD, in mice. As such, we hypothesized that kefir could ameliorate behavioural deficits in a mouse model relevant to ASD; the BTBR T+ Itpr3tf/J mouse strain. To this end, adult mice were administered either kefir (UK4) or a milk control for three weeks as treatment lead-in, after which they were assessed for their behavioural phenotype using a battery of tests. In addition, we assessed systemic immunity by flow cytometry and the gut microbiome using shotgun metagenomic sequencing. We found that indeed kefir decreased repetitive behaviour in this mouse model. Furthermore, kefir prolonged stress-induced increases in corticosterone 60 min post-stress, which was accompanied by an ameliorated innate immune response as measured by LY6Chi monocyte levels. In addition, kefir increased the levels of anti-inflammatory Treg cells in mesenteric lymph nodes (MLNs). Kefir also increased the relative abundance of Lachnospiraceae bacterium A2, which correlated with reduced repetitive behaviour and increased Treg cells in MLNs. Functionally, kefir modulated various predicted gut microbial pathways, including the gut-brain module S-Adenosylmethionine (SAM) synthesis, as well as L-valine biosynthesis and pyruvate fermentation to isobutanol, which all correlated with repetitive behaviour. Taken together our data show that kefir modulates peripheral immunoregulation, can ameliorate specific ASD behavioural dysfunctions and modulates selective aspects of the composition and function of the gut microbiome, indicating that kefir supplementation might prove a viable strategy in improving quality of life in ASD subjects.  相似文献   

16.
ObjectivesInadequate sleep increases the risk for age-related cognitive decline and recent work suggests a possible role of the gut microbiota in this phenomenon. Partial sleep deprivation alters the human gut microbiome, and its composition is associated with cognitive flexibility in animal models. Given these findings, we examined the possible relationship among the gut microbiome, sleep quality, and cognitive flexibility in a sample of healthy older adults.MethodsThirty-seven participants (age 64.59 ± 7.54 years) provided a stool sample for gut microbial sequencing and completed the Pittsburgh Sleep Quality Index and Stroop Color Word Test as part of a larger project.ResultsBetter sleep quality was associated with better Stroop performance and higher proportions of the gut microbial phyla Verrucomicrobia and Lentisphaerae. Stroop Word and Color-Word performance correlated with higher proportions of Verrucomicrobia and Lentisphaerae. Partial correlations suggested that the relationship between Lentisphaerae and Stroop Color-Word performance was better accounted for by sleep quality; sleep quality remained a significant predictor of Color-Word performance, independent of the Lentisphaerae proportion, while the relationship between Lentisphaerae and Stroop performance was non-significant. Verrucomicrobia and sleep quality were not associated with Stroop Word performance independent of one another.ConclusionsThe current findings suggest a possible relationship among sleep quality, composition of the gut microbiome, and cognitive flexibility in healthy older adults. Prospective and experimental studies are needed to confirm these findings and determine whether improving microbiome health may buffer against sleep-related cognitive decline in older adults.  相似文献   

17.
The atypical antipsychotic olanzapine is often associated with serious metabolic side effects including weight gain and increased visceral fat. These adverse events are a considerable clinical problem and the mechanisms underlying them are multifactorial and poorly understood. Growing evidence suggests that the gut microbiota has a key role in energy regulation and disease states such as obesity. Moreover, we recently showed that chronic olanzapine altered the composition of the gut microbiome in the rat. It is thus possible that treatments that alter gut microbiota composition could ameliorate olanzapine-induced weight gain and associated metabolic syndrome. To this end, we investigated the impact of antibiotic-induced alteration of the gut microbiota on the metabolic effects associated with chronic olanzapine treatment in female rats. Animals received vehicle or olanzapine (2 mg kg−1 per day) for 21 days, intraperitoneal injection, two times daily. Animals were also coadministered vehicle or an antibiotic cocktail consisting of neomycin (250 mg kg−1 per day), metronidazole (50 mg kg−1 per day) and polymyxin B (9 mg kg−1 per day) by oral gavage, daily, beginning 5 days before olanzapine treatment. The antibiotic cocktail drastically altered the microbiota of olanzapine-treated rats, and olanzapine alone was also associated with an altered microbiota. Coadministration of the antibiotic cocktail in olanzapine-treated rats attenuated: body weight gain, uterine fat deposition, macrophage infiltration of adipose tissue, plasma free fatty acid levels, all of which were increased by olanzapine alone. These results suggest that the gut microbiome has a role in the cycle of metabolic dysfunction associated with olanzapine, and could represent a novel therapeutic target for preventing antipsychotic-induced metabolic disease.  相似文献   

18.
BackgroundObstructive Sleep Apnoea syndrome (OSAS) is considered a systemic inflammatory disease and is characterized by intermittent hypoxia that can damage the integrity of intestinal barrier and alter gut microbiota composition in adults and animal models. To date there is only one study on snoring children and microbiota but no studies are present on paediatric OSAS related dysbiosis.Study objectivesTo evaluate gut microbiota composition in OSAS children in respect to healthy subjects and investigate the role of sleep parameters in changing gut microbiome.MethodsSixteen children divided in OSAS and healthy groups. Stool samples were collected from both the two groups to assess gut microbiota composition using 16S rRNA sequencing and a nocturnal pulsossimetry and polysomnography were performed in OSAS children.ResultsOSAS children showed a decreased microbial diversity in respect to healthy subjects in terms of number of observed species and Chao1 index (p = 0,01). Firmicutes/Bacteroidetes ratio was directly correlated to Sleep Clinical Record (p = 0,03). The abundance of several inflammation-related strains (Proteobacteria, Clostridiaceae, Oscillospiraceae, Klebsiella) were found significantly modified in relation to sleep parameters. Bacteria implied in the gut barrier integrity (Desulfovibrionaceae, Bacteroides fragilis and Faecalibacterium prausnitzii) were found significantly different in the two study groups and correlated with sleep parameters.ConclusionsOSAS children showed a lower microbiota diversity in respect to heathy subjects and an increase of inflammation and gut barrier disruptors-related strains probably induced by intermittent hypoxia. Further studies should be conducted to understand the role of gut microbiota in OSAS physiopathology and comorbidities in children.  相似文献   

19.
Background: There is growing appreciation for the importance of bacteria in shaping brain development and behaviour. Adolescence and early adulthood are crucial developmental periods during which exposure to harmful environmental factors can have a permanent impact on brain function. Such environmental factors include perturbations of the gut bacteria that may affect gut–brain communication, altering the trajectory of brain development, and increasing vulnerability to psychiatric disorders. Here we assess the effects of gut bacterial depletion from weaning onwards on adult cognitive, social and emotional behaviours and markers of gut–brain axis dysfunction in mice. Methods: Mice were treated with a combination of antibiotics from weaning onwards and effects on behaviours and potential gut-brain axis neuromodulators (tryptophan, monoamines, and neuropeptides) and BDNF expression were assessed in adulthood. Results: Antibiotic-treatment depleted and restructured gut microbiota composition of caecal contents and decreased spleen weights in adulthood. Depletion of the gut microbiota from weaning onwards reduced anxiety, induced cognitive deficits, altered dynamics of the tryptophan metabolic pathway, and significantly reduced BDNF, oxytocin and vasopressin expression in the adult brain. Conclusions: Microbiota depletion from weaning onwards by means of chronic treatment with antibiotics in mice impacts on anxiety and cognitive behaviours as well as key neuromodulators of gut–brain communication in a manner that is similar to that reported in germ-free mice. This model may represent a more amenable alternative for germ-free mice in the assessment of microbiota modulation of behaviour. Finally, these data suggest that despite the presence of a normal gut microbiome in early postnatal life, reduced abundance and diversity of the gut microbiota from weaning influences adult behaviours and key neuromodulators of the microbiota–gut–brain axis suggesting that dysregulation of this axis in the post-weaning period may contribute to the pathogenesis of disorders associated with altered anxiety and cognition.  相似文献   

20.
近期研究发现肠道菌群与缺血性卒中的发病及预后紧密相关。本文将从肠道菌群如何影响动脉粥样硬化、肠道菌群与卒中后的损伤修复,以及肠道菌群与卒中后抑郁等方面,阐述肠道菌群与缺血性卒中的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号