首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human-induced pluripotent stem cell-derived hepatocytes (hiPSC-Hep) hold great potential as an unlimited cell source for toxicity testing in drug discovery research. However, little is known about mechanisms of compound toxicity in hiPSC-Hep. In this study, modified mRNA was used to reprogram foreskin fibroblasts into hiPSC that were differentiated into hiPSC-Hep. The hiPSC-Hep expressed characteristic hepatic proteins and exhibited cytochrome P450 (CYP) enzyme activities. Next, the hiPSC-Hep, primary cryopreserved human hepatocytes (cryo-hHep) and the hepatic cell lines HepaRG and Huh7 were treated with staurosporine and acetaminophen, and the toxic responses were compared. In addition, the expression of genes regulating and executing apoptosis was analyzed in the different cell types. Staurosporine, an inducer of apoptosis, decreased ATP levels and activated caspases 3 and 7 in all cell types, but to less extent in Huh7. Furthermore, a hierarchical clustering and a principal component analysis (PCA) of the expression of apoptosis-associated genes separated cryo-hHep from the other cell types, while an enrichment analysis of apoptotic pathways identified hiPSC-Hep as more similar to cryo-hHep than the hepatic cell lines. Finally, acetaminophen induced apoptosis in hiPSC-Hep, HepaRG and Huh7, while the compound initiated a direct necrotic response in cryo-hHep. Our results indicate that for studying compounds initiating apoptosis directly hiPSC-Hep may be a good alternative to cryo-hHep. Furthermore, for compounds with more complex mechanisms of toxicity involving metabolic activation, such as acetaminophen, our data suggest that the cause of cell death depends on a balance between factors controlling death signals and the drug-metabolizing capacity.  相似文献   

2.
Introduction: Human pluripotent stem cells (hPSCs) are capable of differentiating into all types of cells in the body and so provide suitable toxicology screening systems even for hard-to-obtain human tissues. Since hPSCs can also be generated from differentiated cells and current gene editing technologies allow targeted genome modifications, hPSCs can be applied for drug toxicity screening both in normal and disease-specific models. Targeted hPSC differentiation is still a challenge but cardiac, neuronal or liver cells, and complex cellular models are already available for practical applications.

Areas covered: The authors review new gene-editing and cell-biology technologies to generate sensitive toxicity screening systems based on hPSCs. Then the authors present the use of undifferentiated hPSCs for examining embryonic toxicity and discuss drug screening possibilities in hPSC-derived models. The authors focus on the application of human cardiomyocytes, hepatocytes, and neural cultures in toxicity testing, and discuss the recent possibilities for drug screening in a ‘body-on-a-chip’ model system.

Expert opinion: hPSCs and their genetically engineered derivatives provide new possibilities to investigate drug toxicity in human tissues. The key issues in this regard are still the selection and generation of proper model systems, and the interpretation of the results in understanding in vivo drug effects.  相似文献   


3.
The survival of all organisms depends upon their ability to overcome stressful conditions, an ability that involves adaptive changes in cells and molecules. Findings from studies of animal models and human populations suggest that hormesis (beneficial effects of low levels of stress) is an effective means of protecting against many different diseases including diabetes, cardiovascular disease, cancers and neurodegenerative disorders. Such stress resistance mechanisms can be bolstered by diverse environmental factors including exercise, dietary restriction, cognitive stimulation and exposure to low levels of toxins. Some commonly used vitamins and dietary supplements may also induce beneficial stress responses. Several interrelated cellular signaling molecules are involved in the process of hormesis. Examples include the gases oxygen, carbon monoxide and nitric oxide, the neurotransmitter glutamate, the calcium ion and tumor necrosis factor. In each case low levels of these signaling molecules are beneficial and protect against disease, whereas high levels can cause the dysfunction and/or death of cells. The cellular and molecular mechanisms of hormesis are being revealed and include activation of growth factor signaling pathways, protein chaperones, cell survival genes and enzymes called sirtuins. Knowledge of hormesis mechanisms is leading to novel approaches for preventing and treating a range of human diseases.  相似文献   

4.
Steatosis, also known as fatty liver disease (FLD), is a disorder in which the lipid metabolism of the liver is disturbed, leading to the abnormal retention of lipids in hepatocytes. FLD can be induced by several drugs, and although it is mostly asymptomatic, it can lead to steatohepatitis, which is associated with liver inflammation and damage. Drug-induced liver injury is currently the major cause of postmarketing withdrawal of pharmaceuticals and discontinuation of the development of new chemical entities. Therefore, the potential induction of steatosis must be evaluated during preclinical drug development. However, robust human-relevant in vitro models are lacking. In the present study, we explore the applicability of hepatic cells (hSKP-HPCs) derived from postnatal skin precursors, a stem cell population residing in human dermis, to investigate the steatosis-inducing effects of sodium valproate (Na-VPA). Exposure of hSKP-HPC to sub-cytotoxic concentrations of this reference steatogenic compound showed an increased intracellular accumulation of lipid droplets, and the modulation of key factors involved in lipid metabolism. Using a toxicogenomics approach, we further compared Na-VPA-treated hSKP-HPC and Na-VPA-treated primary human hepatocytes to liver samples from patients suffering from mild and advanced steatosis. Our data show that in hSKP-HPC exposed to Na-VPA and liver samples of patients suffering from mild steatosis, but not in primary human hepatocytes, “liver steatosis” was efficiently identified as a toxicological response. These findings illustrate the potential of hSKP-HPC as a human-relevant in vitro model to identify hepatosteatotic effects of chemical compounds.  相似文献   

5.
目的研究三氯乙烯(TCE)诱导L-02肝细胞的适应性反应及蛋白质表达改变。方法利用噻唑蓝(MTT)比色法,以0.5%二甲基亚砜(DMSO)作为溶剂对照组,确定对细胞增殖无明显作用的1μmo.lL-1TCE作为TCE诱导L-02肝细胞适应性反应的预刺激浓度,预刺激时间12 h,预刺激后再刺激浓度(适应组)为30μmo.lL-1TCE,刺激时间24 h。然后选取0,1,30和1+30μmo.lL-1TCE(1μmo.lL-1TCE预刺激12 h后,再次接受30μmo.lL-1TCE刺激24 h)4组平行进行双向凝胶电泳分离细胞总蛋白,银染显色,图像分析后,挑选差异蛋白进行基质辅助激光解吸电离飞行时间串联质谱鉴定。结果1μmo.lL-1TCE预刺激L-02肝细胞后,能降低30μmo.lL-1TCE攻击产生的细胞毒性。与单独用30μmo.lL-1TCE攻击相比,细胞增殖能力增加明显,细胞死亡减少。分析比较4组二维电泳图谱,发现15个蛋白质斑点表达发生改变,对其中5个差异较明显的蛋白点进行质谱分析鉴定,分别为Ku 86自体抗原相关蛋白1、透明质酸蛋白(hyaluronan)介导细胞运动受体、谷胱甘肽转移酶ω1、白细胞弹性蛋白酶抑制剂和空泡ATP合酶亚单位B。结论TCE可诱导L-02肝细胞产生适应性反应,引起L-02肝细胞蛋白表达改变,差异蛋白大多参与机体保护。  相似文献   

6.
7.
Mechanical stress is known to activate signaling cascades, including mitogen-activated protein kinase (MAPK) pathways. Although mechanical stress has been implicated in hepatic cirrhosis and liver regeneration following hepatectomy, the signaling pathway(s) that may be activated in hepatocytes in response to mechanical stress have not been determined. Using primary cultured rat hepatocytes to examine cellular signaling in response to mechanical stress associated with medium change, we observed that the phosphorylation status of extracellular signal-regulated kinase 1/2 (ERK1/2), Jun N-terminal kinase and p38 MAPK, but not Akt, was altered. MAPK activation, especially ERK1/2, was rapidly increased within 5 min, followed by a subsequent decrease to below basal levels between 30 min and 1 h following medium change. MAPK/ERK kinase (MEK1/2) phosphorylation followed the same pattern. The phosphorylation of Raf-1 in response to medium change was also consistent with Raf-1 serving as an upstream regulator of MEK1/2-ERK1/2 signaling. Phosphorylation of ERK1/2 was increased by mechanical stress alone, suggesting that mechanical stress may be primarily responsible for ERK1/2 activation in response to medium change. Medium change produced a marked decline in oxidized glutathione and malondialdehyde levels, and the antioxidant N-acetyl-l-cysteine decreased basal ERK1/2 phosphorylation, suggesting a role for oxidative stress in maintaining basal ERK1/2 phosphorylation in cultured hepatocytes. These data suggest that medium change results in immediate activation of the MAPK signaling pathway due to mechanical stress, followed by a subsequent inactivation of MAPK signaling due to a reduction in oxidative stress levels. These processes may be associated with alteration of hepatic hemodynamic circulation observed in hepatic diseases and in liver transplantation.  相似文献   

8.
1. Predictions of in vivo intrinsic clearance from cryopreserved human hepatocytes may be systematically low. In the current study, the metabolite kinetics of a series of CYP3A4 substrates (benzodiazepines) in fresh human hepatocytes from five donors, via a major UK supplier, were investigated and compared with those previously reported (by the authors' laboratory) for cryopreserved human hepatocytes and hepatic microsomes. 2. A high incidence of autoactivation (up to tenfold) and heteroactivation (by testosterone, up to 14-fold) among the major pathways was observed. CYP capacity (V(max)) was marginally lower and 'affinity' constants (K(M), S(50)) were marginally greater compared with cryopreserved hepatocytes. 3. Average intrinsic clearance (based on maximal clearance, CL(max)) was sevenfold lower than in cryopreserved hepatocytes (reflecting sensitivity of intrinsic clearance estimation in vitro to mechanistic parameter values, particularly those involving atypical kinetics), but scaled intrinsic clearances for fresh (and cryopreserved) hepatocytes were within the range previously determined in hepatic microsomes. 4. There was no evidence from this series of studies that fresh hepatocytes provide quantitatively improved estimates of intrinsic clearance over cryopreserved hepatocytes.  相似文献   

9.
Cryopreserved human hepatocytes have been used to predict hepatic in-vivo clearance. Physiologically-based direct scaling methods generally underestimate human in-vivo hepatic clearance. Cryopreserved human hepatocytes were incubated in 100% serum and in serum-free medium to predict the in-vivo hepatic clearance of six compounds (phenazone (antipyrine), bosentan, mibefradil, midazolam, naloxone and oxazepam). Monte Carlo simulations were performed in an attempt to incorporate the variability and uncertainty in the measured parameters to the prediction of hepatic clearance. The intrinsic clearance (CL(int)) and the associated variability of the six compounds decreased in the presence of serum and the values were reproducible across donors. The predicted CL(hep, in-vivo) obtained with hepatocytes from donors incubated in serum was more accurate than the prediction obtained in the absence of serum. For example, the CL(hep, in-vivo) of mibefradil in donor GNG was 4.27 mL min(-1) kg(-1) in the presence of serum and 0.46 mL min(-1) kg(-1) in the absence of serum (4.88 mL min(-1) kg(-1) observed in-vivo). Using the results obtained in this study together with an extended data set (26 compounds), the clearance of 77% of the compounds was predicted within a 2-fold error in the absence of serum. In the presence of serum, 85% of the compounds were successfully predicted within a 2-fold error. In conclusion, cryopreserved human hepatocyte suspensions represented a convenient and predictive model to assess human drug clearance.  相似文献   

10.
Plasmid DNA (pDNA) uptake and subsequent cellular activation characteristics were studied in three types of human monocyte-derived cells, that is, human monocytes, macrophages, and dendritic cells (DCs) in primary culture. Naked pDNA was bound to and taken up by the macrophages and DCs while only significant binding occurred in the monocytes. pDNA binding to these monocyte-derived cells was significantly inhibited by polyinosinic acid (poly[I]), dextran sulfate, maleylated bovine serum albumin (Mal-BSA) and to a lesser extent by polycytidylic acid (poly[C]), but not by dextran or galactosylated BSA (Gal-BSA), mannosylated BSA (Man-BSA), suggesting that a specific mechanism for polyanions is involved in the pDNA binding. In cellular activation studies, naked pDNA could not induce TNF-alpha production from any monocyte-derived cells, regardless of the abundant presence of CpG motifs in the pDNA. However, when complexed with cationic liposomes, pDNA produced a significant amount of TNF-alpha from the human macrophages. TNF-alpha induction was not observed in the monocytes or DCs. Moreover, calf thymus DNA (CT DNA) complexed with cationic liposomes also induced TNF-alpha production to a similar extent in the human macrophages. These results indicate that, among human monocyte-derived cells, macrophages are activated by DNA when complexed with cationic liposomes in a CpG motif-independent manner.  相似文献   

11.
In the present study we compared the first generation non-nitrogen-containing bisphosphonate, clodronate with second and third generation nitrogen-containing bisphosphonates, pamidronate and zoledronic acid in dynamic rat osteoclast resorption and apoptosis assays and in human mesenchymal stem cell-derived osteoblast assay. We found that due to high bisphosphonate-bone binding affinity, bone surface exposure to clodronate for 3 min. had maximal resorption inhibition. The mechanism of action of both clodronate and zoledronic acid involved osteoclast apoptosis, whereas pamidronate had only minor apoptotic effect at dosages, which readily inhibited resorption. Zoledronic acid was not metabolised into an intracellular ATP-analogue in vitro in contrast to clodronate. All bisphosphonates had a dose-dependent inhibitory effect on the human bone marrow mesenchymal stem cell (hMSC)-derived osteoblast calcium deposition. None of the compounds had inhibitory effect on hMSC differentiation. Zoledronic acid was the most potent of all three bisphosphonates in terms of both apoptosis induction and resorption inhibition. Zoledronic acid efficacy might thus use its capacity to trigger osteoclast apoptosis in an unknown, but similar manner to that of the non-nitrogen-containing bisphosphonates. It appears that zoledronic acid has properties of both bisphosphonate classes and could well be the first member of a new class of bisphosphonates, by definition.  相似文献   

12.
Integral to the discovery of new pharmaceutical entities is the ability to predict in vivo pharmacokinetic parameters from early stage in vitro data generated prior to the onset of clinical testing. Within the pharmaceutical industry, a whole host of assay methods and mathematical models exist to predict the in vivo pharmacokinetic parameters of drug candidates. One of the most important pharmacokinetic properties of new drug candidates predicted from these methods and models is the hepatic clearance. Current methods, while useful, are still limited in their predictive efficacy. In order to address this issue, we have established a novel microfluidic in vitro culture system, the patented HμREL® device. The device comprises multiple compartments that are designed to be proportional to the physiological architectures and enhanced with the consideration of flow. Here we demonstrate the functionality of the liver-relevant chamber in the HμREL® device, and the feasibility of utilizing our system for predicting hepatic clearance. Cryopreserved human hepatocytes from a single donor were seeded within the HμREL® device to predict the in vivo hepatic clearance (CLH) of six marketed model compounds (carbamazepine, caffeine, timolol, sildenafil, imipramine, and buspirone). The intrinsic clearance rates from static culture controls, as well as clearance rates from the HμREL® device were subsequently compared to in vivo data available from the literature.  相似文献   

13.
A potential cytokine-drug interaction between interleukin 6 (IL-6) and itraconazole (ITZ) was studied using human hepatocytes in primary culture. Cultures from 5 adult males (mean age 42 +/- 15 years) who had not received any medicines known to interact with CYP3A4 were studied. Cultures were exposed to ITZ 500 ng/ml, and the effects of 120 microg/ml cimetidine, 50 ng/ml human IL-6, or IL-6 plus IL-6 receptor antagonist were analyzed for 2, 4, 8, and 12 h. Intracellular ITZ and hydroxyitraconazole concentrations were measured using HPLC and normalized to total cellular protein. Mean intracellular concentrations between groups were compared using one-way Anova (f test; p < 0.10) and corresponding Bonferroni versus control test for multiple comparisons (p < 0.02). Mean intracellular ITZ concentrations between the groups were similar at all time points. Human hepatocytes in primary culture can metabolize ITZ. However, IL-6 did not inhibit hydroxyitraconazole formation, but it may inhibit its subsequent metabolism.  相似文献   

14.
15.
An in vitro system for liver organogenesis from murine embryonic stem (ES) cells has been recently established. This system is expected to be applied to the development of a new drug metabolism assay system that uses ES cells as a substitute for animal experiments. The objective of this study was to elucidate the drug metabolism profiles of the murine ES cell-derived hepatic tissue system compared with those of primary cultures of murine adult and fetal hepatocytes. The expression of the genes of the cytochrome P450 (P450) family, such as Cyp2a5, Cyp2b10, Cyp2c29, Cyp2d9, Cyp3a11, and Cyp7a1, was observed in the murine ES cell-derived hepatic tissue system at 16 days and 18 days after plating (A16 and A18). To investigate the activities of these P450 family enzymes in the murine ES cell-derived hepatic tissue system at A16 and A18, testosterone metabolism in this system was analyzed. Testosterone was hydroxylated to 6beta-hydroxytestosterone (6beta-OHT), 16alpha-OHT, 2alpha-OHT, and 2beta-OHT in this system, and was not hydroxylated to 15alpha-OHT, 7alpha-OHT, and 16beta-OHT. This metabolism profile was similar to that of fetal hepatocytes and different from that of adult hepatocytes. Furthermore, pretreatment with phenobarbital resulted in a 2.5- and 2.6-fold increase in the production of 6beta-OHT and 16beta-OHT. Thus, evidence for drug metabolic activities in relation to P450s has been demonstrated in this system. These results in this system would be a stepping stone of the research on the development and differentiation to adult liver.  相似文献   

16.
Flutamide, an effective competitive inhibitor of the androgen receptor used orally for palliative treatment of prostatic carcinoma and regulation of prostatic hyperplasia was evaluated for its genotoxic effects in the intact rat and in primary cultures of human hepatocytes. Negative responses were obtained in all the in vivo assays as well as in the in vitro assay. In rats given a single oral dose of 500 mg/kg flutamide, fragmentation and repair of liver DNA were absent, and no increase was observed in the frequency of micronucleated hepatocytes. In the liver of rats given flutamide as initiating agent at the dose of 500 mg/kg/week for 6 successive weeks, gamma-glutamyltraspeptidase-positive foci were detected only in 3 of 10 rats. There was no evidence of a promoting effect on the development of aberrant crypt foci in rats given 100 mg/kg flutamide on alternate days for 8 successive weeks. In primary cultures of human hepatocytes from one male and one female donor DNA fragmentation as measured by the Comet assays, and DNA repair synthesis as revealed by quantitative autoradiography, were absent after a 20 hr exposure to flutamide concentrations ranging from 18 to 56 microM. Taken as a whole, our results seem to indicate that flutamide is a non-genotoxic drug.  相似文献   

17.
We have developed a model of primary cultures of postnatal rat hepatocytes to characterize the metabolic activation of xenobiotics to toxic intermediates and to study the mechanism(s) by which these chemicals produce cellular injury. This model was employed to investigate the cytochrome P-450 mediated biotransformation of cyclophosphamide (CP) to cytotoxic metabolites that nonspecifically alkylate DNA and cellular proteins. The parenchymal cells were isolated by an in situ collagenase perfusion technique and cultured for 24 hr prior to drug treatment. The cultures were then exposed to CP concentrations ranging from 1 × 10?4 M to 1 × 10?3 M for 24 hr. Initial studies indicated minimal toxicity to non-replicating parenchymal hepatocytes maintained in ornithine-supplemented, arginine-deficient medium. The addition of arginine permitted the overgrowth of fibroblasts in the same culture system. These fibroblasts then became the target of alkylating CP metabolites produced by the par-enchymal cells. By day 3 after CP administration, cell number and total protein per dish decreased by over 40 percent. The morphology of the cultures changed dramatically because of fibroblast destruction. The cytotoxicity to dividing fibroblasts was eliminated by administering 2-diethylaminoethyl-2, 2-diphenylvalerate hydrochloride (SKF 525-A), an inhibitor of the cytochrome P-450 monooxygenase system, to the co-cultures treated with CP. The alkylating metabolites of CP produced by the parenchymal cells and released into the culture medium were quantitated by reacting aliquots of medium from CP-treated cells with 4-(p-nitrobenzyl)pyridine. These results provide both direct and indirect evidence of drug metabolism in cultured cells and suggest that this co-culture system can be utilized to evaluate the metabolic activation of xenobiotics.  相似文献   

18.
Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic.  相似文献   

19.
Cholestatic drug-induced liver injury (DILI) is a type of hepatotoxicity. Its underlying mechanisms are dysfunction of bile salt export pump (BSEP) and multidrug resistance-associated protein 2/3/4 (MRP2/3/4), which play major roles in bile acid (BA) excretion into the bile canaliculi and blood, resulting in accumulation of BAs in hepatocytes. The sandwich-cultured hepatocyte (SCH) model can simultaneously analyze hepatic uptake and biliary excretion. Therefore, we investigated whether sandwich-cultured human induced pluripotent stem cell (iPS cell)-derived hepatocytes (SCHiHs) are suitable for evaluating cholestatic DILI. Fluorescent N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2′-aminoethanesulfonate (tauro-nor-THCA-24-DBD, a BSEP substrate) was accumulated in bile canaliculi, which supports the presence of a functional bile canaliculi lumen. MRP2 was highly expressed in the Western blot analysis, whereas the mRNA expression of BSEP was hardly detectable. MRP3/4 mRNA levels were maintained. Of the 22 compounds known to cause DILI with BAs, 7 showed significant cytotoxicity. Most high-risk drugs were detected using the developed SCHiH system. However, a shortcoming was the considerably low expression level of BSEP, which prevented the detection of some relevant drugs whose risks should be detected in primary human hepatocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号