首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundThe human tracking algorithm called OpenPose can detect joint points and calculate joint angles. However, the reliability and validity of OpenPose have not been clarified yet.Research question: Are there the enough reliability and validity of OpenPose based motion analysis?Methods20 healthy young subjects participated in this study. The motion task was a bilateral squat. The joint angles of the trunk, hip, knee, and ankle were calculated using OpenPose and VICON. Kinematic measurements by three-dimensional motion analysis devices were recorded using VICON. Simultaneously, the images were taken with a digital camera from the right side. After the images were processed with OpenPose, joint angles were calculated from estimated joint points. To confirm the test-retest reliability within device, intraclass correlation coefficients [ICC (1, 3)] were calculated. To confirm the validity, linear regression analysis and ICC (2, 1) between the data obtained by OpenPose and VICON were calculated. Furthermore, the agreement between the data obtained by OpenPose and VICON was assessed by Bland-Altman analysis.ResultsICCs (1, 3) of the data obtained by OpenPose and VICON were almost perfect. There were significant associations between the data obtained by OpenPose and VICON. ICCs (2, 1) between the data obtained by OpenPose and VICON were almost perfect or substantial for trunk, knee and ankle joints, and fair on the hip joint. There were fixed biases on knee and ankle joints, and proportional biases on trunk and hip joint.SignificanceOpenPose based motion analysis is reliable and has the advantage of being low cost and easier to operate than conventional methods. In future, to consider the clinical utility of OpenPose, it is necessary to identify the error between the true values indicating actual joint movement and data obtained by OpenPose with its correction for fixed and proportional biases.(295 words)  相似文献   

2.
BackgroundDepth sensors could be a portable, affordable, marker-less alternative to three-dimension motion capture systems for gait analysis, but the effects of camera viewing angles on their joint angle tracking performance have not been fully investigated.Research questionsThis study evaluated the accuracies of three depth sensors [Azure Kinect (AK); Kinect v2 (K2); Orbbec Astra (OA)] for tracking kinematic gait patterns during treadmill walking at five camera viewing angles (0°/22.5°/45°/67.5°/90°).MethodsTen healthy subjects performed fifteen treadmill walking trials (3 speeds × 5 viewing angles) using the three depth sensors to measure joint angles in sagittal hip, frontal hip, sagittal knee, and sagittal ankle. Ten walking steps were recorded and averaged for each walking trial. Range of motion in terms of maximum and minimum joint angles measured by the depth sensors were compared with the Vicon motion capture system as the gold standard. Depth sensors tracking accuracies were compared against the Vicon reference using root-mean-square error (RMSE) on the joint angle time series. Effects of different walking speeds, viewing angles, and depth sensors on the tracking accuracy were observed using three-way repeated-measure analysis of variance (ANOVA).ResultsANOVA results on RMSE showed significant interaction effects between viewing angles and depth sensors for sagittal hip [F(8,72) = 4.404, p = 0.005] and for sagittal knee [F(8,72)=13.211, p < 0.001] joint angles. AK had better tracking performance when subjects walked at non-frontal camera viewing angles (22.5°/45°/67.5°/90°); while K2 performed better at frontal viewing angle (0°). The superior tracking performance of AK compared with K2/OA might be attributed to the improved depth sensor resolution and body tracking algorithm.SignificanceResearchers should be cautious about camera viewing angle when using depth sensors for kinematic gait measurements. Our results demonstrated Azure Kinect had good tracking performance of sagittal hip and sagittal knee joint angles during treadmill walking tests at non-frontal camera viewing angles.  相似文献   

3.
BackgroundLong-term gait adaptations after anterior cruciate ligament reconstruction (ACLR) have been reported. However, it is still unclear if they persist more than 4 years after surgery and if they are affected by gait speed.Research question: To investigate differences between groups, legs and walking speeds for ankle, knee and hip joint moments in three planes throughout the stance phase of gait.MethodsReconstructed participants (n = 20 males, 32.5 years, 5.5 years post-ACLR) and healthy controls (n = 20 males, 30.6 years) took part in the study. Gait analysis was performed in two different speeds (self-selected and 30% faster). Sagittal, frontal and transverse plane external moments were measured for ankle, knee and hip and compared throughout the stance phase using 95% confidence intervals. Significant differences were established as a consecutive 5% of gait cycle in which 95% confidence interval did not overlap.ResultsThe reconstructed leg did not demonstrate higher joint moments; there were largely no differences while there was lower knee external rotation moment compared to the non-preferred leg of the control group. Higher joint moments were observed during fast speed walking on sagittal plane for knee and hip moments in both groups, and in the frontal and transverse plane for ankle moments.SignificanceGait kinetics appear to be largely normalized at a minimum of 4 years after ACLR. Faster walking speed increase lower extremity joint moments.  相似文献   

4.
BackgroundClassification of sagittal gait patterns in unilateral spastic cerebral palsy (CP) provides direct implication for treatment. Five types are described: type 0 has minor gait deviation; type 1 has inadequate ankle dorsiflexion in swing; type 2 has inadequate ankle dorsiflexion throughout the gait cycle; types 3 and 4 have abnormal function of the knee and hip joint respectively. During gait analysis of children with unilateral spastic CP we observed frequently that a knee flexion deficit disappeared during running. That may have an impact on classification and treatment.Research questionDoes the classification type change while running and how do patients’ kinematics adapt to running?Methods64 children with unilateral spastic CP were classified using instrumented gait analysis for walking and running. The deviation of four parameters from typically developing children (TD) were used to distinguish between types: peak ankle dorsiflexion in swing for type 1, peak ankle dorsiflexion in stance for type 2, knee range of motion for type 3, and hip range of motion for type 4. A three-factor ANOVA for factors group (CP/TD), locomotion (walk/run) and limb side (in-/uninvolved) was conducted.ResultsThe number of patients with type 1, 3 and 4 decreased considerably from walking to running, whereas, the number of type 0 and 2 patients increased. The ANOVA showed that three of four parameters of patients’ pathologic limb adapt similarly to TD to running, except for the ankle dorsiflexion in stance.SignificanceRunning shows that there is a natural way to resolve abnormalities. Therefore, recommended treatments of hip and knee joint abnormalities based on the walking classification can be questioned and additional running analysis may be important for surgical decision making.  相似文献   

5.
BackgroundKinematic changes in patients with knee osteoarthritis (OA) have been extensively studied. Concerns have been raised whether the measured spatiotemporal and kinematic alterations are associated with disease progression or merely a result of reduced walking speed.Research question: The purpose of this study was to investigate the effect of walking speed on kinematic parameters in patients with knee OA using statistical parametric mapping (SPM).MethodsTwenty-three patients with unilateral knee OA scheduled for a total knee replacement and 28 age matched control subjects were included in this study. Spatiotemporal parameters and sagittal plane kinematics were measured in the hip, knee, and ankle using the inertial sensors system RehaGait® while walking at a self-selected normal (patients and controls) and slow walking speed (controls) for a distance of 20 m. Gait parameters were compared between groups for self-selected walking speed and for matched walking speed using SPM with independent sample t tests.ResultsAt self-selected walking speed, patients had significantly lower knee flexion during stance (maximum difference, -6.8°) and during swing (-11.0°), as well as higher ankle dorsiflexion during stance phase (+12.5°) and lower peak hip extension at the end of stance compared to controls (+4.2°). At matched speed, there were no significant differences in joint kinematics between groups.SignificanceDifferences in sagittal plane gait kinematics between patients with knee OA and asymptomatic controls appear to be mainly a result of reduced walking speed. These results emphasize the importance of considering walking speed in research on gait kinematics in patients with knee OA and in clinical trials using gait parameters as outcome measures.  相似文献   

6.
Saha D  Gard S  Fatone S 《Gait & posture》2008,27(4):653-660
This study examined the effect of sagittal trunk posture on the gait of able-bodied subjects. Understanding the effect of trunk posture on gait is of clinical interest since alterations in trunk posture often occur with age or in the presence of spinal pathologies, such as lumbar flatback. Gait analysis was conducted on 14 adults walking at self-selected slow, normal, and fast walking speeds while maintaining three trunk postures: upright, and with 25 ± 7° and 50 ± 7° of trunk flexion from the vertical. During trunk-flexed gait, subjects adopted a crouch posture characterized by sustained knee flexion during stance and an increase in ankle dorsiflexion and hip flexion angles. During stance, these kinematic adaptations produced a posterior shift in the positions of the trunk and pelvis, which helped to offset the anterior shift in the trunk mass that occurred with trunk flexion. In this way, kinematic adaptations may have been used to maintain balance by shifting the body's center of mass to a position similar to that of upright walking. These changes in lower limb joint kinematics created a phase lag in the position of the hip joint center relative to that of the ankle joint center in the sagittal plane. Alterations in the sagittal alignment of the hip and ankle joint positions were associated with a phase lag in the vertical position, velocity, and acceleration of the body's center of mass (BCOM) relative to upright walking. Since the vertical ground reaction force (GRFv) is proportional to the vertical acceleration of the BCOM, significant changes were also seen in the GRFv during trunk-flexed gait. In summary, kinematic adaptations necessary to maintain dynamic balance altered the trajectory and acceleration of the BCOM in the vertical direction, which was reflected in the GRFv. The results of this study may help clinicians better understand the nature and impact of compensatory mechanisms in patients who exhibit trunk-flexed postures during gait.  相似文献   

7.
Hypermobility syndrome (HMS) is characterised by generalised joint laxity and musculoskeletal complaints. Gait abnormalities have been reported in children with HMS but have not been empirically investigated. The extent of passive knee joint range of motion (ROM) has also not been well reported in children with HMS. This study evaluated gait kinematics and passive knee joint ROM in children diagnosed with HMS and healthy controls. Thirty-seven healthy children (mean age±SD=11.5±2.6 years) and 29 children with HMS (mean age±SD=11.9±1.8 years) participated. Sagittal knee motion and gait speed were evaluated using a VICON 3D motion analysis system. Passive knee ROM was measured with a manual goniometer. Independent t-tests compared the values of sagittal knee motion and gait speed between the two groups. Mann-Whitney U tests compared passive knee ROM between groups. Passive ROM (extension and flexion) was significantly higher (both p<0.001) in children with HMS than the healthy controls. Peak knee flexion (during loading response and swing phase) during walking was significantly lower (both p<0.001) in children with HMS. Knee extension in mid stance during walking was significantly increased (p<0.001) in children with HMS. However, gait speed was not statistically (p=0.496) different between the two groups. Children with HMS had higher passive knee ROM than healthy children and also demonstrated abnormal knee motion during gait. Gait re-education and joint stability exercise programmes may be of value to children with HMS.  相似文献   

8.
BackgroundWalking in water (WW) is frequently used as an aquatic exercise in rehabilitation programs for the elderly. Understanding gait characteristics of WW is of primary importance to effectively design specific water-based rehabilitation programs. Moreover, as walking speed in water is reduced with a possible effect on gait parameters, the age- and environment-related changes during WW have to be investigated considering the effects of instantaneous walking speed. Research question: how do gait kinematic characteristics differ in healthy elderly between WW and on land walking condition (LW)? Do elderly show different walking patterns compared to young adults? Can these kinematic changes be accounted only by the different environment/age or are they also related to walking speed?MethodsNine healthy elderly participants (73.5 ± 5.8 years) were acquired during walking in WW and LW at two different speeds. Kinematic parameters were assessed with waterproofed inertial magnetic sensors using a validated protocol. The influence of environment, age and walking speed on gait parameters was investigated with linear mixed models.ResultsShorter stride distances and longer stride durations were observed in WW compared to LW. In the sagittal plane, hip and knee joint showed larger flexion in WW (>10deg over the whole stride and ∼28deg at foot strike, respectively). Furthermore, lower walking speeds and stride distances were observed in elderly compared to young adults. In the sagittal plane, a slightly more flexed hip joint and a less plantarflexed ankle joint (∼9 deg) were observed in the elderly. Significance: The results showed the importance of assessing the walking speed during WW, as gait parameters can vary not only for the effect environment but also due to different walking speeds.  相似文献   

9.
BackgroundFatigue is an essential component of distance running. Still, little is known about the effects of running induced fatigue on three-dimensional lower extremity joint movement, in particular in the frontal and transverse planes of motion.Research questionHow are non-sagittal plane lower extremity joint kinematics of runners altered during a 10 km treadmill run with near-maximum effort?MethodsIn a cross-sectional study design, we captured three-dimensional kinematics and kinetics at regular intervals throughout a 10 km treadmill run in 24 male participants (subdivided into a competitive and recreational runner group) at a speed corresponding to 105 % of their season-best time. We calculated average and peak joint angles at the hip, knee and ankle during the stance phase.ResultsWe observed peak deviations of 3.5°, 3° and 5° for the hip (more adduction), knee (more abduction) and ankle (more eversion) in the frontal plane when comparing the final (10 km) with the first (0 km) measurement. At the end of the run peak knee internal rotation angles increased significantly (up to 3° difference). Running with a more abducted knee joint and with a higher demand for hip abductor muscles in the unfatigued state was related to greater fatigue-induced changes of joint kinematics at the knee and hip.SignificanceThe fatigue related change of non-sagittal joint kinematics needs to be considered when addressing risk factors for running-related injuries, when designing shoe interventions as well as strengthening and gait retraining protocols for runners. We speculate that strengthening ankle invertors and hip abductors and monitoring the dynamic leg axis during running appear to be promising in preventing fatigue induced alterations of non-sagittal joint kinematics.  相似文献   

10.
BackgroundThe conventional gait model (CGM) is commonly utilised within clinical motion analysis but has a number of inherent limitations. To overcome some of these limitations modifications have been made to the CGM and six-degrees of freedom models (6DoF) have been developed.Research QuestionHow comparable are lower limb kinematics calculated using modified CGM and 6DoF models and what is the error associated with the output of each model during walking?MethodsTen healthy males attended two gait analysis sessions, in which they walked at a self-selected pace, while a 10-camera motion capture system recorded lower limb kinematics. Hip, knee and ankle joint kinematics in all three anatomical planes were calculated using a modified CGM, with medial anatomical markers and a three-dimensional foot added, and 6DoF. Mean absolute differences were calculated on a point-by-point basis over the walking gait cycle and interpreted relative to a 5° threshold to explore the comparability of model outputs. The standard error of the measurement (SEM) was also calculated on a point-by-point basis over the walking gait cycle for each model.ResultsMean absolute differences above 5° were reported between the two model outputs in 58–86% of the walking gait cycle at the knee in the frontal plane, and over the entire walking gait cycle at the hip and knee in the transverse plane. SEM was typically larger for the modified CGM compared to the 6DoF, with the highest SEM values reported at the knee in the frontal plane, and the hip and the knee in the transverse plane.SignificanceCaution should be taken when looking to compare findings between studies utilising modified CGM and 6DoF outside of the sagittal plane, especially at the hip and knee. The reduced SEM associated with the 6DoF suggests this modelling approach may be preferable.  相似文献   

11.
IntroductionSimulations suggest that subjects with reduced hip range of motion (ROM) and/or weakness can achieve more normal walking mechanics through compensations at the ankle. The aims of this study were to assess whether subjects with reduced hip ROM (Stiff hip) or hip flexor weakness (Weak hip) exhibit ankle compensations during walking and investigate redistribution of power in the lower extremity joints.MethodsRetrospective gait data were reviewed (IRB-approved hip registry). Preoperative kinematic/kinetic walking data were collected in patients with: adolescent hip dysplasia (AHD), femoral acetabular impingement (FAI), and Legg-Calvé Perthes disease (Perthes). AHD patients with significantly weak hip flexors on their affected side were included (Weak hip group). The Gait Profile Score (GPS) was calculated on the affected side of the FAI and Perthes groups to identify patients who had a Stiff hip. Patients who had undergone a hip arthrodesis (Fusion) were also included (Stiff hip group). Ankle kinematics/kinetics were compared to healthy participants (Control). The total positive work of sagittal plane hip, knee and ankle power were compared along with the distribution of power.ResultsPatients in the Weak/Stiff hip groups did not walk with greater ankle plantarflexion, peak push-off power or positive ankle work on their affected sides compared to Control. Ankle work contribution (percentage of total positive work) on the affected or unaffected sides was greater in the Perthes and Hip Fusion patients compared to Control. Significant gait abnormalities on the unaffected side were observed.ConclusionsPatients with a weak or stiff hip did exhibit altered ankle mechanics during walking. Greater percent ankle work contribution appeared to correspond with hip stiffness. In patients with hip pathology the redistribution of power among the lower extremity joints can highlight the importance of preserving ankle function.  相似文献   

12.
BackgroundHip external rotation stiffness, midfoot passive mechanical resistance and foot alignment may influence on ankle, knee and hip movement in the frontal and transverse planes during gait.Research questionAre hip stiffness, midfoot mechanical resistance and foot alignment associated with ankle, knee and hip kinematics during gait?MethodsHip stiffness, midfoot mechanical resistance, and foot alignment of thirty healthy participants (18 females and 12 males) with average age of 25.4 years were measured. In addition, lower limb kinematic data during the stance phase of gait were collected with the Qualisys System (Oqus 7+). Stepwise multiple linear regressions were performed to identify if hip stiffness, midfoot torque, midfoot stiffness and foot alignment were associated with hip and knee movement in the transverse plane and ankle movement in the frontal plane with α = 0.05.ResultsReduced midfoot torque was associated with higher hip range of motion (ROM) in the transverse plane (r2 = 0.18), reduced hip stiffness was associated with higher peak hip internal rotation (r2 = 0.16) and higher ROM in the frontal plane (r2 = 0.14), reduced midfoot stiffness was associated with higher peak knee internal rotation (r2 = 0.14) and increased midfoot torque and midfoot stiffness were associated with higher peak knee external rotation (r2 = 0.36).SignificanceThese findings demonstrated that individuals with reduced hip and midfoot stiffness have higher hip and knee internal rotation and higher ankle eversion during the stance phase of gait. On the other hand, individuals with increased midfoot torque and stiffness have higher knee external rotation. These relationships can be explained by the coupling between ankle movements in the frontal plane and knee and hip movements in the transverse plane. Finally, this study suggests that midfoot passive mechanical resistance and hip stiffness should be assessed in individuals presenting altered ankle, knee and hip movement during gait.  相似文献   

13.
BackgroundGait mechanics following total ankle replacement (TAR) have reported improved ankle motion following surgery. However, no studies have addressed the impact of preoperative radiographic tibiotalar alignment on post-TAR gait mechanics. We therefore investigated whether preoperative tibiotalar alignment (varus, valgus, or neutral) resulted in significantly different coronal plane mechanics or ground reaction forces post-TAR.MethodsWe conducted a non-randomized study of 93 consecutive end-stage ankle arthritis patients. Standard weight-bearing radiographs were obtained preoperatively to categorize patients as having neutral (±4°), varus (≥5° of varus), or valgus (≥5° of valgus) coronal plane tibiotalar alignment. All patients underwent a standard walking assessment including three-dimensional lower extremity kinetics and kinematics preoperatively, 12 and 24 months postoperatively.ResultsA significant group by time interaction was observed for the propulsive vertical ground reaction force (vGRF), coronal plane hip range of motion (ROM) and the peak hip abduction moment. The valgus group demonstrated an increase in the peak knee adduction angle and knee adduction angle at heel strike when compared to the other groups. Coronal plane ankle ROM, knee and hip angles at heel strike, and the peak hip angle exhibited significant increases across time. Peak ankle inversion moment, peak knee abduction moment and the weight acceptance vGRF also exhibited significant increases across time. Neutral ankle alignment was achieved for all patients by 2 years following TAR.ConclusionsRestoration of neutral ankle alignment at the time of TAR in patients with preoperative varus or valgus tibiotalar alignment resulted in biomechanics similar to those of patients with neutral preoperative tibiotalar alignment by 24-month follow-up.  相似文献   

14.
PURPOSE: To determine gender differences in lower-extremity joint kinematics and kinetics between age- and skill-matched recreational athletes. METHODS: Inverse dynamic solutions estimated the lower-extremity flexion-extension and varus-valgus kinematics and kinetics for 15 females and 15 males performing a 60-cm drop landing. A mixed model, repeated measures analysis of variance (gender (*) joint) was performed on select kinematic and kinetic variables. RESULTS: Peak hip and knee flexion and ankle dorsiflexion angles were greater in females in the sagittal plane (group effect, P < 0.02). Females exhibited greater frontal plane motion (group (*) joint, P = 0.02). Differences were attributed to greater peak knee valgus and peak ankle pronation angles (post hoc tests, P = 0.00). Females exhibited a greater range of motion (ROM) in the sagittal plane (group main effect, P = 0.02) and the frontal plane (group (*) joint, P = 0.01). Differences were attributed to the greater knee varus-valgus ROM, ankle dorsiflexion, and pronation ROM (post hoc tests). Ground reaction forces were different between groups (group (*) direction, P = 0.05). Females exhibited greater peak vertical and posterior (A/P) force than males (post hoc tests). Females exhibited different knee moment profiles (Group main effect, P = 0.01). These differences were attributed to a reduced varus moment in females (post hoc tests). CONCLUSION: The majority of the differences in kinematic and kinetic variables between male and female recreational athletes during landing were observed in the frontal plane not in the sagittal plane. Specifically, females generated a smaller internal knee varus moment at the time of peak valgus knee angulation.  相似文献   

15.
BackgroundHallux valgus (HV) is a highly prevalent foot deformity in older women. Differences in lower extremity joint function of older women with and without HV during walking at slower and faster speeds are unknown.Research questionDoes walking speed affect lower extremity joint range of motion (ROM) and net extensor joint moment and associated work in older women with and without HV?MethodsThirteen older women with HV and 13 controls completed five walking trials at 1.1 and 1.3 m·s−1 as kinematic marker position and ground reaction force data were collected. Net ankle, knee, and hip joint moments were computed using inverse dynamics during the stance phase. Positive joint work was calculated by integrating hip power in early stance, knee power in mid stance, and ankle power in late stance.ResultsAverage ankle ROM and plantarflexor moment did not increase with walking speed in the HV group, while in the control group these variables were greater for the faster compared to the slower speed (p < 0.05). The magnitude of increase in ankle joint work with speed was 12 % lesser in the HV compared to the control group (p = 0.008). The hip ROM, extensor moment, and associated work was greater in the HV compared to the control group (p < 0.05). Knee and hip joint ROM, extensor moments, and work increased with walking speed in both groups (p < 0.05).SignificanceOlder women with HV compared to older women without HV demonstrate a distal-to-proximal redistribution by increasing hip motion and effort to compensate for reduced ankle contribution during walking.  相似文献   

16.
Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (with carbon fibre at the dorsal part of the orthosis). Both orthoses were expected to prevent plantar flexion, thus improving first rocker, allowing dorsiflexion to improve second rocker, absorbing energy during second rocker, and returning it during the third rocker. The effect of the AFOs was studied using objective gait analysis, including 3D kinematics, and kinetics in four conditions: barefoot, shoes without AFO, and PLS and CFO combined with shoes. Several gait parameters significantly changed in shoe walking compared to barefoot walking (cadence, ankle ROM and velocity, knee shock absorption, and knee angle in swing). The CFO produced a significantly larger ankle ROM and ankle velocity during push-off, and an increased plantar flexion moment and power generation at pre-swing compared to the PLS (<0.01). The results of this study further support the findings of previous studies indicating that orthoses improve specific gait parameters compared to barefoot walking (velocity, step length, first and second ankle rocker, sagittal knee and hip ROM). However, compared to shoes, not all improvements were statistically significant.  相似文献   

17.
The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics.  相似文献   

18.
BackgroundThe equivalency of treadmill and overground walking has been investigated in a large number of studies. However, no systematic review has been performed on this topic.Research questionThe aim of this study was to compare the biomechanical, electromyographical and energy consumption outcomes of motorized treadmill and overground walking.MethodsFive databases, ScienceDirect, SpringerLink, Web of Science, PubMed, and Scopus, were searched until January 13, 2021. Studies written in English comparing lower limb biomechanics, electromyography and energy consumption during treadmill and overground walking in healthy young adults (20–40 years) were included.ResultsTwenty-two studies (n = 409 participants) were included and evaluated via the Cochrane Collaboration’s tool. These 22 studies showed that some kinematic (reduced pelvic ROM, maximum hip flexion angle for females, maximum knee flexion angle for males and cautious gait pattern), kinetic (sagittal plane joint moments: dorsiflexor moments, knee extensor moments and hip extensor moments and sagittal plane joint powers at the knee and hip joints, peak backwards, lateral and medial COP velocities and propulsive forces during late stance) and electromyographic (lower limbs muscles activities) outcome measures were significantly different for motorized treadmill and overground walking.SignificanceSpatiotemporal, kinematic, kinetic, electromyographic and energy consumption outcome measures were largely comparable for motorized treadmill and overground walking. However, the differences in kinematic, kinetic and electromyographic parameters should be taken into consideration by clinicians, trainers, and researchers when working on new protocols related to patient rehabilitation, fitness rooms or research as to be as close as possible to the outcome measures of overground walking. The protocol registration number is CRD42021236335 (PROSPERO International Prospective Register of Systematic Reviews).  相似文献   

19.
ObjectivesTo quantify the changes in work done by lower limb joint moments during maximal speed running following a sports-specific repeated running protocol.DesignObservational with repeated-measures.MethodsRecreational athletes (n = 18 (9 females), aged = 26.2 ± 6.2 years) performed 12 maximal 30-m sprints on a non-motorised treadmill. Three-dimensional kinematics and ground reaction forces were subsequently recorded during a 10-m maximal overground sprint before and immediately after the repeated running protocol, from which we calculated work done by sagittal plane hip, knee, and ankle moments. Relative work (J/kg) was reported as a percentage of positive and negative work done by the sum of joint moments.ResultsFollowing the repeated running protocol, maximal sprint speed decreased by 19% and was accompanied by reductions in total positive (−1.47 J/kg) and negative (−0.92 J/kg) work, in addition to work done by hip (−0.43 to −0.82 J/kg) and knee (−0.28 J/kg) moments during swing. Compared to before the repeated running protocol, less relative work was done by hip (−9%) and knee (−3%) extension moments during swing. Reductions in work done by hip and knee joint moments during swing were significantly correlated with reductions in maximum running speed (r = 0.61−0.89, p < 0.05).ConclusionsA sports-specific repeated running protocol resulted in reductions in mechanical work done by sagittal plane hip and knee joint moments during maximal overground sprinting. Interventions focused on maintaining positive work done by the hip flexors/extensors and negative work done by knee flexors/extensors during the swing phase of running may help prevent reductions in speed following repeated sprinting.  相似文献   

20.
Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG ‘burst’ activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30 s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG ‘burst’ activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号