首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Belatacept is an inhibitor of CD28/B7 costimulation that is clinically indicated as a calcineurin inhibitor (CNI) alternative in combination with mycophenolate mofetil and steroids after renal transplantation. We sought to develop a clinically translatable, nonlymphocyte depleting, belatacept‐based regimen that could obviate the need for both CNIs and steroids. Thus, based on murine data showing synergy between costimulation blockade and mTOR inhibition, we studied rhesus monkeys undergoing MHC‐mismatched renal allotransplants treated with belatacept and the mTOR inhibitor, sirolimus. To extend prior work on costimulation blockade‐resistant rejection, some animals also received CD2 blockade with alefacept (LFA3‐Ig). Belatacept and sirolimus therapy successfully prevented rejection in all animals. Tolerance was not induced, as animals rejected after withdrawal of therapy. The regimen did not deplete T cells. Alefecept did not add a survival benefit to the optimized belatacept and sirolimus regimen, despite causing an intended depletion of memory T cells, and caused a marked reduction in regulatory T cells. Furthermore, alefacept‐treated animals had a significantly increased incidence of CMV reactivation, suggesting that this combination overly compromised protective immunity. These data support belatacept and sirolimus as a clinically translatable, nondepleting, CNI‐free, steroid‐sparing immunomodulatory regimen that promotes sustained rejection‐free allograft survival after renal transplantation.  相似文献   

2.
The emergence of skin‐containing vascularized composite allografts (VCAs) has provided impetus to understand factors affecting rejection and tolerance of skin. VCA tolerance can be established in miniature swine across haploidentical MHC barriers using mixed chimerism. Because the deceased donor pool for VCAs does not permit MHC antigen matching, clinical VCAs are transplanted across varying MHC disparities. We investigated whether sharing of MHC class I or II antigens between donors and recipients influences VCA skin tolerance. Miniature swine were conditioned nonmyeloablatively and received hematopoietic stem cell transplants and VCAs across MHC class I (n = 3) or class II (n = 3) barriers. In vitro immune responsiveness was assessed, and VCA skin‐resident leukocytes were characterized by flow cytometry. Stable mixed chimerism was established in all animals. MHC class II–mismatched chimeras were tolerant of VCAs. MHC class I–mismatched animals, however, rejected VCA skin, characterized by infiltration of recipient‐type CD8+ lymphocytes. Systemic donor‐specific nonresponsiveness was maintained, including after VCA rejection. This study shows that MHC antigen matching influences VCA skin rejection and suggests that local regulation of immune tolerance is critical in long‐term acceptance of all VCA components. These results help elucidate novel mechanisms underlying skin tolerance and identify clinically relevant VCA tolerance strategies.  相似文献   

3.
Immunosuppressive agents have enabled the development of allogenic transplantation during the last 40 years, allowing considerable improvement in graft survival. However, several issues remain such as the nephrotoxicity of calcineurin inhibitors, the cornerstone of immunosuppressive regimens and/or the higher risk of opportunistic infections and cancers. Most immunosuppressive agents target T cell activation and may not be efficient enough to prevent allo-immunization in the long term. Finally, antibody mediated rejection due to donor specific antibodies strongly affects allograft survival.Many drugs have been tested in the last decades, but very few have come to clinical use. The most recent one is CTLA4-Ig (belatacept), a costimulation blockade molecule that targets the second signal of T cell activation and is associated with a better long term kidney function than calcineurin inhibitors, despite an increased risk of acute cellular rejection.The research of new maintenance long-term immunosuppressive agents focuses on costimulation blockade. Agents inhibiting CD40-CD40 ligand interaction may enable a good control of both T cells and B cells responses. Anti-CD28 antibodies may promote regulatory T cells. Agents targeting this costimulation pathways are currently evaluated in clinical trials.Immunosuppressive agents for ABMR treatment are scarce since anti-CD20 agent rituximab and proteasome inhibitor bortezomib have failed to demonstrate an interest in ABMR. New drugs focusing on antibodies removal (imlifidase), B cell and plasmablasts (anti-IL-6/IL-6R, anti-CD38…) and complement inhibition are in the pipeline, with the challenge of their evaluation in such a heterogeneous pathology.  相似文献   

4.
Costimulation blockade with the fusion protein belatacept provides a desirable side effect profile and improvement in renal function compared with calcineurin inhibition in renal transplantation. This comes at the cost of increased rates of early acute rejection. Blockade of the integrin molecule leukocyte function‐associated antigen 1 (LFA‐1) has been shown to be an effective adjuvant to costimulation blockade in a rigorous nonhuman primate (NHP) model of islet transplantation; therefore, we sought to test this combination in an NHP renal transplant model. Rhesus macaques received belatacept maintenance therapy with or without the addition of LFA‐1 blockade, which was achieved using a murine‐derived LFA‐1–specific antibody TS1/22. Additional experiments were performed using chimeric rhesus IgG1 (TS1/22R1) or IgG4 (TS1/22R4) variants, each engineered to limit antibody clearance. Despite evidence of proper binding to the target molecule and impaired cellular egress from the intravascular space indicative of a therapeutic effect similar to prior islet studies, LFA‐1 blockade failed to significantly prolong graft survival. Furthermore, evidence of impaired protective immunity against cytomegalovirus was observed. These data highlight the difficulties in translating treatment regimens between organ models and suggest that the primarily vascularized renal model is more robust with regard to belatacept‐resistant rejection than the islet model.  相似文献   

5.
Most immunosuppressive regimens used in clinical vascularized composite allotransplantation (VCA) have been calcineurin inhibitor (CNI)‐based. As such, most recipients have experienced CNI‐related side effects. Costimulation blockade, specifically CD28/B7 inhibition with belatacept, has emerged as a clinical replacement for CNI‐based immunosuppression in kidney transplantation. We have previously shown that belatacept can be used as a centerpiece immunosuppressant for VCA in nonhuman primates, and subsequently reported successful conversion from a CNI‐based regimen to a belatacept‐based regimen after clinical hand transplantation. We now report on the case of a hand transplant recipient, whom we have successfully treated with a de novo belatacept‐based regimen, transitioned to a CNI–free regimen. This case demonstrates that belatacept can provide sufficient prophylaxis from rejection without chronic CNI‐associated side effects, a particularly important goal in nonlifesaving solid organ transplants such as VCA.  相似文献   

6.
T-cell costimulatory blockade has emerged as an effective strategy to prevent allograft rejection in experimental models. We and others have reported that the beneficial effects of costimulation blockade can be negated when combined with certain immunosuppressants. The current study evaluates the compatibility of various immunosuppressive agents in a costimulation blockade-based, mixed chimerism tolerance protocol. The addition of conventional agents, including calcineurin inhibitors, did not interfere with tolerance induction. All mice developed multilineage macrochimerism and accepted donor allografts. Analysis of specific T-cell receptor utilization demonstrated selective deletion of donor-reactive T cells. Challenge with donor and third-party allografts confirmed donor-specific tolerance. Clinical introduction of costimulation blockade-based strategies will likely incorporate currently approved immunosuppressive agents. While it has been reported that certain conventional agents are detrimental to costimulation blockade-based strategies, our results suggest that these agents could safely be combined in clinical trials when used as part of a nonmyelosuppressive, mixed chimerism-based tolerance strategy.  相似文献   

7.
The advent of costimulation blockade provides the prospect for targeted therapy with improved graft survival in transplant patients. Perhaps the most effective costimulation blockade in experimental models is the use of reagents to block the CD40/CD154 pathway. Unfortunately, successful clinical translation of anti‐CD154 therapy has not been achieved. In an attempt to develop an agent that is as effective as previous CD154 blocking antibodies but lacks the risk of thromboembolism, we evaluated the efficacy and safety of a novel anti‐human CD154 domain antibody (dAb, BMS‐986004). The anti‐CD154 dAb effectively blocked CD40‐CD154 interactions but lacked crystallizable fragment (Fc) binding activity and resultant platelet activation. In a nonhuman primate kidney transplant model, anti‐CD154 dAb was safe and efficacious, significantly prolonging allograft survival without evidence of thromboembolism (Median survival time 103 days). The combination of anti‐CD154 dAb and conventional immunosuppression synergized to effectively control allograft rejection (Median survival time 397 days). Furthermore, anti‐CD154 dAb treatment increased the frequency of CD4+CD25+Foxp3+ regulatory T cells. This study demonstrates that the use of a novel anti‐CD154 dAb that lacks Fc binding activity is safe without evidence of thromboembolism and is equally as potent as previous anti‐CD154 agents at prolonging renal allograft survival in a nonhuman primate preclinical model.  相似文献   

8.
The last two decades have witnessed a pandemic in antibody development, with over 600 entering clinical studies and a total of 28 approved by the FDA and European Union. The incorporation of biologics in transplantation has made a significant impact on allograft survival. Herein, we review the armamentarium of clinical and preclinical biologics used for organ transplantation--with the exception of belatacept--from depleting and IL-2R targeting induction agents to costimulation blockade, B-cell therapeutics, BAFF and complement inhibition, anti-adhesion, and anti-cytokine approaches. While individual agents may be insufficient for tolerance induction, they provide possibilities for reduction of steroid or calcineurin inhibitor use, alternatives to rejection episodes refractory to conventional therapies, and specialized immunosuppression for highly sensitized patients.  相似文献   

9.
10.
Vascularized composite allografts (VCAs) are unique among transplanted organs in that they are composed of multiple tissues with disparate antigenic and immunologic properties. As the predominant indications for VCAs are non‐life‐threatening conditions, there is an immediate need to develop tolerance induction strategies and to elucidate the mechanisms of VCA rejection and tolerance using VCA‐specific animal models. In this study, we explore the effects of in vitro induced donor antigen‐specific CD4?CD8? double negative (DN) Treg‐based therapy, in a fully MHC mismatched mouse VCA such as a vascularized osteomyocutaneous as compared to a non‐VCA such as a full thickness skin (FTS) transplantation model to elucidate the unique features of VCA rejection and tolerance. We demonstrate that combined therapy with antigen‐induced CD4 derived DN Tregs and a short course of anti‐lymphocyte serum, rapamycin and IL‐2/Fc fusion protein results in donor‐specific tolerance to VCA, but not FTS allografts. Macrochimerism was detected in VCA but not FTS allograft recipients up to >60 days after transplantation. Moreover, a significant increase of CD4+Foxp3+ Tregs was found in the peripheral blood of tolerant VCA recipients. These data suggest that VCA are permissive to tolerance induced by DN Treg‐based induction therapy.
  相似文献   

11.
Costimulation blockade (CoB), specifically CD28/B7 inhibition with belatacept, is an emerging clinical replacement for calcineurin inhibitor‐based immunosuppression in allotransplantation. However, there is accumulating evidence that belatacept incompletely controls alloreactive T cells that lose CD28 expression during terminal differentiation. We have recently shown that the CD2‐specific fusion protein alefacept controls costimulation blockade‐resistant allograft rejection in nonhuman primates. Here, we have investigated the relationship between human alloreactive T cells, costimulation blockade sensitivity and CD2 expression to determine whether these findings warrant potential clinical translation. Using polychromatic flow cytometry, we found that CD8+ effector memory T cells are distinctly high CD2 and low CD28 expressors. Alloresponsive CD8+CD2hiCD28? T cells contained the highest proportion of cells with polyfunctional cytokine (IFNγ, TNF and IL‐2) and cytotoxic effector molecule (CD107a and granzyme B) expression capability. Treatment with belatacept in vitro incompletely attenuated allospecific proliferation, but alefacept inhibited belatacept‐resistant proliferation. These results suggest that highly alloreactive effector T cells exert their late stage functions without reliance on ongoing CD28/B7 costimulation. Their high CD2 expression increases their susceptibility to alefacept. These studies combined with in vivo nonhuman primate data provide a rationale for translation of an immunosuppression regimen pairing alefacept and belatacept to human renal transplantation.  相似文献   

12.
OBJECTIVE: To determine the precise in vivo interaction between T-cell costimulatory blockade and conventional immunosuppression in transplantation. SUMMARY BACKGROUND DATA: Blocking B7 or CD154 T-cell costimulatory activation pathways prevents allograft rejection in small and large animal transplant models and is considered a promising strategy for clinical organ transplantation. METHODS: A fully MHC-mismatched vascularized mouse cardiac allograft model was used to test the interactions between anti-CD154 or CTLA4Ig monotherapy and conventional immunosuppressive drugs in promoting long-term graft acceptance. The frequency of alloreactive T cell was measured by ELISPOT. Chronic rejection was examined by histology. RESULTS: Cyclosporine, tacrolimus, and anti-IL-2R monoclonal antibody therapy abrogated the effect of a single-dose protocol of anti-CD154 therapy. In contrast, rapamycin acted synergistically with anti-CD154 therapy in promoting long-term allograft survival. The addition of calcineurin inhibitors did not abolish this synergistic effect. Intense CD154-CD40 blockade by a multiple-dose schedule of anti-CD154 resulted in long-term graft survival and profound alloreactive T-cell unresponsiveness and overcame the opposite effects of calcineurin inhibitors. CTLA4Ig induced long-term graft survival, and the effect was not affected by the concomitant use of any immunosuppressive drugs. CONCLUSIONS: The widespread view that calcineurin inhibitors abrogate the effects of T-cell costimulatory blockade should be revisited. Sufficient costimulatory blockade and synergy induced by CD154 blockade and rapamycin promote allograft tolerance and prevent chronic rejection.  相似文献   

13.
While costimulation blockade‐based mixed chimerism protocols work well for inducing tolerance in rodents, translation to preclinical large animal/nonhuman primate models has been less successful. One recognized cause for these difficulties is the high frequency of alloreactive memory T cells (Tmem) found in the (pre)clinical setting as opposed to laboratory mice. In the present study, we therefore developed a murine bone marrow transplantation (BMT) model employing recipients harboring polyclonal donor‐reactive Tmem without concomitant humoral sensitization. This model was then used to identify strategies to overcome this additional immune barrier. We found that B6 recipients that were enriched with 3 × 107 T cells isolated from B6 mice that had been previously grafted with Balb/c skin, rejected Balb/c BM despite costimulation blockade with anti‐CD40L and CTLA4Ig (while recipients not enriched developed chimerism). Adjunctive short‐term treatment of sensitized BMT recipients with rapamycin or anti‐LFA‐1 mAb was demonstrated to be effective in controlling Tmem in this model, leading to long‐term mixed chimerism and donor‐specific tolerance. Thus, rapamycin and anti‐LFA‐1 mAb are effective in overcoming the potent barrier that donor‐reactive Tmem pose to the induction of mixed chimerism and tolerance despite costimulation blockade.  相似文献   

14.
Allogeneic bone marrow transplantation (BMT) under costimulation blockade allows induction of mixed chimerism and tolerance without global T‐cell depletion (TCD). The mildest such protocols without recipient cytoreduction, however, require clinically impracticable bone marrow (BM) doses. The successful use of mobilized peripheral blood stem cells (PBSC) instead of BM in such regimens would provide a substantial advance, allowing transplantation of higher doses of hematopoietic donor cells. We thus transplanted fully allogeneic murine granulocyte colony‐stimulating factor (G‐CSF) mobilized PBSC under costimulation blockade (anti‐CD40L and CTLA4Ig). Unexpectedly, PBSC did not engraft, even when very high cell doses together with nonmyeloablative total body irradiation (TBI) were used. We show that, paradoxically, T cells contained in the donor PBSC triggered rejection of the transplanted donor cells. Rejection of donor BM was also triggered by the cotransplantation of unmanipulated donor T cells isolated from naïve (nonmobilized) donors. Donor‐specific transfusion and transient immunosuppression prevented PBSC‐triggered rejection and mixed chimerism and tolerance were achieved, but graft‐versus‐host disease (GVHD) occurred. The combination of in vivo TCD with costimulation blockade prevented rejection and GVHD. Thus, if allogeneic PBSC are transplanted instead of BM, costimulation blockade alone does not induce chimerism and tolerance without unacceptable GVHD‐toxicity, and the addition of TCD is required for success.  相似文献   

15.
Costimulation blockade (CoB) via belatacept is a lower‐morbidity alternative to calcineurin inhibitor (CNI)‐based immunosuppression. However, it has higher rates of early acute rejection. These early rejections are mediated in part by memory T cells, which have reduced dependence on the pathway targeted by belatacept and increased adhesion molecule expression. One such molecule is leukocyte function antigen (LFA)‐1. LFA‐1 exists in two forms: a commonly expressed, low‐affinity form and a transient, high‐affinity form, expressed only during activation. We have shown that antibodies reactive with LFA‐1 regardless of its configuration are effective in eliminating memory T cells but at the cost of impaired protective immunity. Here we test two novel agents, leukotoxin A and AL‐579, each of which targets the high‐affinity form of LFA‐1, to determine whether this more precise targeting prevents belatacept‐resistant rejection. Despite evidence of ex vivo and in vivo ligand‐specific activity, neither agent when combined with belatacept proved superior to belatacept monotherapy. Leukotoxin A approached a ceiling of toxicity before efficacy, while AL‐579 failed to significantly alter the peripheral immune response. These data, and prior studies, suggest that LFA‐1 blockade may not be a suitable adjuvant agent for CoB‐resistant rejection.  相似文献   

16.
Tolerance induction by means of costimulation blockade has been successfully applied in solid organ transplantation; however, its efficacy in vascularized composite allotransplantation, containing a vascularized bone marrow component and thus a constant source of donor‐derived stem cells, remains poorly explored. In this study, osteomyocutaneous allografts (alloOMCs) from Balb/c (H2d) mice were transplanted into C57BL/6 (H2b) recipients. Immunosuppression consisted of 1 mg anti‐CD154 on day 0, 0.5 mg CTLA4Ig on day 2 and rapamycin (RPM; 3 mg/kg per day from days 0–7, then every other day for 3 weeks). Long‐term allograft survival, donor‐specific tolerance and donor–recipient cell trafficking were evaluated. Treatment with costimulation blockade plus RPM resulted in long‐term graft survival (>120 days) of alloOMC in 12 of 15 recipients compared with untreated controls (median survival time [MST] ≈10.2 ± 0.8 days), RPM alone (MST ≈33 ± 5.5 days) and costimulation blockade alone (MST ≈45.8 ± 7.1 days). Donor‐specific hyporesponsiveness in recipients with viable grafts was demonstrated in vitro. Evidence of donor‐specific tolerance was further assessed in vivo by secondary donor‐specific skin graft survival and third‐party graft rejection. A significant increase of Foxp3+ regulatory T cells was evident in tolerant animals. Donor cells populated peripheral blood, thymus, and both donor and recipient bone marrow. Consequently, combined anti‐CD154/CTLA4Ig costimulation blockade‐based therapy induces donor‐specific tolerance in a stringent murine alloOMC transplant model.  相似文献   

17.
The development of immunosuppressive therapies has focused on inhibiting effects of the activated T cell. The introduction of powerful immunosuppressive agents that interrupt the effects of T-cell activation, such as the calcineurin inhibitors (CNIs), has revolutionized solid organ transplantation. However, the ubiquitous location of their targets causes a number of side effects, which can compromise recipient health and long-term allograft survival. Therefore, a common goal in the development of emerging immunosuppressive strategies is to maintain efficacy and minimize toxicities related to these immunosuppressant compounds. The rationale for CNI-free regimens that exploit combinations of antiproliferative and protein therapeutic agents is attractive. Recently, studies employing these agents in CNI-free regimens have begun to offer additional insight into both the potential benefits and limitations of currently available strategies. The currently available biologic agents provide either too potent immunosuppression (eg, T-cell depletion) or inhibit an aspect of T-cell activation too limited to provide adequate rejection prophylaxis (eg, interleukin 2 receptor [IL-2R] blockade). Growing evidence suggests that costimulation blockade, particularly those protein therapeutics targeting CD28 and CD40, provides the correct balance between immunosuppressive and low toxicity, with a more specific, nondepleting, and timely targeting of the immune response. Already, results from a phase 2 trial suggests that combination with a costimulation blockade using belatacept with mycophenolate mofetil as a maintenance therapy after induction with an IL-2R blocker is closest to fulfill this promise. Belatacept represents an emerging immunosuppression paradigm with maintenance protein therapy that fulfills the need of more selective immunosuppression with reduced toxicities, which offers the potential of improving long-term outcomes in renal transplant.  相似文献   

18.
The risks of chronic immunosuppression limit the utility of vascularized composite allotransplantation (VCA) as a reconstructive option in complex tissue defects. We evaluated a novel, clinically translatable, radiation‐free conditioning protocol that combines anti‐lymphocyte serum (ALS), tacrolimus, and cytotoxic T‐lymphocyte‐associated protein 4 immunoglobulin (CTLA4‐Ig) with adipose‐derived stromal cells (ASCs) to allow VCA survival without long‐term systemic immunosuppression. Full‐mismatched rat hind‐limb‐transplant recipients received tacrolimus (0.5 mg/kg) for 14 days and were assigned to 4 groups: controls (CTRL) received no conditioning; ASC‐group received CTLA4‐Ig (10 mg/kg body weight i.p. postoperative day [POD] 2, 4, 7) and donor ASCs (1 × 106 iv, POD 2, 4, 7, 15, 28); the ASC‐cyclophosphamide (CYP)‐group received CTLA4‐Ig, ASC plus cyclophosphamide (50 mg/kg ip, POD 3); the ASC‐ALS‐group received CTLA4‐Ig, ASCs plus ALS (500 µL ip, POD 1, 5). Banff grade III or 120 days were endpoints. ASCs suppressed alloresponse in vitro. Median rejection‐free VCA survival was 28 days in CTRL (n = 7), 34 in ASC (n = 6), and 27.5 in ASC‐CYP (n = 4). In contrast, ASC‐ALS achieved significantly longer, rejection‐free VCA survival in 6/7 animals (86%), with persistent mixed donor‐cell chimerism, and elevated systemic and allograft skin Tregs, with no signs of acute cellular rejection. Taken together, a regimen comprised of short‐course tacrolimus, repeated CTLA4‐Ig and ASC administration, combined with ALS, promotes long‐term VCA survival without chronic immunosuppression.  相似文献   

19.
Costimulation blockade of the CD40/CD154 pathway has been effective at preventing allograft rejection in numerous transplantation models. This strategy has largely depended on mAbs directed against CD154, limiting the potential for translation due to its association with thromboembolic events. Though targeting CD40 as an alternative to CD154 has been successful at preventing allograft rejection in preclinical models, there have been no reports on the effects of CD40‐specific agents in human transplant recipients. This delay in clinical translation may in part be explained by the presence of cellular depletion with many CD40‐specific mAbs. As such, the optimal biologic properties of CD40‐directed immunotherapy remain to be determined. In this report, we have characterized 3A8, a human CD40‐specific mAb and evaluated its efficacy in a rhesus macaque model of islet cell transplantation. Despite partially agonistic properties and the inability to block CD40 binding of soluble CD154 (sCD154) in vitro, 3A8‐based therapy markedly prolonged islet allograft survival without depleting B cells. Our results indicate that the allograft‐protective effects of CD40‐directed costimulation blockade do not require sCD154 blockade, complete antagonism or cellular depletion, and serve to support and guide the continued development of CD40‐specific agents for clinical translation.  相似文献   

20.
Mechanisms of chronic rejection of vascularized composite allografts (VCA) remain poorly understood and likely present along a spectrum of highly varied clinicopathological findings. Across both animal and human VCA however, graft vasculopathy (GV) has been the most consistent pathological finding resulting clinically in irreversible allograft dysfunction and eventual loss. A literature review of all reported clinical VCA cases with documented GV up to December 2018 was thus performed to elucidate the possible mechanisms involved. Relevant data extracted include C4d deposition, donor‐specific antibody (DSA) formation, extent of human leukocyte antigen (HLA) mismatch, pretransplant panel reactive antibody levels, induction and maintenance immunosuppression used, the number of preceding acute rejection episodes, and time to histological confirmation of GV. Approximately 6% (13 of 205) of all VCA patients reported to date developed GV at a mean of 6 years post‐transplantation. 46% of these patients have either lost or had their VCAs removed. Neither C4d nor DSA alone was predictive of GV development; however, when both are present, VCA loss appears inevitable due to progressive GV. Of utmost concern, GV in VCA does not appear to be abrogated by currently available immunosuppressive treatment and is essentially irreversible by the time of diagnosis with allograft loss a likely eventuality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号