首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Type V collagen mutations are associated with classic Ehlers–Danlos Syndrome (EDS), but it is unknown for which proportion they account and to what extent other genes are involved. We analyzed COL5A1 and COL5A2 in 126 patients with a diagnosis or suspicion of classic EDS. In 93 patients, a type V collagen defect was found, of which 73 were COL5A1 mutations, 13 were COL5A2 mutations and seven were COL5A1 null‐alleles with mutation unknown. The majority of the 73 COL5A1 mutations generated a COL5A1 null‐allele, whereas one‐third were structural mutations, scattered throughout COL5A1. All COL5A2 mutations were structural mutations. Reduced availability of type V collagen appeared to be the major disease‐causing mechanism, besides other intra‐ and extracellular contributing factors. All type V collagen defects were identified within a group of 102 patients fulfilling all major clinical Villefranche criteria, that is, skin hyperextensibility, dystrophic scarring and joint hypermobility. No COL5A1/COL5A2 mutation was detected in 24 patients who displayed skin and joint hyperextensibility but lacked dystrophic scarring. Overall, over 90% of patients fulfilling all major Villefranche criteria for classic EDS were shown to harbor a type V collagen defect, which indicates that this is the major—if not only—cause of classic EDS. Hum Mutat 33:1485–1493, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
Mutations in COL1A1 and COL1A2 genes, encoding the alpha1 and alpha2 chain of type I collagen, respectively, are responsible for the vast majority of cases of osteogenesis imperfecta (OI) (95% of patients with a definite clinical diagnosis). We have investigated 22 OI patients, representing a heterogeneous phenotypic range, at the biochemical and molecular level. A causal mutation in either type I collagen gene was identified in 20 of them: no recurrent mutation was found in unrelated subjects; 15 out of 20 mutations had not been reported previously. In two patients, we could not find any causative mutation in either type I collagen gene, after extensive genomic DNA sequencing. Failure of COL1A1/COL1A2 mutation screening may be due, in a few cases, to further clinical heterogeneity, i.e. additional non-collagenous disease loci are presumably involved in OI types beyond the traditional Sillence's classification.  相似文献   

4.
Mutations in the COL1A1 and COL1A2 genes, encoding the proalpha1 and 2 chains of type I collagen, cause osteogenesis imperfecta (OI) or Ehlers-Danlos syndrome (EDS) arthrochalasis type. Although the majority of missense mutations in the collagen type I triple helix affect glycine residues in the Gly-Xaa-Yaa repeat, few nonglycine substitutions have been reported. Two arginine-to-cysteine substitutions in the alpha1(I)-collagen chain are associated with classic EDS [R134C (p.R312C)] or autosomal dominant Caffey disease with mild EDS features [R836C (p.R1014C)]. Here we show alpha1(I) R-to-C substitutions in three unrelated patients who developed iliac or femoral dissection in early adulthood. In addition, manifestations of classic EDS in Patient 1 [c.1053C>T; R134C (p.R312C); X-position] or osteopenia in Patients 2 [c.1839C>T; R396C (p.R574C); Y-position] and 3 [c.3396C>T; R915C (p.R1093C); Y-position] are seen. Dermal fibroblasts from the patients produced disulfide-bonded alpha1(I)-dimers in approximately 20% of type I collagen, which were efficiently secreted into the medium in case of the R396C and R915C substitution. Theoretical stability calculations of the collagen type I heterotrimer and thermal denaturation curves of monomeric mutant alpha1(I)-collagen chains showed minor destabilization of the collagen helix. However, dimers were shown to be highly unstable. The R134C and R396C caused delayed procollagen processing by N-proteinase. Ultrastructural findings showed collagen fibrils with variable diameter and irregular interfibrillar spaces, suggesting disturbed collagen fibrillogenesis. Our findings demonstrate that R-to-C substitutions in the alpha1(I) chain may result in a phenotype with propensity to arterial rupture in early adulthood. This broadens the phenotypic range of nonglycine substitutions in collagen type I and has important implications for genetic counseling and follow-up of patients carrying this type of mutation.  相似文献   

5.
Classic Ehlers-Danlos syndrome is a heritable disorder of connective tissue that is characterized by skin hyperextensibility, fragile and soft skin, delayed wound healing with formation of atrophic scars, easy bruising, and generalized joint hypermobility. Mutations in the COL5A1 and the COL5A2 gene, encoding the alpha1 and the alpha2-chain of type V collagen respectively, are identified in approximately 50% of patients with a clinical diagnosis of classic EDS. In approximately one third of patients, the disease is caused by a mutation leading to a non-functional COL5A1 allele, and resulting in haplo-insufficiency of type V collagen. In a smaller proportion of patients, a structural mutation in COL5A1 or COL5A2, resulting in the production of a functionally defective type V collagen protein, is responsible for the phenotype. Inter- and intrafamilial phenotypic variability is observed, but no genotype-phenotype correlations can be made so far. The relatively low mutation detection rate in the COL5A1/A2 genes suggests genetic heterogeneity. Indeed rarely mutations in type I collagen have been identified in patients with classic EDS. Mutations in the gene for tenascin-X have been implicated in an autosomal recessive condition phenotypically overlapping with classic EDS. Several other candidate genes, such as decorin, have emerged from the study of transgenic mouse models with clinical and ultrastructural features reminiscent of classic EDS. However, to date, no human examples have been reported for these mouse models.  相似文献   

6.
Skin hyperelasticity, tissue fragility with atrophic scars, and joint hypermobility are characteristic for the classical type of Ehlers‐Danlos syndrome (EDS). The disease is usually inherited as an autosomal dominant trait; however, recessive mode of inheritance has been documented in tenascin‐X‐deficient EDS patients. Mutations in the genes coding for collagen α1(V) chain (COL5A1), collagen α2(V) chain (COL5A2), tenascin‐X (TNX), and collagen α1(I) chain (COL1A1) have been characterized in patients with classical EDS, thus confirming the suspected genetic heterogeneity. Recently, we described a patient with severe classical EDS due to a Gly1489Glu substitution in the α1(V) triple‐helical domain who was, in addition, heterozygous for a disease‐modifying Gly530Ser substitution in the α1(V) NH2‐terminal domain [Giunta and Steinmann, 2000 : Am. J. Med. Genet. 90:72–79; Steinmann and Giunta, 2000 : Am. J. Med. Genet. 93:342]. Here, we report on a 4‐year‐old boy with mild classical EDS, born to healthy consanguineous Turkish parents; the mother presented a soft skin, while the father had a normal thick skin. Ultrastructural analysis of the dermis revealed in the patient the typical “cauliflower” collagen fibrils, while in both parents variable moderate aberrations were seen. Mutation revealed the presence of a homozygous Gly530Ser substitution in the α1(V) collagen chains in the patient, while both parents were heterozygous for the same substitution. An additional mutation in either the COL5A1 and COL5A2 genes was excluded. Furthermore, haplotype analysis with polymorphic microsatellite markers excluded linkage to the genes coding for α3(V) collagen (COL5A3), tenascin‐X (TNX), thrombospondin‐2 (THBS2), and decorin (DCN). These new findings support further our previous hypothesis that the heterozygous Gly530Ser substitution is disease modifying and now suggest that in the homozygous state it is disease causing. © 2002 Wiley‐Liss, Inc.  相似文献   

7.
A missense mutation leading to the replacement of one Gly in the (Gly-Xaa-Yaa)n repeat of the collagen triple helix can cause a range of heritable connective tissue disorders that depend on the gene in which the mutation occurs. Osteogenesis imperfecta results from mutations in type I collagen, Ehlers-Danlos syndrome type IV from mutations in type III collagen, Alport syndrome from mutations in type IV collagen, and dystrophic epidermolysis bullosa from mutations in type VII collagen. The predicted rates of substitutions by different amino acids for glycine in the alpha1(I), alpha2(I), alpha1(III), alpha5(IV), and alpha1(VII) chains (encoded by COL1A1, COL1A2, COL3A1, COL4A5, and COL7A1, respectively) were compared with missense mutations in those chains that have been observed to cause disease. The spectrum of amino acids replacing Gly was not significantly different from that expected for the alpha1(VII) chains, suggesting that any Gly replacement will cause disease. The distribution of residues replacing Gly was significantly different from that expected for all other collagen chains studied, with a particularly strong bias seen for alpha1(I) and alpha1(III) collagen chains. The bias did not correlate with the degree of chemical dissimilarity between Gly and the replacement residues, but in some cases a relationship was observed with the predicted extent of destabilization of the triple helix. For alpha1(III) collagen chains, the more destabilizing mutations were identified more often than expected. For alpha1(I), the most destabilizing residues, Val, Glu, and Asp, and the least destabilizing residue, Ala, were underrepresented. This bias supports the hypothesis that the level of triple-helix destabilization determines clinical outcome.  相似文献   

8.
Stickler syndrome is a genetically heterogeneous disorder that affects the ocular, skeletal, and auditory systems. To date three genes, COL2A1, COL11A1, and COL11A2, encoding the heterotypic type II/XI collagen fibrils present in vitreous and cartilage have been shown to have mutations that result in Stickler syndrome. As systemic features in this disorder are variable we have used an ophthalmic examination to differentiate those patients with a membranous vitreous phenotype associated with mutations in COL2A1, from other patients who may have mutations in other genes. Gene amplification and exon sequencing was used to screen 50 families or sporadic cases with this membranous phenotype, for mutations in COL2A1. Mutations were detected in 47 (94%) cases consisting of 166 affected and 78 unaffected individuals. We also demonstrate that the predominantly ocular form of type 1 Stickler syndrome is not confined to mutations in the alternatively spliced exon 2. Using splicing reporter constructs we demonstrate that a mutant GC donor splice site in intron 51 can be spliced normally; this contributed to the predominantly ocular phenotype in the family in which it occurred.  相似文献   

9.
Arginine519-cysteine mutation in the type II procollagen gene (COL2A1) is known to be associated with mild spondyloepiphyseal dysplasia (SED) and precocious generalized osteoarthritis (OA). Five families have now been identified with this mutation. To determine whether a common founder was responsible for the mutation in these five families, we defined the haplotype of the mutation-bearing chromosome using four restriction fragment length polymorphisms (RFLPs) and the 3′-untranslated region VNTR. Haplotype frequencies were estimated for 69 control samples. Three distinct mutation-bearing haplotypes were identified, with three families sharing a common haplotype. For three distinct haplotypes to have derived from a single founder, three independent recombination events would have had to occur. Thus the arg519 codon appears to represent a possible site of recurrent mutations in COL2A1, an uncommon phenomenon in collagen genes. Hum Mutat 12:172–176, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
The 2017 classification of Ehlers-Danlos syndromes (EDS) identifies three types associated with causative variants in COL1A1/COL1A2 and distinct from osteogenesis imperfecta (OI). Previously, patients have been described with variable features of both disorders, and causative variants in COL1A1/COL1A2; but this phenotype has not been included in the current classification. Here, we expand and re-define this OI/EDS overlap as a missing EDS type. Twenty-one individuals from 13 families were reported, in whom COL1A1/COL1A2 variants were found after a suspicion of EDS. None of them could be classified as affected by OI or by any of the three recognized EDS variants associated with COL1A1/COL1A2. This phenotype is dominated by EDS-related features. OI-related features were limited to mildly reduced bone mass, occasional fractures and short stature. Eight COL1A1/COL1A2 variants were novel and five recurrent with a predominance of glycine substitutions affecting residues within the procollagen N-proteinase cleavage site of α1(I) and α2(I) procollagens. Selected variants were investigated by biochemical, ultrastructural and immunofluorescence studies. The pattern of observed changes in the dermis and in vitro for selected variants was more typical of EDS rather than OI. Our findings indicate the existence of a wider recognizable spectrum associated with COL1A1/COL1A2.  相似文献   

11.
IntroductionThe diagnosis of Ehlers-Danlos syndrome is usually based on well-defined diagnostic criteria and the result of DNA investigation. Classical (cEDS) and vascular type (vEDS) are the most prevalent subtypes and are caused by heterozygous pathogenic variants in COL5A1, COL5A2, COL1A1 or, respectively, in COL3A1. We describe 3 cases with contiguous deletions resulting in haploinsufficiency of both genes with relative mild features of connective tissue disease.Patients and methodsInformation on medical history, physical information, genetic results (CNV-analysis) and imaging were obtained from the medical file.ResultsThe first patient was a 31 yr old female, diagnosed during pregnancy after the NIPT result showed an interstitial deletion of 2.3 Mb on chromosome 2q32.2, confirmed by XON array. She had normal aortic diameters. She had no signs of cEDS or vEDS except for a relatively thin skin with increased visibility of the veins. Her father died suddenly of a type A/B dissection at the age of 62 years. The second patient was diagnosed at the age of 10 years after she was referred because of her intellectual disability, autism and constipation. She was known with a thin and vulnerable skin and had a bleeding after tooth extraction. Array showed a 14,5 Mb deletion of 2q31.3q32.3 (de novo). Imaging (latest age 17 years) did not show any abnormalities. The third patient, aged 28 years, was diagnosed during pregnancy with an interstitial deletion of circa 6 Mb on chromosome 2q31.1q32.2 3, previously shown in the fetus with bilateral club feet and hydronephrosis. She had no vEDS facial features and the skin was relatively thin. She has thoracolumbar scoliosis and dural ectasia. Imaging did not reveal any vascular abnormalities. Her son, born at 37 weeks 3 days. had club feet but not other clinical signs suggestive of classical or vascular EDS.DiscussionThree patients are described with a contiguous deletion of varying size encompassing the COL3A1 and COL5A2 gene. Due to the mild phenotype a diagnosis of EDS was not suspected and was found coincidental. Since two of the patients were pregnant without major complications these patients may require a less defensive, approach to pregnancy/delivery.  相似文献   

12.
成骨不全一家系的COL1A1基因突变分析   总被引:3,自引:0,他引:3  
目的探讨一个成骨不全家系的COL1A1基因的突变位点及其与临床特征的关系。方法收集一个成骨不全家系的临床资料,采用聚合酶链反应以及直接测序法对家系内成员进行COL1A1基因突变位点检测,同时对50名无血缘关系健康对照者的该位点进行限制性内切酶分析。结果该家系中成骨不全患者均存在COL1A1基因的第2461位点G→A突变(17.821S),但其临床特征不一致。而在家系内非患者及正常对照者中均未发现该突变。结论COL1A1基因突变是中国人群中成骨不全致病原因之一。成骨不全的表型不仅与基因型有关,还与遗传背景有关。  相似文献   

13.
Osteogenesis imperfecta (OI) is caused by mutations in COL1A1 and COL1A2 that code for the alpha1 and alpha2 chains of type I collagen. Phenotypes correlate with the mutation types in that COL1A1 null mutations lead to OI type I, and structural mutations in alpha1(I) or alpha2(I) lead to more severe OI types (II-IV). However, correlative analysis between mutation types and OI associated hearing loss has not been previously performed. A total of 54 Finnish OI patients with previously diagnosed hearing loss or age 35 or more years were analyzed here for mutations in COL1A1 or COL1A2. Altogether 49 mutations were identified, of which 41 were novel. The 49 mutations represented the molecular genetic background of 41.1% of the Finnish OI population. A total of 38 mutations were in COL1A1 and 11 were in COL1A2. Of these, 16 were glycine substitutions and 16 were splicing mutations in alpha1(I) or alpha2(I). In addition, 17 null allele mutations were detected in COL1A1. A total of 32 patients (65.3%) with a mutation had hearing loss. That is slightly more than in our previous population study on Finnish adults with OI (57.9%). The association between the mutation types and OI type was statistically evident. Patients with COL1A1 mutations more frequently had blue scleras than those with COL1A2 mutations. In addition, patients with COL1A2 mutations tended to be shorter than those with COL1A1 mutations. However, no correlation was found between the mutated gene or mutation type and hearing pattern. These results suggest that the basis of hearing loss in OI is complex, and it is a result of multifactorial, still unknown genetic effects.  相似文献   

14.
Stickler syndrome is characterized by ocular, auditory, skeletal, and orofacial abnormalities. We describe a family with autosomal recessive Stickler syndrome. The main clinical findings consisted of high myopia, vitreoretinal degeneration, retinal detachment, hearing loss, and short stature. Affected family members were found to have a homozygous loss‐of‐function mutation in COL9A2, c.843_c.846 + 4del8. A family with autosomal recessive Stickler syndrome was previously described and found to have a homozygous loss‐of‐function mutation in COL9A1. COL9A1, COL9A2, and COL9A3 code for collagen IX. All three collagen IX α chains, α1, α2, and α3, are needed for formation of functional collagen IX molecule. In dogs, two causative loci have been identified in autosomal recessive oculoskeletal dysplasia. This dysplasia resembles Stickler syndrome. Recently, homozygous loss‐of‐function mutations in COL9A2 and COL9A3 were found to co‐segregate with the loci. Together the data from the present study and the previous studies suggest that loss‐of‐function mutations in any of the collagen IX genes can cause autosomal recessive Stickler syndrome. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
Pathogenic variants in COL1A1 and COL1A2 are involved in osteogenesis imperfecta (OI) and, rarely, Ehlers-Danlos syndrome (EDS) subtypes and OI-EDS overlap syndromes (OIEDS1 and OIEDS2, respectively). Here we describe a cohort of 34 individuals with likely pathogenic and pathogenic variants in COL1A1 and COL1A2, 15 of whom have potential OIEDS1 (n = 5) or OIEDS2 (n = 10). A predominant OI phenotype and COL1A1 frameshift variants are present in 4/5 cases with potential OIEDS1. On the other hand, 9/10 potential OIEDS2 cases have a predominant EDS phenotype, including four with an initial diagnosis of hypermobile EDS (hEDS). An additional case with a predominant EDS phenotype had a COL1A1 arginine-to-cysteine variant that was originally misclassified as a variant of uncertain significance despite this type of variant being associated with classical EDS with vascular fragility. Vascular/arterial fragility was observed in 4/15 individuals (including one individual with an original diagnosis of hEDS), which underscores the unique clinical surveillance and management needs in these patients. In comparison to previously described OIEDS1/2, we observed differentiating features that should be considered to refine currently proposed criteria for genetic testing in OIEDS, which will be beneficial for diagnosis and management. Additionally, these results highlight the importance of gene-specific knowledge for informed variant classification and point to a potential genetic resolution (COL1A2) for some cases of clinically diagnosed hEDS.  相似文献   

16.
17.
Skin hyperelasticity, tissue fragility with atrophic scars, and joint hypermobility are characteristic for the classical type of Ehlers-Danlos syndrome (EDS). The disease is usually inherited as an autosomal dominant trait; however, recessive mode of inheritance has been documented in tenascin-X-deficient EDS patients. Mutations in the genes coding for collagen alpha1(V) chain (COL5A1), collagen alpha2(V) chain (COL5A2), tenascin-X (TNX), and collagen alpha1(I) chain (COL1A1) have been characterized in patients with classical EDS, thus confirming the suspected genetic heterogeneity. Recently, we described a patient with severe classical EDS due to a Gly1489Glu substitution in the alpha1(V) triple-helical domain who was, in addition, heterozygous for a disease-modifying Gly530Ser substitution in the alpha1(V) NH(2)-terminal domain [Giunta and Steinmann, 2000: Am. J. Med. Genet. 90:72-79; Steinmann and Giunta, 2000: Am. J. Med. Genet. 93:342]. Here, we report on a 4-year-old boy with mild classical EDS, born to healthy consanguineous Turkish parents; the mother presented a soft skin, while the father had a normal thick skin. Ultrastructural analysis of the dermis revealed in the patient the typical "cauliflower" collagen fibrils, while in both parents variable moderate aberrations were seen. Mutation revealed the presence of a homozygous Gly530Ser substitution in the alpha1(V) collagen chains in the patient, while both parents were heterozygous for the same substitution. An additional mutation in either the COL5A1 and COL5A2 genes was excluded. Furthermore, haplotype analysis with polymorphic microsatellite markers excluded linkage to the genes coding for alpha3(V) collagen (COL5A3), tenascin-X (TNX), thrombospondin-2 (THBS2), and decorin (DCN). These new findings support further our previous hypothesis that the heterozygous Gly530Ser substitution is disease modifying and now suggest that in the homozygous state it is disease causing.  相似文献   

18.
The clinical findings of eight families with Stickler syndrome were analyzed and compared with the results of linkage studies using a marker for the type II collagen gene (COL2A1). In six families, there was linkage of the phenotype to COL2A1. The manifestations of the affected individuals were similar to those of the original Stickler syndrome family [Stickler et al., Mayo. Clin. Proc. 40:433–455, 1965] and resembled the phenotype of the previously reported individuals or families with Stickler syndrome in which a dominant mutation in the COL2A1 gene has been identified. Linkage to COL2A1 was excluded in the two remaining families. The most striking difference between these two types of families was the absence of severe myopia and retinal detachment in the two unliked families. In the COL2A1 unlinked families, linkage of the phenotype to genes (COL11A1 and COL11A2) that encode proα chains of type XI collagen, a minor cartilage-specific collagen, was also excluded. Since Stickler syndrome can be produced by mutations in COL2A1, COL11A1, and COL11A2, our data suggest that there is at least a fourth locus for Stickler syndrome. Am. J. Med. Genet. 80:121–127, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
We have performed effective mutation screening of COL4A5 with a new method of direct, multiplex genomic amplification that employs a single buffer condition and PCR profile. Application of the method to a consecutive series of 46 United States patients with diverse indications of Alport syndrome resulted in detection of mutations in 31 cases and of five previously unreported polymorphisms. With a correction for the presence of cases that are not likely to be due to changes at the COL4A5 locus, the mutation detection sensitivity is greater than 79%. The test examines 52 segments, including the COL4A6/COL4A5 intergenic promoter region, all 51 of the previously recognized exons and two newly detected exons between exons 41 and 42 that encode an alternatively spliced mRNA segment. New genomic sequence information was generated and used to design primer pairs that span substantial intron sequences on each side of all 53 exons. For SSCP screening, 16 multiplex PCR combinations (15 4‐plex and 1 3‐plex) were used to provide complete, partially redundant coverage of the gene. The selected combinations allow clear resolution of products from each segment using various SSCP gel formulations. One of the 29 different mutations detected initially seemed to be a missense change in exon 32 but was found to cause exon skipping. Another missense variant may mark a novel functional site located in the collagenous domain. © 2001 Wiley‐Liss, Inc.  相似文献   

20.
Ehlers-Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders. Recently mutations have been found in the genes for type V collagen in a small number of people with the most common forms of EDS, types I and II. Here we characterise a COL5A2 mutation in an EDS II family. Cultured dermal fibroblasts obtained from an affected subject synthesised abnormal type V collagen. Haplotype analysis excluded COL5A1 but was concordant with COL5A2 as the disease locus. The entire open reading frame of the COL5A2 cDNA was directly sequenced and a single base mutation detected. It substituted a glycine residue within the triple helical domain (G934R) of alpha2(V) collagen, typical of the dominant negative changes in other collagens, which cause various other inherited connective tissue disorders. All three affected family members possessed the single base change, which was absent in 50 normal chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号