首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain transmitters inhibit Kir3 (GIRK) channels, resulting in neuronal excitation. We analysed signalling mechanisms for substance P (SP)-induced Kir3 inhibition in relation to the role of phosphatidylinositol 4,5-bisphosphate (PIP2). SP rapidly – with a half-time of ∼10 s with intracellular GTPγS and ∼14 s with intracellular GTP – inhibits a robustly activated Kir3.1/Kir3.2 current. A mutant Kir3 channel, Kir3.1(M223L)/Kir3.2(I234L), which has a stronger binding to PIP2 than does the wild type Kir3.1/Kir3.2, is inhibited by SP as rapidly as the wild type Kir3.1/Kir3.2. This result contradicts the idea that Kir3 inhibition originates from the depletion of PIP2. A Kir2.1 (IRK1) mutant, Kir2.1(R218Q), despite having a weaker binding to PIP2 than wild type Kir3.1/Kir3.2, shows a SP-induced inhibition slower than the wild type Kir3.1/Kir3.2 channel, again conflicting with the PIP2 theory of channel inhibition. Co-immunoprecipitation reveals that Gαq binds with Kir3.2, but not with Kir2.2 or Kir2.1. These functional results and co-immunoprecipitation data suggest that Gq activation rapidly inhibits Kir3 (but not Kir2), possibly by direct binding of Gαq to the channel.  相似文献   

2.
G-protein-coupled receptors (GPCRs) are key players in the precise tuning of intercellullar communication. In the brain, both major neurotransmitters, glutamate and GABA, act on specific GPCRs [the metabotropic glutamate (mGlu) and GABAB receptors] to modulate synaptic transmission. These receptors are encoded by the largest gene family, and have been found to associate into both homo- and hetero-oligomers, which increases the complexity of this cell communication system. Here we show that dimerization is required for mGlu and GABAB receptors to function, since the activation process requires a relative movement between the subunits to occur. We will also show that, in contrast to the mGlu receptors, which form strict dimers, the GABAB receptors assemble into larger complexes, both in transfected cells and in the brain, resulting in a decreased G-protein coupling efficacy. We propose that GABAB receptor oligomerization offers a way to increase the possibility of modulating receptor signalling and activity, allowing the same receptor protein to have specific properties in neurons at different locations.  相似文献   

3.
The molecular identity of smooth muscle ATP-sensitive K+ channels (KATP) is not established with certainty. Patch clamp methods were employed to determine if recombinant KATP channels composed of Kir6.1 and SUR2B subunits expressed by human embryonic kidney (HEK293) cells share an identical modulation by protein kinase C (PKC) with the vascular KNDP subtype of KATP channel. The open probability of Kir6.1/SUR2B channels was determined before and after sequential exposure to pinacidil (50 μM) and the combination of pinacidil and phorbol 12,13-dibutyrate (PdBu; 50 n m ). Treatment with PdBu caused a decline in channel activity, but this was not seen with an inactive phorbol ester, 4α-phorbol 12,13-didecanoate (PdDe; 50 n m ). Angiotensin II (0.1 μM) induced a similar inhibition of Kir6.1/SUR2B channels in cells expressing angiotensin AT1 receptors. The effects of PdBu and angiotensin II were blocked by the PKC inhibitor, chelerythrine (3 μM). Purified PKC inhibited Kir6.1/SUR2B activity (in 0.5 m m ATP/ 0.5 m m ADP), and the inhibition was blocked by a specific peptide inhibitor of PKC, PKC(19-31). In contrast, PdBu increased the activity of recombinant KATP channels composed of Kir6.2 and SUR2B, or the combination of Kir6.1, Kir6.2 and SUR2B subunits. The results indicate that the modulation by PKC of Kir6.1/SUR2B, but not Kir6.2/SUR2B or Kir6.1-Kir6.2/SUR2B channel gating mimics that of native vascular KNDP channels. Physiological inhibition of vascular KATP current by vasoconstrictors which utilize intracellular signalling cascades involving PKC is concluded to involve the modulation of KNDP channel complexes composed of four Kir6.1 and their associated SUR2B subunits.  相似文献   

4.
It has been recently shown that endothelial platelet endothelial cell adhesion molecule-1 (PECAM-1) expression is pro-atherogenic. PECAM-1 is involved in sensing rapid changes in fluid shear stress but the mechanisms for activating signalling complexes at the endothelial cell junction have yet to be elucidated. Additional studies suggest the activation of membrane-bound G proteins Gαq/11 also mediate flow-induced responses. Here, we investigated whether PECAM-1 and Gαq/11 could act in unison to rapidly respond to fluid shear stress. With immunohistochemistry, we observed a co-localization of Gαq/11 and PECAM-1 at the cell–cell junction in the atheroprotected section of mouse aortae. In contrast, Gαq/11 was absent from junctions in atheroprone areas as well as in all arterial sections of PECAM-1 knockout mice. In primary human endothelial cells, temporal gradients in shear stress led to a rapid dissociation of the Gαq/11–PECAM-1 complex within 30 s and a partial relocalization of the Gαq/11 staining to perinuclear areas within 150 min, whereas transitioning fluid flow devoid of temporal gradients did not disrupt the complex. Inhibition of G protein activation eliminated temporal gradient flow-induced Gαq/11–PECAM-1 dissociation. These results allow us to conclude that Gαq/11–PECAM-1 forms a mechanosensitive complex and its localization suggests the Gαq/11–PECAM-1 complex is a critical mediator of vascular diseases.  相似文献   

5.
Leak potassium currents in the nervous system are often carried through two-pore-domain potassium (K2P) channels. These channels are regulated by a number of different G protein-coupled receptor (GPCR) pathways. The TASK subfamily of K2P channels are inhibited following activation of the G protein Gαq. The mechanism(s) that transduce this inhibition have yet to be established but there is evidence to support a role of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis products, depletion of PIP2 itself from the membrane, or a direct action of activated Gαq on TASK channels. It seems possible that more than one pathway may act in parallel to transduce inhibition. By contrast, TRESK channels are stimulated following activation of Gαq. This is due to stimulation of the protein phosphatase, calcineurin, which dephosphorylates TRESK channels and enhances their activity. TREK channels are the most widely regulated of the K2P channel subfamilies being inhibited following activation of Gαq and Gαs but enhanced following activation of Gαi. The multiple pathways activated and the apparent promiscuous coupling of at least some K2P channel types to different G protein regulatory pathways suggests that the excitability of neurons that express K2P channels will be profoundly sensitive to variations in GPCR activity.  相似文献   

6.
Background K+ channels exert control over neuronal excitability by regulating resting potential and input resistance. Here, we show that GABAB receptor-mediated activation of a background K+ conductance modulates transmission at rat carotid body chemosensory synapses in vitro . Carotid body chemoreceptor (type I) cells expressed GABAB(1) and GABAB(2) subunits as well as endogenous GABA. The GABAB receptor agonist baclofen activated an anandamide- and Ba2+-sensitive TASK-1-like background K+ conductance in chemoreceptor cell clusters, but was without effect on voltage-gated Ca2+ channels. Hydroxysaclofen (50 μ m ), 5-aminovaleric acid (100 μ m ) and CGP 55845 (100 n m ), selective GABAB receptor blockers, potentiated the hypoxia-induced receptor potential; this effect was abolished by pre-treatment with pertussis toxin (PTX; 500 ng ml-1), an inhibitor of Gi, or by H-89 (50 μ m ), a selective inhibitor of protein kinase A. The protein kinase C inhibitor chelerythrine chloride (100 μ m ) was without effect on this potentiation. GABAB receptor blockers also caused depolarisation of type I cells in clusters, and enhanced spike discharge in spontaneously firing cells. In functional co-cultures of type I clusters and petrosal sensory neurones, GABAB receptor blockers potentiated hypoxia-induced postsynaptic chemosensory responses mediated by the fast-acting transmitters ACh and ATP. Thus GABAB receptor-mediated activation of TASK-1 or a related channel provides a presynaptic autoregulatory feedback mechanism that modulates fast synaptic transmission in the rat carotid body.  相似文献   

7.
ATP-sensitive K+ (KATP) channels are hetero-octamers of inwardly rectifying K+ channel (Kir6.2) and sulphonylurea receptor subunits (SUR1 in pancreatic β-cells, SUR2A in heart). Heterozygous gain-of-function mutations in Kir6.2 cause neonatal diabetes, which may be accompanied by epilepsy and developmental delay. However, despite the importance of KATP channels in the heart, patients have no obvious cardiac problems. We examined the effects of adenine nucleotides on KATP channels containing wild-type or mutant (Q52R, R201H) Kir6.2 plus either SUR1 or SUR2A. In the absence of Mg2+, both mutations reduced ATP inhibition of SUR1- and SUR2A-containing channels to similar extents, but when Mg2+ was present ATP blocked mutant channels containing SUR1 much less than SUR2A channels. Mg-nucleotide activation of SUR1, but not SUR2A, channels was markedly increased by the R201H mutation. Both mutations also increased resting whole-cell KATP currents through heterozygous SUR1-containing channels to a greater extent than for heterozygous SUR2A-containing channels. The greater ATP inhibition of mutant Kir6.2/SUR2A than of Kir6.2/SUR1 can explain why gain-of-function Kir6.2 mutations manifest effects in brain and β-cells but not in the heart.  相似文献   

8.
Adenosine receptors (ARs) are G protein-coupled receptors (GPCRs) mediating the neuromodulatory actions of adenosine that influence emotional, cognitive, motor, and other functions in the central nervous system (CNS). Previous studies show complex formation between ARs and metabotropic glutamate receptors (mGluRs) in heterologous systems and close colocalization of ARs and mGluRs in several central neurons. Here we explored the possibility of intimate functional interplay between Gi/o protein-coupled A1-subtype AR (A1R) and type-1 mGluR (mGluR1) naturally occurring in cerebellar Purkinje cells. Using a perforated-patch voltage-clamp technique, we found that both synthetic and endogenous agonists for A1R induced continuous depression of a mGluR1-coupled inward current. A1R agonists also depressed mGluR1-coupled intracellular Ca2+ mobilization monitored by fluorometry. A1R indeed mediated this depression because genetic depletion of A1R abolished it. Surprisingly, A1R agonist-induced depression persisted after blockade of Gi/o protein. The depression appeared to involve neither the cAMP-protein kinase A cascade downstream of the alpha subunits of Gi/o and Gs proteins, nor cytoplasmic Ca2+ that is suggested to be regulated by the beta-gamma subunit complex of Gi/o protein. Moreover, A1R did not appear to affect Gq protein which mediates the mGluR1-coupled responses. These findings suggest that A1R modulates mGluR1 signalling without the aid of the major G proteins. In this respect, the A1R-mediated depression of mGluR1 signalling shown here is clearly distinguished from the A1R-mediated neuronal responses described so far. These findings demonstrate a novel neuromodulatory action of adenosine in central neurons.  相似文献   

9.
ATP-sensitive K+ channels (KATP channels) are metabolic sensors formed by association of a K+ channel, Kir6, and an ATP-binding cassette (ABC) protein, SUR, which allosterically regulates channel gating in response to nucleotides and pharmaceutical openers and blockers. How nucleotide binding to SUR translates into modulation of Kir6 gating remains largely unknown. To address this issue, we have used a novel conformational KATP channel inhibitor, rhodamine 123 (Rho123) which targets the Kir6 subunit in a SUR-dependent manner. Rho123 blocked SUR-less Kir6.2 channels with an affinity of ∼1 μ m , regardless of the presence of nucleotides, but it had no effect on channels formed by the association of Kir6.2 and the N-terminal transmembrane domain TMD0 of SUR. Rho123 blocked SUR + Kir6.2 channels with the same affinity as Kir6.2 but this effect was antagonized by ATP. Protection from Rho123 block by ATP was due to direct binding of ATP to SUR and did not entail hydrolysis because it was not mimicked by AMP, did not require Mg2+ and was reduced by mutations in the nucleotide-binding domains of SUR. These results suggest that Rho123 binds at the TMD0–Kir6.2 interface and that binding of ATP to SUR triggers a change in the structure of the contact zone between Kir6.2 and domain TMD0 of SUR that causes masking of the Rho123 site on Kir6.2.  相似文献   

10.
Signalling by heterotrimeric G proteins is often isoform-specific, meaning certain effectors are regulated exclusively by one family of heterotrimers. For example, in excitable cells inwardly rectifying potassium (GIRK) channels are activated by Gβγ dimers derived specifically from Gi/o heterotrimers. Since all active heterotrimers are thought to dissociate and release free Gβγ dimers, it is unclear why these channels respond primarily to dimers released by Gi/o heterotrimers. We reconstituted GIRK channel activation in cells where we could quantify heterotrimer expression at the plasma membrane, GIRK channel activation, and heterotrimer dissociation. We find that GoA heterotrimers are more effective activators of GIRK channels than Gs heterotrimers when comparable amounts of each are available. We also find that active GoA heterotrimers dissociate more readily than active Gs heterotrimers. Differential dissociation may thus provide a simple explanation for Gα-specific activation of GIRK channels and other Gβγ-sensitive effectors.  相似文献   

11.
ATP-sensitive potassium (KATP) channels are present in many tissues, including pancreatic β-cells, heart, skeletal muscle, vascular smooth muscle and brain, in which they couple the cell metabolic state to membrane potential. KATP channels are hetero-octameric proteins composed of the pore-forming subunits Kir6.x (Kir6.1 or Kir6.2) of the inwardly rectifying K+ channel family and the regulatory subunits SURx (SUR1, SUR2A or SUR2B), the receptor of the sulphonylureas widely used in treatment of type 2 diabetes mellitus. Different combinations of Kir6.x and SURx comprise KATP channels with distinct electrophysiological and pharmacological properties, but their physiological functions in the various tissues are unclear. Our studies of Kir6.2 null (knockout) and Kir6.1 null mice have shown that KATP channels are critical metabolic sensors in protection against acute metabolic stress such as hyperglycaemia, hypoglycaemia, ischaemia and hypoxia.  相似文献   

12.
Tottering , a mouse model for absence epilepsy and cerebellar ataxia, carries a mutation in the gene encoding class A (P/Q-type) Ca2+ channels, the dominant exocytotic Ca2+ channel at most synapses in the mammalian central nervous system. Comparing tottering to wild-type mice, we have studied glutamatergic transmission between parallel fibres and Purkinje cells in cerebellar slices. Results from biochemical assays and electrical field recordings demonstrate that glutamate release from parallel fibre terminals of the tottering mouse is controlled largely by class B Ca2+ channels (N-type), in contrast to the P/Q-channels that dominate release from wild-type terminals. Since N-channels, in a variety of assays, are more effectively inhibited by G proteins than are P/Q-channels, we tested whether synaptic transmission between parallel fibres and Purkinje cells in tottering mice was more susceptible to inhibitory modulation by G protein-coupled receptors than in their wild-type counterparts. GABAB receptors and α2-adrenergic receptors (activated by bath application of transmitters) produced a three- to fivefold more potent inhibition of transmission in tottering than in wild-type synapses. This increased modulation is likely to be important for cerebellar transmission in vivo , since heterosynaptic depression, produced by activating GABAergic interneurones, greatly prolonged GABAB receptor-mediated presynaptic inhibition in tottering as compared to wild-type slices. We propose that this enhanced modulation shifts the balance of synaptic input to Purkinje cells in favour of inhibition, reducing Purkinje cell output from the cerebellum, and may contribute to the aberrant motor phenotype that is characteristic of this mutant animal.  相似文献   

13.
Although T-type Ca2+ channels in the thalamus play a crucial role in determining neuronal excitability and are involved in sensory processing and pathophysiology of epilepsy, little is known about the molecular mechanisms involved in their regulation. Here, we report that reducing agents, including endogenous sulfur-containing amino acid l -cysteine, selectively enhance native T-type currents in reticular thalamic (nRT) neurons and recombinant CaV3.2 (α1H) currents, but not native and recombinant CaV3.1 (α1G)- and CaV3.3 (α1I)-based currents. Consistent with this data, T-type currents of nRT neurons from transgenic mice lacking CaV3.2 channel expression were not modulated by reducing agents. In contrast, oxidizing agents inhibited all native and recombinant T-type currents non-selectively. Thus, our findings directly demonstrate that CaV3.2 channels are the main molecular substrate for redox regulation of neuronal T-type channels. In addition, because thalamic T-type channels generate low-threshold Ca2+ spikes that directly correlate with burst firing in these neurons, differential redox regulation of these channels may have an important function in controlling cellular excitability in physiological and pathological conditions and fine-tuning of the flow of sensory information into the central nervous system.  相似文献   

14.
N-type  voltage-dependent  Ca2+ channels (N-VDCCs) play important roles in neurotransmitter release and certain postsynaptic phenomena. These channels are modulated by a number of intracellular factors, notably by Gβγ subunits of G proteins, which inhibit N-VDCCs in a voltage-dependent (VD) manner. Here we show that an increase in intracellular Na+ concentration inhibits N-VDCCs  in hippocampal pyramidal neurones and in Xenopus oocytes. In acutely dissociated hippocampal neurones, Ba2+ current via N-VDCCs was inhibited by Na+ influx caused by the activation of NMDA receptor channels. In Xenopus oocytes expressing N-VDCCs, Ba2+ currents were inhibited by Na+ influx and enhanced by depletion of Na+, after incubation in a Na+-free extracellular solution. The Na+-induced inhibition was accompanied by the development of  VD facilitation, a hallmark of a Gβγ-dependent process. Na+-induced regulation of N-VDCCs is Gβγ dependent, as suggested by the blocking of Na+ effects by Gβγ scavengers and by excess Gβγ, and may be mediated by the Na+-induced dissociation of Gαβγ heterotrimers. N-VDCCs may be novel effectors of Na+ion, regulated by the Na+ concentration via Gβγ.  相似文献   

15.
Mutations in the pore-forming subunit of the ATP-sensitive K+ (KATP) channel Kir6.2 cause neonatal diabetes. Understanding the molecular mechanism of action of these mutations has provided valuable insight into the relationship between the structure and function of the KATP channel. When Kir6.2 containing a mutation (F333I) in the putative ATP-binding site is coexpressed with the cardiac type of regulatory KATP channel subunit, SUR2A, the channel sensitivity to ATP inhibition is reduced and the intrinsic open probability ( P o ) is increased. However, the extent of macroscopic current activation by MgADP was unaffected. Here we examine rundown and MgADP activation of wild-type and Kir6.2-F333I/SUR2A channels using single-channel recording, noise analysis and spectral analysis. We also compare the effect of mutating the adjacent residue, G334, on rundown and MgADP activation. All three approaches indicated that rundown of Kir6.2-F333I/SUR2A channels is due to a reduction in the number of active channels in the patch and that MgADP reactivation involves recruitment of inactive channels. In contrast, rundown and MgADP reactivation of wild-type and Kir6.2-G334D/SUR2A channels, and of Kir6.2-F333I/SUR1 channels, involve a gradual change in P o . Our results suggest that F333 in Kir6.2 interacts functionally with SUR2A to modulate channel rundown and MgADP activation. This interaction is fairly specific as it is not disturbed when the adjacent residue (G334) is mutated. It is also not a consequence of the enhanced P o of Kir6.2-F333I/SUR2A channels, as it is not found for other mutant channels with high P o (Kir6.2-I296L/SUR2A).  相似文献   

16.
The pancreatic β-cell type of ATP-sensitive potassium (KATP) channel (Kir6.2/SUR1) is inhibited by intracellular ATP and ADP, which bind to the Kir6.2 subunit, and is activated by Mg-nucleotide interaction with the regulatory sulphonylurea receptor subunits (SUR1). The nicotinamide adenine dinucleotides NAD and NADP consist of an ADP molecule with a ribose group and a nicotinamide moiety attached to the terminal phosphate. Both these molecules block native KATP channels in pancreatic β-cells at concentrations above 500 μM, and activate them at lower concentrations. We therefore investigated whether NAD and NADP interact with both Kir6.2 and SUR1 subunits of the KATP channel by comparing the potency of these agents on recombinant Kir6.2ΔC and Kir6.2/SUR1 channels expressed in Xenopus oocytes. Our results show that, at physiological concentrations, NAD and NADP interact with the nucleotide inhibitory site of Kir6.2 to inhibit Kir6.2/SUR1 currents. They may therefore contribute to the resting level of channel inhibition in the intact cell. Importantly, our data also reveal that this interaction is dependent on the presence of SUR1, which may act by increasing the width of the nucleotide-binding pocket of Kir6.2.  相似文献   

17.
Whole-cell recordings of EPSCs and G-protein-activated inwardly rectifying (GIRK) currents were made from cultured hippocampal neurones to determine the effect of long-term agonist treatment on the presynaptic and postsynaptic responses mediated by GABAB receptors (GABABRs). GABABR-mediated presynaptic inhibition was unaffected by agonist (baclofen) treatment for up to 48 h, and was desensitized by about one-half after 96 h. In contrast, GABABR-mediated GIRK currents were desensitized by a similar amount after only 2 h of agonist treatment. In addition, presynaptic inhibition mediated by A1 adenosine receptors (A1Rs) was unaffected by prolonged GABABR activation, whereas A1R-mediated GIRK currents were desensitized. Desensitization of postsynaptic GABABR and A1R responses was blocked by the GABABR antagonist (1-(S)-3,4-dichlorophenylethyl)amino-2-(S) hydroxypropyl-p-benzyl-phosphonic acid (CGP 55845A), but not by the A1R antagonist cyclopentyldipropylxanthine (DPCPX). GIRK current amplitude could be partially restored after baclofen treatment by either coapplication of baclofen and adenosine, or intracellular infusion of the non-hydrolysable GTP analog 5'-guanylylimidodiphosphate (Gpp(NH)p). Short-term (4-24 h) baclofen treatment also significantly desensitized the inhibition of postsynaptic voltage-gated calcium channels by activation of GABABRs or A1Rs. These results show that responses mediated by GABABRs and A1Rs desensitize differently in presynaptic and postsynaptic compartments, and demonstrate the heterologous desensitization of postsynaptic A1R responses.  相似文献   

18.
Anterior pituitary cells express γ-aminobutyric acid (GABA)-A receptor-channels, but their structure, distribution within the secretory cell types, and nature of action have not been clarified. Here we addressed these questions using cultured anterior pituitary cells from postpubertal female rats and immortalized αT3-1 and GH3 cells. Our results show that mRNAs for all GABAA receptor subunits are expressed in pituitary cells and that α1/β1 subunit proteins are present in all secretory cells. In voltage-clamped gramicidin-perforated cells, GABA induced dose-dependent increases in current amplitude that were inhibited by bicuculline and picrotoxin and facilitated by diazepam and zolpidem in a concentration-dependent manner. In intact cells, GABA and the GABAA receptor agonist muscimol caused a rapid and transient increase in intracellular calcium, whereas the GABAB receptor agonist baclofen was ineffective, suggesting that chloride-mediated depolarization activates voltage-gated calcium channels. Consistent with this finding, RT-PCR analysis indicated high expression of NKCC1, but not KCC2 cation/chloride transporter mRNAs in pituitary cells. Furthermore, the GABAA channel reversal potential for chloride ions was positive to the baseline membrane potential in most cells and the activation of ion channels by GABA resulted in depolarization of cells and modulation of spontaneous electrical activity. These results indicate that secretory pituitary cells express functional GABAA receptor-channels that are depolarizing.  相似文献   

19.
The functioning of midbrain dopaminergic neurones is closely involved in mental processes and movement. In particular the modulation of the inhibitory inputs on these cells might be crucial in controlling firing activity and dopamine (DA) release in the brain. Here, we report a concentration-dependent depressant action of dopamine on the GABAB IPSPs intracellularly recorded from dopaminergic neurones. Such effect was observed in spite of the presence of D1/D2 dopamine receptor antagonists. A reduction of the GABAB IPSPs was also caused by noradrenaline (norepinephrine) and by l -β-3,4-dihydroxyphenylalanine ( l -DOPA), which is metabolically transformed into DA. The DA-induced depression of the IPSPs was partially antagonised by the α2 antagonists yohimbine and phentolamine. DA did not change the postsynaptic effects of the GABAB agonist baclofen, suggesting a presynaptic site of action. Furthermore, DA did not modulate the GABAA-mediated IPSP. The DA-induced depression of the GABAB IPSP occluded the depression produced by serotonin and was not antagonized by serotonin antagonists. The DA- and 5-HT-induced depression of the GABAB IPSP persisted when calcium and potassium currents were reduced in to the presynaptic terminals. These results describe an unconventional presynaptic, D1 and D2 independent action of DA on the GABAB IPSP. This might have a principal role in determining therapeutic/side effects of l -DOPA and antipsychotics and could be also involved in drug abuse.  相似文献   

20.
ATP-sensitive K+ (KATP) channels couple cell metabolism to cell electrical activity. Wild-type (Kir6.2/SUR1) KATP channels heterologously expressed in Xenopus oocytes give rise to very small inward currents in cell-attached patches. A large increase in the current is observed on patch excision into zero ATP solution. This is presumably due to loss of intracellular ATP leading to unblock of KATP channels. In contrast, channels containing Kir6.2 mutations associated with reduced ATP-sensitivity display non-zero cell-attached currents. Unexpectedly, these cell-attached currents are significantly smaller (by ∼40%) than those observed when excised patches are exposed to physiological ATP concentrations (1–10 m m ). Cramming the patch back into the oocyte cytoplasm restores mutant KATP current amplitude to that measured in the cell-attached mode. This implies that the magnitude of the cell-attached current is regulated not only by intracellular ATP but also by another cytoplasmic factor/s. This factor seems to require the nucleotide-binding domains of SUR1 to be effective. Thus a mutant Kir6.2 (Kir6.2ΔC-I296L) expressed in the absence of SUR1 exhibited currents of similar magnitude in cell-attached patches as in inside-out patches exposed to 10 m m MgATP. Similar results were found when Kir6.2-I296L was coexpressed with an SUR1 mutant that is insensitive to MgADP or MgATP activation. This suggests the oocyte contains a cytoplasmic factor that reduces nucleotide binding/hydrolysis at the NBDs of SUR1. In conclusion, our results reveal a novel regulatory mechanism for the KATP channel. This was not evident for wild-type channels because of their high sensitivity to block by ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号