首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To evaluate the possible roles of the Akt/PKB-mTOR-p70S6K-S6 and cap-dependent translation (eIF4G) pathways in the pathogenesis of tuberous sclerosis complex (TSC)-associated cortical tubers and focal cortical dysplasia (FCD), we performed qualitative and semiquantitative immunohistochemical evaluation on surgically resected corticectomy specimens to detect phosphorylated molecules as activated downstream targets of the signaling pathways. A tissue microarray paraffin block was constructed from 63 archival specimens of surgically resected TSC tubers, FCDs with balloon cells, cortical dysplasia without balloon cells, and histologically normal-appearing neocortex obtained from cases with Rasmussen encephalitis, cystic-gliotic encephalopathy, and temporal lobe epilepsy. Abnormal neuroglial cells were positive for phospho-S6 and phospho-eIF4G with various staining intensities in FCDs and TSC tubers. Both proteins were much less abundantly expressed in normal-appearing neocortex. Phospho-mTOR expression was observed in neurons in all groups. The expression of phospho-S6 and phospho-eIF4G was associated with dysplastic lesions (p < 0.05), and the cytoplasmic phospho-p70S6K expression was most specific for and abundant in TSC tubers and much less prominent in other groups (p < 0.01). These results suggest that constitutive activation of cytoplasmic p70S6K plays a pivotal role in the pathogenesis of TSC tubers and that FCDs possess a distinct mechanism for activation of S6 and eIF4G.  相似文献   

3.
Markers of cellular proliferation are expressed in cortical tubers   总被引:1,自引:0,他引:1  
p34cdc2, collapsin response mediator protein 4 (CRMP4), doublecortin (DCX), HuD, and NeuN expression was assessed in tuber (n = 16) and subependymal giant cell astrocytoma (SEGA; n = 6) specimens in tuberous sclerosis complex to define the developmental phenotype and lineage of giant cells (CGs) in these lesions. Many GCs exhibited HuD and NeuN immunolabeling suggesting a differentiated neural phenotype. Giant cells in tubers, SEGAs and subependymal nodules in the Eker rat model of TSC expressed CRMP4 and DCX. Tubers and SEGAs exhibit a heterogeneous profile of differentiation and may share a common cellular lineage. Tubers may contain a subpopulation of newly generated cells.  相似文献   

4.
Tuberous sclerosis complex results from mutations in the TSC1 (hamartin) and TSC2 (tuberin) genes. Tubers are cortical developmental malformations in patients with tuberous sclerosis complex that are associated with intractable epilepsy and are composed of histologically distinct cell types, including giant cells and dysplastic neurons. We recently showed that tubers can be dynamic lesions characterized by populations of cells undergoing proliferation, migration, and death. We demonstrate that there is cell-specific activation of the mammalian target of rapamycin (mTOR)/p70S6 kinase/ribosomal S6 cascade in tubers and that giant cells express activated (phosphorylated) p70S6 kinase and ribosomal S6 protein. These findings support impaired hamartin- and tuberin-mediated mTOR pathway regulation. Tubers likely form by constitutive activation of the mTOR cascade during brain development as a consequence of impaired hamartin or tuberin function.  相似文献   

5.
Purpose: Focal cortical dysplasia type IIB (FCD IIB) and cortical tubers of patients with tuberous sclerosis complex (TSC) are malformations of cortical development that are frequently associated with intractable epilepsy. Their histopathologic and molecular features suggest developmental abnormalities during the early stages of cortical development, which may involve neural progenitor cells. The aim of our study was to define the expression and cell‐specific distribution of doublecortin‐like (DCL), a protein critically involved in neuronal division and radial migration during early corticogenesis, in both FCD and TSC. Methods: DCL was studied in epilepsy surgery cases with FCD IIB (n = 8) and TSC (cortical tubers; n = 8) using immunocytochemistry, confocal analysis, and Western blotting. Results: Autopsy and surgical control neocortical specimens were characterized by modest DCL immunoreactivity (IR) throughout all cortical layers, but DCL IR was not detectable in the white matter. Balloon cells (BCs) in FCD and giant cells (GCs) in TSC expressed strong DCL IR. Most of the large dysplastic neurons (DNs) were positive for DCL in both FCD and TSC. Coexpression of DCL with the neural progenitor or neuroblast markers nestin, GFAPδ, and doublecortin was observed in both FCD and TSC specimens. The increased DCL expression within the dysplastic cortex, compared to control cortex, was confirmed by Western blot analysis. Discussion: The prominent postnatal expression of DCL by BCs/GCs and DNs in FCD and TSC supports an important role for this microtubule associated protein, also during early human cortical development, which could be relevant to the pathogenesis of these developmental glioneuronal malformations.  相似文献   

6.
Tuberous Sclerosis Complex (TSC) is a multiorgan genetic disease that prominently features brain malformations (tubers) with many patients suffering from epilepsy and autism. These malformations typically exhibit neuronal as well as glial cell abnormalities and likely underlie much of the neurological morbidity seen in TSC. Tuber pathogenesis remains poorly understood though upregulation of the mTORC1 signaling pathway in TSC has been consistently demonstrated. Here we address abnormal brain development in TSC by inactivating the mouse Tsc1 gene in embryonic neural progenitor cells. This strategy permits evaluation of the role of the Tsc1 gene in both neuronal as well as glial cell lineages. Tsc1Emx1-Cre conditional knockout (CKO) animals die by 25 days of life. Their brains have increased size and contain prominent large cells within the cerebral cortex that have greatly increased mTORC1 signaling and decreased mTORC2 signaling. Severe defects of cortical lamination, enlarged dysmorphic astrocytes and decreased myelination were also found. Tsc1Emx1-Cre CKO mice were then treated with rapamycin to see if the premature death and brain abnormalities can be rescued. Postnatal rapamycin treatment completely prevented premature death and largely reversed the glia pathology but not abnormal neuronal lamination. These findings support a model that loss of function of the TSC genes in embryonic neural progenitor cells causes cortical malformations in patients with TSC. The dramatic effect of rapamycin suggests that even with extensive multi-lineage abnormalities, a postnatal therapeutic window may exist for patients with TSC.  相似文献   

7.
Focal cortical dysplasias (FCD) represent a frequent finding in patients with chronic intractable epilepsy. Neuropathological hallmarks include localized dyslamination of the neocortex and neuronal heterotopias in white matter. Balloon cells, similar to those occurring in cortical tubers of patients with tuberous sclerosis (TSC) are observed in numerous patients. These lesions were classified as FCD type IIb (FCD IIb). Recent findings indicate an accumulation of TSC1 polymorphisms as well as loss of heterozygosity (LOH) and/or microsatellite instability (MSI) at the TSC1 locus on chromosome 9q in FCD IIb. Here, we tested the hypothesis of whether chromosomal instability constitutes a genome-wide phenomenon in this patient cohort. Seven microsatellite markers based on a reference panel recommended by the international workshop on microsatellite instability were analyzed in 14 surgical FCD IIb specimens. DNA from single laser-microdissected cells, i.e., balloon cells versus control neurons obtained from adjacent cortex was harvested for PCR amplification and subsequent fluorescent fragment length gel electrophoresis. Our analysis revealed only rare instances of LOH and MSI at genomic loci on 2p and 17q, whereas no alterations were found at informative markers on chromosomes 1p, 5q and 18q. In addition, no loss of repair protein expression (MSH2 or MLH1) has been identified in balloon cell nuclei of FCD IIb specimens. The present data suggest solitary LOH and MSI events at genomic localizations others than the TSC1 locus to occur in FCD IIb. Our findings lend further support to the hypothesis that the molecular pathogenesis of FCD IIb is associated with TSC1.  相似文献   

8.
Tuberous sclerosis complex (TSC) is an autosomal dominant, multisystem disorder caused by mutations in either the TSC1 or TSC2 genes and characterized by developmental brain abnormalities. In the present study we discuss the neuropathological findings of a 32‐year‐old patient with a germ‐line mutation in the TSC2 gene. Post mortem MRI combined with histology and immunocytochemical analysis was applied to demonstrate widespread anatomical abnormalities of gray and white matter structure. TSC brain lesions were analyzed for loss of heterozygosity (LOH) on chromosome 16p13. The neuropathological supratentorial abnormalities were represented by multiple subependymal nodules (SENs) and cortical tubers. In addition to cerebral cortical lesions, cerebellar lesions and hippocampal sclerosis were also observed. LOH was not found in the cortical tubers and SENs of this patient. Immunocytochemical analysis of the TSC brain lesions confirmed the cell‐specific activation of the mTOR pathway in cortical tubers, SENs and cerebellum, as well as differential cellular localization of hamartin and tuberin, the TSC1 and TSC2 gene products. Examination of the pathological brain regions revealed activated microglial cells and disruption of blood‐brain barrier permeability. Predominant intralesional cell‐specific distribution was also detected for the multidrug transporter protein P‐gp, possibly explaining the mechanisms underlying the pharmacoresistance to antiepileptic drugs. Autopsy findings confirm the complexity of the brain abnormalities encountered in TSC patients and proved useful in clarifying certain aspects of the pathogenesis, epileptogenesis and pharmacoresistance of TSC lesions.  相似文献   

9.
Tuberous sclerosis complex (TSC) is a neurogenetic disorder that often causes brain abnormalities leading to epilepsy, developmental delay, and autism. TSC is caused by inactivating mutations in either of the genes encoding the proteins hamartin (TSC1) and tuberin (TSC2). These proteins form a heterodimer that inhibits the mammalian target of rapamycin complex 1 (mTORC1) pathway, controlling translation and cell growth. Loss of either protein results in dysregulated mTORC1 activation, an important aspect of TSC pathogenesis. About thirty percent of TSC patients have cerebellar pathology that is poorly understood. To investigate the effects of TSC on the cerebellum, we created a mouse model in which the Tsc2 gene was selectively deleted from Purkinje cells starting at postnatal day 6 (P6). The loss of Tsc2 caused a progressive increase in Purkinje cell size and subsequent death from apoptosis. Purkinje cell loss was predominantly cell type specific and associated with motor deficits. Immunohistochemical analysis showed that both endoplasmic reticulum (ER) and oxidative stress were increased in Tsc2-null Purkinje cells. The cell death and ER stress phenotypes were rescued by treatment with the mTORC1 inhibitor rapamycin. To assess whether the murine Purkinje cell loss has a correlate to the human TSC, we analyzed postmortem cerebellum samples from TSC patients and detected Purkinje cell loss in half of the samples. Our results establish a critical role for the TSC complex in Purkinje cell survival by regulating ER and oxidative stress and reveal a novel aspect of TSC neuropathology.  相似文献   

10.
PURPOSE: In patients with tuberous sclerosis complex (TSC), a wide range of neurologic abnormalities develop, including mental retardation and seizures. Brains from TSC patients are characterized by the presence of cortical tubers, large dysmorphic neurons, and abnormal cytomegalic cells. Although analysis of human TSC brain samples led to the identification of these abnormal cell types, very little is known about how these cells function. In an effort to model TSC-associated CNS abnormalities (and ultimately to analyze the electrophysiologic properties of abnormal cells), we examined Eker rats carrying a Tsc2 mutation. Anatomic studies, including standard histologic stains and immunocytochemistry, were performed on young Eker rats exposed to a carcinogen in utero or aged untreated Eker rats (18-24 months old). Methods: Pregnant TSC2+/- females were injected once a day with hydroquinone (HQ), and offspring were killed at postnatal day P14 or P28. Coronal tissue sections throughout the CNS were prepared and stained for cresyl violet. In separate studies, brains of old untreated Eker rats were sectioned for anatomic analysis by using standard immunohistochemical techniques. Results: Tissue sections stained with cresyl violet did not reveal any gross differences between HQ-treated Eker (Tsc2Ek/+) rats and siblings (Tsc2+/+). However, two classes of abnormal giant cells were observed in brain sections from untreated aged Eker rats: (a) large dysmorphic pyramid-like cells immunoreactive for NeuN, tuberin, and EAAC-1 in layers IV-VI; and (b) abnormal cytomegalic cells immunoreactive for glial fibrillary acidic protein (GFAP), vimentin, and nestin in deep cortical layers or along the white matter. In addition, large subependymal astrocytomas were observed in four animals. CONCLUSIONS: Our data suggest that cortical tuber formation in Eker rats is a rare event and that prenatal exposure to a nongenotoxic carcinogen such as HQ is not sufficient to induce tuber formation. However, with advanced age, an increased likelihood of astrocytoma formation and the emergence of dysmorphic neurons and cytomegalic cells in the Eker rat brain might exist; each of these abnormalities mimics those seen clinically and could contribute to neurologic problems associated with TSC. Further analysis of this rodent model may be warranted.  相似文献   

11.
Hemimegalencephaly (HMEG) is a developmental brain malformation highly associated with epilepsy. Balloon cells (BCs) and cytomegalic neurons (CNs) are frequently observed in HMEG specimens. Cytomegaly in developmental brain malformations may reflect in aberrant activation of the mTOR and β-catenin signaling cascades, known regulators of cell size. We hypothesized that there is aberrant co-expression of phospho-ribosomal S6 (P-S6) protein, a downstream effector of the mTOR cascade, as well as cyclin D1, a downstream effector of the β-catenin pathway, in BCs and cytomegalic neurons in HMEG. We hypothesized that mutations in PTEN (a cause of HMEG associated with Proteus syndrome), TSC1 or TSC2 (tuberous sclerosis complex) genes, which are known to modulate β-catenin and mTOR signaling could cause sporadic HMEG. Expression of cyclin D1, phospho-p70 S6 kinase (P-p70S6K, another mTOR cascade kinase), P-S6, MAP2, NeuN, or GFAP was determined by immunohistochemistry in HMEG brain tissue (n = 7 specimens). Cyclin D1, P-p70S6K, and P-S6 proteins were co-localized in BCs and CNs in the enlarged hemisphere but not in the unaffected hemisphere or in morphologically normal tissue. Cyclin D1 and P-S6 proteins were not detected in GFAP-labeled astrocytes. Sequencing of PTEN, TSC1, and TSC2 genes in cytomegalic cells co-expressing cyclin D1 and P-S6 proteins did not reveal mutations. Selective expression of cyclin D1 and P-S6 in cytomegalic cells in HMEG suggests co-activation of the β-catenin and mTOR cascades. PTEN, TSC1, or TSC2 gene mutations were not detected suggesting that sporadic HMEG is distinct from HMEG associated with Proteus syndrome or tuberous sclerosis complex.  相似文献   

12.
We report an autopsy case of tuberous sclerosis complex (TSC) in a 20-week gestational age female fetus. The brain showed lesions suggestive of early cortical tubers and subependymal hamartomatous nodules. The large cells within these nodular clusters were variably immunoreactive for glial fibrillary acidic protein (GFAP) and vimentin and negative for synaptophysin and neurofilament. Subependymal radial glia expressed both vimentin and GFAP, but subpial radial glia either did not express these markers (in contrast to an age-matched control) or were absent. Tuberin expression was noted in heterotopic neurons in the white matter and brain cells consistent with Cajal Retzius cells in the neocortical molecular layer, very weakly in superficial cortical neurons, neurons in the basal ganglia, Purkinje cells and external granular cells of cerebellum, cranial nerve nuclei neurons, occasional germinal matrix cells, ependymal cells, choroid plexus epithelium, and pituitary gland neuroendocrine cells; it was not seen within the cells of subependymal nodules. The pattern of tuberin immunoreactivity was similar to that which we have observed in older TSC patients. Proliferating cell labeling indexes were comparable in the germinal matrix of the TSC patient and an age-matched control. Abnormal subpial radial glia may be responsible for some of the neuronal migration abnormalities that appear to result in neocortical tubers. Received: 30 September 1996 / Revised, accepted: 13 December 1996  相似文献   

13.
In the central nervous system, tuberous sclerosis complex (TSC) is characterized by a range of lesions including cortical tubers, white matter heterotopias, subependymal nodules, and subependymal giant cell astrocytomas (SEGAs). Recent studies have implicated an important role for the TSC genes TSC1 and TSC2, in a signaling pathway involving the mammalian target of rapamycin (mTOR) kinase. We performed immunohistochemical and genetic analyses on SEGAs from 7 TSC patients, 4 with mutations in TSC1, and 3 with mutations in TSC2. SEGA cells show high levels of phospho-S6K, phospho-S6, and phospho-Stat3, all proteins downstream of and indicative of mTOR activation. Such expression is not seen in histologically normal control tissue. Five of 6 SEGAs also showed evidence of biallelic mutation of TSC1 or TSC2, suggesting that SEGAs develop due to complete loss of a functional tuberin-hamartin complex. We conclude that TSC SEGAs likely arise through a two-hit mechanism of biallelic inactivation of TSC1 or TSC2, leading to activation of the mTOR kinase.  相似文献   

14.
Cortical dysplasias (CD) are characterized histologically by disorganized cortical lamination and abnormally shaped neurons. We hypothesized that neurons within CD have failed to differentiate fully and may express proteins such as cytoskeletal elements characteristic of immature cells. Disrupted expression of certain cytoskeletal proteins, which have been implicated in neuronal polarity, process outgrowth, and migration, could result in disorganized cortical lamination. Thus, we probed two CD subtypes, focal CD (FCD) and hemimegalencephaly (HME), with antibodies specific for cytoskeletal proteins that are developmentally regulated in neural progenitor cells and neurons to define more fully the developmental phenotype of neurons within CD. Microtubule-associated protein 1B (MAP1B) and the intermediate filament (IF) protein nestin are enriched in neural progenitors, whereas MAP2B, phosphorylated and non-phosphorylated forms of medium (NFM) and high (NFH) molecular weight neurofilament (NF) proteins, as well as the light NF subunit (NFL) and the IF protein α internexin are expressed in developing and mature neurons. Immunolabeling for internexin and MAP1B was more abundant in the most abnormally shaped neurons that populated dysplastic regions than in adjacent regions exhibiting milder cytoarchitectural abnormalities or control cortex. Nestin immunoreactivity was noted in large dysplastic and heterotopic neurons within the deeper cortical layers of CD specimens but not in normal cortex. In contrast, neurons in CD specimens also expressed cytoskeletal markers characteristic of differentiated neurons such as NF subunits and MAP2B. These findings suggest that the cytoarchitectural abnormalities in CD may reflect pathophysiological changes in the developing brain that disrupt expression of several key components of the neuronal cytoskeleton and may contribute to impaired migration of cortical neurons. Received: 19 August 1996 / Revised, accepted: 19 November 1996  相似文献   

15.
To elucidate the biological significance of dysplastic cells in malformations of cortical development, an immunohistochemical study was performed to investigate fibroblast growth factor‐2 (FGF‐2) expression in corticectomy specimens from epilepsy patients, including focal cortical dysplasia (FCD) with balloon cells (BCs) (n = 4; age/sex = 2M, 14F, 24M, 45M), tubers of tuberous sclerosis complex (TSC‐tubers) (n = 2; 1F, 3F), FCD without BCs (n = 3; 23F, 23M, 25M), and gliotic lesions (n = 3; 12M, 25M, 29M). The nucleus and/or cytoplasm of astrocytes in all cases examined were positive for FGF‐2; however, FGF‐2 immunoreactivity was not detected in oligodendroglial cells. In all dysplastic lesions, FGF‐2 was detected in the astrocytic nuclei, and cytoplasm and/or nuclei of BCs. Dysplastic neurons (DNs) in FCD with BCs and TSC‐tubers were variably positive for FGF‐2 in the cytoplasm, but FGF‐2 was not detected in the neurons of FCD without BCs. The number of FGF‐2 immunoreactive cells (FGF‐2‐IR%) in FCD with BCs (46.0 ± 4.1%) was higher than that in FCD without BCs (19.8 ± 3.1%) and gliotic lesions (19.5 ± 3.3%) with statistical significance (P < 0.001). These results, together with previous reports showing FGF‐2 expression in neuroblasts and glioblasts in human fetal brain, and mainly in astrocytes in adult brain, suggest that FGF‐2 expression in MCDs reflects incomplete differentiation and maturation of dysplastic cells, and that FGF‐2‐IR% is associated with histological subtypes of MCD, reflecting the timing of insults underlying the pathogenesis of each disorder.  相似文献   

16.
The mammalian target of rapamycin (mTOR) is a key regulator of cellular growth which associates with other proteins to form two multi‐protein complexes called mTORC1 and mTORC2. Dysregulation of mTORC1 signalling in brain is implicated in neuropathological conditions such as autism spectrum or neurodegenerative disorders. Accordingly, allosteric mTOR inhibitors are currently in clinical trials for the treatment of such disorders. Here, we ablated either mTORC1 or mTORC2 conditionally in Purkinje cells of the mouse cerebellum to dissect their role in the development, function and survival of these neurons. We find that the two mouse models largely differ from each other by phenotype and cellular responses. Inactivation of mTORC2, but not of mTORC1, led to motor coordination deficits at an early age. This phenotype correlated with developmental deficits in climbing fibre elimination and impaired dendritic self‐avoidance in mTORC2‐deficient Purkinje cells. In contrast, inactivation of mTORC1, but not of mTORC2, affected social interest of the mice and caused a progressive loss of Purkinje cells due to apoptosis. This cell loss was paralleled by age‐dependent motor deficits. Comparison of mTORC1‐deficient Purkinje cells with those deficient for the mTORC1 inhibitor TSC1 revealed a striking overlap in Purkinje cell degeneration and death, which included neurofilamentopathy and reactive gliosis. Altogether, our study reveals distinct roles of mTORC1 and mTORC2 in Purkinje cells for mouse behaviour and the survival of neurons. Our study also highlights a convergence between the phenotypes of Purkinje cells lacking mTORC1 activity and those expressing constitutively active mTORC1 due to TSC1 deficiency.  相似文献   

17.
Tuberous sclerosis complex (TSC) is a genetic disease characterized by the presence of hamartomatous lesions in multiple organs and cortical tubers in the brain. The majority of patients with TSC have epilepsy, although the mechanisms underlying epileptogenesis remain unknown. Tubers are traditionally thought to be stable lesions that result from abnormal corticogenesis in early fetal development. Recently, cystlike tubers have been identified in nearly half of patients with TSC, although the spectrum and natural history of these lesions remains unknown. Herein we report eight children with a high burden of cystlike tubers and present detailed clinical information on two children with documented progression. We also report neuropathologic findings of one of the cystlike cortical tubers resected in epilepsy surgery. These cases support the notion that cystlike tubers in TSC are not static lesions and can exhibit evolving characteristics over time. Further work evaluating how these lesions relate to epileptogenesis needs to be done.  相似文献   

18.
Ess KC  Kamp CA  Tu BP  Gutmann DH 《Neurology》2005,64(8):1446-1449
Children with tuberous sclerosis complex (TSC) harbor developmental brain abnormalities (cortical tubers) and low-grade tumors (subependymal giant cell astrocytomas [SEGAs]). Using gene expression profiling to identify neuroglial differentiation markers in Tsc1 conditional knockout mice, the authors demonstrate that giant cells of SEGAs aberrantly express similar neuroglial differentiation markers as do cortical tubers. These results suggest that both tubers and SEGAs result from related defects in progenitor cell differentiation during brain development.  相似文献   

19.
Individuals affected with tuberous sclerosis complex (TSC) develop cortical tubers characterized by disorganized cytoarchitecture and morphologically abnormal cell types, such as dysplastic neurons (DNs) and giant cells (GCs). As part of ongoing cDNA array analysis to study the molecular pathogenesis of tuber formation, we detected increased expression of intercellular adhesion molecule-1 (ICAM-1) mRNA, a cell adhesion molecule (CAM) that functions in cytokine signaling, in tubers. Western and immunohistochemical analyses revealed that ICAM-1 protein was selectively expressed in tubers, but was only minimally expressed in control cortex, adjacent nontuberal cortex, or in non-TSC focal cortical dysplasia. Increased expression of ICAM-1 was found in mice in which the Tsc1 gene was conditionally inactivated in astrocytes. Expression of molecules involved in ICAM-1 activation and cytokine signaling were increased in tubers, including tumor necrosis factor alpha (TNF-alpha), mitogen activated protein kinase (MAPK), and nuclear factor kappa B (NF-kappaB). Numerous CD68-immunoreactive macrophages were observed clustered around GCs further supporting an inflammatory response in tubers. Expression of caspase 8 and Fas support cytokine activation and detection of TUNEL reactivity suggests ongoing cell death in tubers. Specific alterations in ICAM-1, TNF-alpha, NF-kappaB1, and MAPK expression coupled with the detection of numerous CD68-immunoreactive macrophages suggests activation of proinflammatory cytokine signaling pathways in tubers that may culminate in cell death.  相似文献   

20.
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by multi-organ pathologies. Most TSC patients exhibit seizures, usually starting in early childhood. The neuropathological hallmarks of the disease - cortical tubers, containing cytopathological neuronal and glial cell types - appear to be the source of seizure initiation. However, the contribution of these aberrant cell populations to TSC-associated epilepsies is not fully understood. To gain further insight, investigators have attempted to generate animal models with TSC-like brain abnormalities. In the current study, we focused on the Eker rat, in which there is a spontaneous mutation of the TSC2 gene (TSC2+/-). We attempted to exacerbate TSC-like brain pathologies with a "second-hit" strategy - exposing young pups to ionizing irradiation of different intensities, and at different developmental timepoints (between E18 and P6). We found that the frequency of occurrence of dysmorphic neurons and giant astrocytes was strongly dependent on irradiation dose, and weakly dependent on timing of irradiation in Eker rats, but not in irradiated normal controls. The frequency of TSC-like pathology was progressive; there were many more abnormal cells at 3 months compared to 1 month post-irradiation. Measures of seizure propensity (flurothyl seizure latency) and brain excitability (paired-pulse and post-tetanic stimulation studies in vitro), however, showed no functional changes associated with the appearance of TSC-like cellular abnormalities in irradiated Eker rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号