首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Perfluorooctanoic acid (PFOA), with diverse and widespread commercial and industrial applications, has been detected in human and wildlife sera. Previous mouse studies linked prenatal PFOA exposure to decreased neonatal body weights (BWs) and survival in a dose-dependent manner. To determine whether effects were linked to gestational time of exposure or to subsequent lactational changes, timed-pregnant CD-1 mice were orally dosed with 5 mg PFOA/kg on gestation days (GD) 1-17, 8-17, 12-17, or vehicle on GD 1-17. PFOA exposure had no effect on maternal weight gain or number of live pups born. Mean pup BWs on postnatal day (PND) 1 in all PFOA-exposed groups were significantly reduced and decrements persisted until weaning. Mammary glands from lactating dams and female pups on PND 10 and 20 were scored based on differentiation or developmental stages. A significant reduction in mammary differentiation among dams exposed GD 1-17 or 8-17 was evident on PND 10. On PND 20, delays in normal epithelial involution and alterations in milk protein gene expression were observed. All exposed female pups displayed stunted mammary epithelial branching and growth at PND 10 and 20. While control litters at PND 10 and 20 had average scores of 3.1 and 3.3, respectively, all treated litters had scores of 1.7 or less, with no progression of duct epithelial growth evident over time. BW was an insignificant covariate for these effects. These findings suggest that in addition to gestational exposure, abnormal lactational development of dams may play a role in early growth retardation of developmentally exposed offspring.  相似文献   

2.
Perfluorooctanoic acid (PFOA) is a persistent pollutant and is detectable in human serum (5 ng/ml in the general population of the Unites States). PFOA is used in the production of fluoropolymers which have applications in the manufacture of a variety of industrial and commercial products (e.g., textiles, house wares, electronics). PFOA is developmentally toxic and in mice affects growth, development, and viability of offspring. This study segregates the contributions of gestational and lactational exposures and considers the impact of restricting exposure to specific gestational periods. Pregnant CD-1 mice were dosed on gestation days (GD) 1-17 with 0, 3, or 5 mg PFOA/kg body weight, and pups were fostered at birth to give seven treatment groups: unexposed controls, pups exposed in utero (3U and 5U), lactationally (3L and 5L), or in utero + lactationally (3U + L and 5U + L). In the restricted exposure (RE) study, pregnant mice received 5 mg PFOA/kg from GD7-17, 10-17, 13-17, or 15-17 or 20 mg on GD15-17. In all PFOA-treated groups, dam weight gain, number of implantations, and live litter size were not adversely affected and relative liver weight increased. Treatment with 5 mg/kg on GD1-17 increased the incidence of whole litter loss and pups in surviving litters had reduced birth weights, but effects on pup survival from birth to weaning were only affected in 5U + L litters. In utero exposure (5U), in the absence of lactational exposure, was sufficient to produce postnatal body weight deficits and developmental delay in the pups. In the RE study, birth weight and survival were reduced by 20 mg/kg on GD15-17. Birth weight was also reduced by 5 mg/kg on GD7-17 and 10-17. Although all PFOA-exposed pups had deficits in postnatal weight gain, only those exposed on GD7-17 and 10-17 also showed developmental delay in eye opening and hair growth. In conclusion, the postnatal developmental effects of PFOA are due to gestational exposure. Exposure earlier in gestation produced stronger responses, but further study is needed to determine if this is a function of higher total dose or if there is a developmentally sensitive period.  相似文献   

3.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents. Exposure to these chemicals in utero delays development and reduces postnatal survival and growth. Exposure to PFOS on the last 4 days of gestation in the rat is sufficient to reduce neonatal survival. PFOS and PFOA are weak agonists of peroxisome proliferator activated receptor-alpha (PPAR alpha). The reduced postnatal survival of neonatal mice exposed to PFOA was recently shown to depend on expression of PPAR alpha. This study used PPAR alpha knockout (KO) and 129S1/SvlmJ wild type (WT) mice to determine if PPAR alpha expression is required for the developmental toxicity of PFOS. After mating overnight, the next day was designated gestation day (GD) 0. WT females were weighed and dosed orally from GD15 to 18 with 0.5% Tween-20, 4.5, 6.5, 8.5, or 10.5mg PFOS/kg/day. KO females were dosed with 0.5% Tween-20, 8.5 or 10.5mg PFOS/kg/day. Dams and pups were observed daily and pups were weighed on postnatal day (PND) 1 and PND15. Eye opening was recorded from PND12 to 15. Dams and pups were killed on PND15, body and liver weights recorded, and serum collected. PFOS did not affect maternal weight gain or body or liver weights of the dams on PND15. Neonatal survival (PND1-15) was significantly reduced by PFOS in both WT and KO litters at all doses. WT and KO pup birth weight and weight gain from PND1 to 15 were not significantly affected by PFOS exposure. Relative liver weight of WT and KO pups was significantly increased by the 10.5mg/kg dose. Eye opening of PFOS-exposed pups was slightly delayed in WT and KO on PND13 or 14, respectively. Because results in WT and KO were comparable, it is concluded that PFOS-induced neonatal lethality and delayed eye opening are not dependent on activation of PPAR alpha.  相似文献   

4.
The results of a series of screening tests to determine the potential teratogenicity and neurotoxicity of developmental exposure to TBTO in rats are presented in this paper. For prenatal exposure, pregnant Long Evans rats were intubated with 0-16 mg/kg/day bis(tri-n-butyltin)oxide TBTO from Days 6 to 20 of gestation (GD 6-20). For postnatal exposure, rat pups were intubated with 0-60 mg/kg TBTO on Postnatal Day 5 (PND 5). Following prenatal exposure, dams were allowed to litter and pups were evaluated using a postnatal teratology screen. Postnatal evaluation for both exposures included motor activity (PND 13-64), the acoustic startle response (PND 22-78), growth, and brain weight. The maximally tolerated dose (MTD) in pregnant rats was 5 mg/kg/day, which is one-third the MTD in nonpregnant rats. There were decreased numbers of live births, and decreased growth and viability at dosages greater than or equal to 10 mg/kg/day. Cleft palate was found in 3% of the 12 mg/kg/day group. There was mortality following postnatal exposure to 60 mg/kg and all prenatal dosages greater than or equal to 10 mg/kg/day. Preweaning body weight was significantly decreased for all postnatal dosages, and all prenatal dosages greater than 2.5 mg/kg/day. Body weight reductions persisted to the postweaning period only in the high dose groups (10 mg/kg/day and 60 mg/kg). Behavioral evaluation demonstrated transient alterations in motor activity development (prenatal exposure only) and the acoustic startle response (postnatal exposure only). Persistent behavioral effects were observed only at dosages that produced overt maternal toxicity and/or postnatal mortality. The demonstration of the teratogenic and neurotoxic potential of TBTO in rats is confounded by associated maternal toxicity and/or pup mortality.  相似文献   

5.
Pregnant Sprague-Dawley rats were given chlorpyrifos (O:, O-diethyl-O:-[3,5,6-trichloro-2-pyridinyl] phosphorothioate; CPF) in corn oil by gavage from gestation day 6 (GD 6) through lactation day 10 (LD 10) at dosages of 0, 0.3, 1, or 5 mg/kg/day in a developmental neurotoxicity study that conformed to U.S. Environmental Protection Agency 1991 guidelines. GD 0 was the day when evidence of mating was observed and postnatal day 0 (PND 0) was the day of birth. Toxicity was limited to the highest dosage level (5 mg/kg/day) and, in the dams, consisted of muscle fasciculation, hyperpnea, and hyperreactivity. A nonsignificant overall trend toward weight gain and feed consumption was also observed in the high-dosage dams, with a statistically significant Group x Time interaction for reduced weight gain in the 5-mg/kg/day group near the end of gestation. Although many developmental indices were normal, pups from high-dosage dams had increased mortality soon after birth, gained weight more slowly than controls, and had several indications of slightly delayed maturation. The early deaths and delayed maturation were attributed to maternal toxicity, though a possible contributing role of direct pup toxicity in delayed development cannot be eliminated. In spite of the apparent delay in physical development, high-dosage pups tested just after weaning had normal learning and memory as tested on a T-maze spatial delayed-alternation task. Habituation, a primitive form of learning, was tested in 2 tasks (motor activity and auditory startle) and was not affected. No overt effects were noted in either dams or pups at 1 or 0.3 mg/kg/day. Based on these data, chlorpyrifos produced maternal and developmental toxicity in the 5-mg/kg/day-dosage group. There was no evidence of selective developmental neurotoxicity following exposure to chlorpyrifos.  相似文献   

6.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents. Exposure to these chemicals in utero delays development and reduces postnatal survival and growth. Exposure to PFOS on the last 4 days of gestation in the rat is sufficient to reduce neonatal survival. PFOS and PFOA are weak agonists of peroxisome proliferator activated receptor-alpha (PPARα). The reduced postnatal survival of neonatal mice exposed to PFOA was recently shown to depend on expression of PPARα. This study used PPARα knockout (KO) and 129S1/SvlmJ wild type (WT) mice to determine if PPARα expression is required for the developmental toxicity of PFOS. After mating overnight, the next day was designated gestation day (GD) 0. WT females were weighed and dosed orally from GD15 to 18 with 0.5% Tween-20, 4.5, 6.5, 8.5, or 10.5 mg PFOS/kg/day. KO females were dosed with 0.5% Tween-20, 8.5 or 10.5 mg PFOS/kg/day. Dams and pups were observed daily and pups were weighed on postnatal day (PND) 1 and PND15. Eye opening was recorded from PND12 to 15. Dams and pups were killed on PND15, body and liver weights recorded, and serum collected. PFOS did not affect maternal weight gain or body or liver weights of the dams on PND15. Neonatal survival (PND1–15) was significantly reduced by PFOS in both WT and KO litters at all doses. WT and KO pup birth weight and weight gain from PND1 to 15 were not significantly affected by PFOS exposure. Relative liver weight of WT and KO pups was significantly increased by the 10.5 mg/kg dose. Eye opening of PFOS-exposed pups was slightly delayed in WT and KO on PND13 or 14, respectively. Because results in WT and KO were comparable, it is concluded that PFOS-induced neonatal lethality and delayed eye opening are not dependent on activation of PPARα.  相似文献   

7.
Prenatal exposure to 100 mg/kg atrazine (ATR) delays mammary gland (MG) development in resulting female offspring of Long-Evans rats. To determine if the fetal MG was sensitive to ATR effects during specific periods of development, timed-pregnant dams (n = 8/group/block) were dosed for 3- or 7-gestation day (GD) intervals (GD 13-15, 15-17, 17-19, or 13-19) with 100 mg ATR/kg/day or vehicle (C), and their offspring were evaluated for changes. Mammary glands taken from pups prenatally exposed to ATR displayed significant delays in epithelial development as early as postnatal day (PND) 4 compared to C, with continued developmental delays at later time points that varied by time of exposure. However, the most persistent and severe delays were seen in the GD 17-19 and GD 13-19 ATR exposure groups, demonstrating statistically similar growth retardation. Because MG developmental deficits persisted into adulthood, we hypothesized that ATR-exposed animals may have had difficulties nursing their young. Females exposed prenatally to either ATR (as defined) or C (n = 4 litters/group) were bred, and the resulting F(2) offspring from GD 17-19 and GD 13-19 exposure groups were significantly smaller in body weight (BW) than C. In a separate study, it was determined that ATR (25-100 mg/kg), delivered from GD 15-19, did not decrease fetal body weights on GD 20, even though the higher doses significantly decreased weight gain of the dosed dams. These data suggest that the consequences of brief ATR exposure during a critical period of fetal MG development (GD 17-19), are both delayed MG development of the offspring and inadequate nutritional support of F2 offspring, resulting in adverse effects on pup weight gain.  相似文献   

8.
The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated with 1, 5, 10, 15, and 20 mg/kg PFOS from GD 1 to GD 18. Controls received 0.5% Tween-20 vehicle (1 ml/kg for rats and 10 ml/kg for mice). At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. In the highest dosage groups (10 mg/kg for rat and 20 mg/kg for mouse), the neonates became pale, inactive, and moribund within 30-60 min, and all died soon afterward. In the 5 mg/kg (rat) and 15 mg/kg (mouse) dosage groups, the neonates also became moribund but survived for a longer period of time (8-12 h). Over 95% of these animals died within 24 h. Approximately 50% of offspring died at 3 mg/kg for rat and 10 mg/kg for mouse. Cross-fostering the PFOS-exposed rat neonates (5 mg/kg) to control nursing dams failed to improve survival. Serum concentrations of PFOS in newborn rats mirrored the maternal administered dosage and were similar to those in the maternal circulation at GD 21; PFOS levels in the surviving neonates declined in the ensuing days. Small but significant and persistent growth lags were detected in surviving rat and mouse pups exposed to PFOS prenatally, and slight delays in eye opening were noted. Significant increases in liver weight were observed in the PFOS-exposed mouse pups. Serum thyroxine levels were suppressed in the PFOS-treated rat pups, although triiodothyronine and thyroid-stimulating hormone [TSH] levels were not altered. Choline acetyltransferase activity (an enzyme that is sensitive to thyroid status) in the prefrontal cortex of rat pups exposed to PFOS prenatally was slightly reduced, but activity in the hippocampus was not affected. Development of learning, determined by T-maze delayed alternation in weanling rats, was not affected by PFOS exposure. These results indicate that in utero exposure to PFOS severely compromised postnatal survival of neonatal rats and mice, and caused delays in growth and development that were accompanied by hypothyroxinemia in the surviving rat pups.  相似文献   

9.
Cylindrospermopsin (cyn) is a cyanobacterial toxin implicated in human and wildlife poisonings. We have completed studies investigating the potential of purified cyn to induce developmental toxicity in mammals. The teratology study involved intraperitoneal injections (8.0-128 microg kg(-1)) on gestational days (GD) 8-12 with subsequent examination of term fetuses for viability, weight and morphological anomalies. Cyn was lethal to a significant portion of the dams receiving > or = 32 microg kg(-1). Surviving pregnant females were killed and fetuses removed for examination. Analysis indicates no adverse effects on litter size, fetal weight, or incidence of anomalies. Subsequently, 50 microg kg(-1) cyn was administered on GD 8-12 or 13-17. Animals were allowed to give birth and litters monitored for growth and viability. A reduction in litter size occurred in treated groups. Avg. pup wt. was only affected in the GD 13-17 group. GD 13-17 dams did not exhibit the toxicity noted in the GD 8-12 group but gave birth significantly earlier than controls. There was a significant number of dead GD 13-17 pups and incidences of blood in the gastrointestinal tract and hematomas in the tips of the tails in survivors. Pups were cross-fostered to control mothers in litters of 10. On postnatal days (PND) 5-6 there were no significant differences in weight gain or viability in GD 8-12 litters, while GD 13-17 litters had significantly reduced weight gain and viability. GD 13-17 exposed male pups still weighed significantly less than the controls after 15 months.  相似文献   

10.
9-(4'-Aminophenyl)-9H-pyrido [3,4-b] indole (aminophenylnorharman, APNH) is a novel mutagenic heterocyclic amine, produced by the reaction of norharman with aniline in the presence of S9 mix. In the present study, the maternal and developmental toxicity of APNH were investigated in ICR mice administered oral doses of 0, 0.625, 1.25, 2.5 or 5 mg/kg/day on gestational days (GD) 6 through 15 or 0, 5, 10, or 20 mg/kg on GD 12. Maternal and foetal parameters were evaluated on day 18 of gestation. Foetuses of dams treated on GD 6-15 were examined for external and skeletal malformations and variations, and foetuses of dams treated on GD 12 were inspected for cleft palate. Maternal death occurred when APNH was administered at 5 mg/kg/day on GD 6-15. No significant decrease in body weight gain during the administration period was observed at doses of 2.5 mg/kg/day or less when applied on GD 6-15. Adverse changes in general condition of dams were observed in the groups treated at doses of 2.5 mg/kg/day and above on GD 6-15, whereas no adverse effects on dams were noted even when APNH was applied at a fairly high dose on GD 12. Intracytoplasmic vacuolation in hepatocytes, necrosis of proximal tubular epithelial cells and desquamation of necrotic epithelial cells in the tubular lumen were observed in dams treated with APNH at 2.5 or 5 mg/kg/day on GD 6-15. Increased preimplantation loss was observed at 5 mg/kg/day and post-implantation loss was observed at 2.5 mg/kg/day and above when applied on GD 6-15, or at 20 mg/kg when applied on GD 12. Foetal body weight was decreased by APNH in a dose-dependent manner. The frequency of external malformations (cleft palate) was significantly increased in the group treated with APNH at 2.5 mg/kg/ day on GD 6-15 compared to the controls. However, there were no foetuses with cleft palate even when APNH was given at 20 mg/kg on GD 12. No significant increases in skeletally malformed foetuses were found in any APNH-treated group. The frequency of lumbar ribs was increased dose dependently. This study demonstrated the developmental toxicity of a mutagenic compound, APNH, in mice at maternally toxic doses, and that cleft palate observed in term foetuses resulted from the adverse effect of APNH on the maternal environment during organogenesis. More detailed studies are warranted to assess the possible risks to pregnant women from exposure to APNH.  相似文献   

11.
Timed-pregnant CD (Sprague-Dawley) rats, 25/group, were dosedorally with aqueous isopropanol (IPA; CAS No. 67–63–0)solutions at 0, 400, 800, or 1200 mg/kg/day, once daily on GestationalDays (GD) 6 through 15 at a dosing volume of 5 mI/kg. Artificiallyinseminated New Zealand white rabbits, 15/group, were dosedorally with IPA at 0, 120, 240, or 480 mg/kg/day once dailyon GD 6 through 18 at 2 mI/kg. Maternal body weights, clinicalobservations, and food consumption were re corded throughoutgestation for both species. At scheduled euthanization for bothspecies (GD 20, rats; GD 30, rabbits), fetuses were weighed,sexed, and examined for external, visceral (including craniofacial)and skeletal alterations. For both species, the pregnancy ratewas high and equivalent across all groups; no dams or does aborted,delivered early, or were re moved from study. In rats, two dams(8%) died at 1200 mg/kg/ day and one dam (4%) died at 800 mg/kg/day.Maternal body weights and weight gain were equivalent acrossall groups, ex cept for statistically significantly reducedgestational weight gain (GD 0–20; 89.9% of control value),associated with statisti cally significantly reduced graviduterine weight at 1200 mg/kg/ day (89.2% of control value).There were no treatment-related clinical signs or effects onmaternal food consumption. All gestational parameters evaluatedwere equivalent across groups, including pre- and postimplantationloss, fetal sex ratios, and lit ter size. Twenty-two to 25 litterswere examined per group. Fe tal body weights per litter werestatistically significantly reduced at the two highest doses(97.3 (n.s.), 94.7, and 94.3% of controls at 800 mg/kg/day and92.1, 91.9, and 95.4% of controls at 1200 mg/kg/day for allfetuses and males and females separately). No evidence of increasedteratogenicity was observed at any dose tested in rats. In rabbits,four does (26.7%) died at 480 mglkg/day. Maternal body weightswere statistically significantly re duced during treatment (GD6–18) at 480 mg/kg/day (45.4% of control value) with anonsignificant reduction in gestational weight change (GD 0–30;77.3% of control value) at this dose. Profound clinical signsof toxicity and statistically significantly reduced maternalfood consumption were observed at 480 mgI kg/day. All gestationalparameters were equivalent across all doses administered. Thirteento 15 litters were evaluated per group except for the 480 mg/kg/daygroup with 11 litters (due to maternal deaths). There were notreatment-related effects on pre- or postimplantation loss,fetal sex ratio, litter size, or fetal body weight/litter. Moreover,no evidence was found of in creased teratogenicity at any dosetested in rabbits. Therefore, IPA was not teratogenic to CDrats or to NZW rabbits. The NOAELS for both maternal and developmentaltoxicity were 400 mg/kg/day in rats, and were 240 and 480mg/kg/day,respectively, in rabbits.  相似文献   

12.
Previous studies have indicated that the androgen receptor antagonist, flutamide, can produce a suite of reproductive malformations in the male rat when orally administered daily on gestation days (GD) 12-21. The objective of this study was to investigate the gestation time dependence for the induction of these malformations to establish a robust animal model for future studies of gene expression related to specific malformations. Groups of timed-pregnant Sprague-Dawley rats (GD 0 = day of mating) were administered flutamide as a single gavage dose (50 mg/kg) on GD 16, 17, 18, or 19 with 10 dams per group. Control animals (5 dams per time per group) were administered corn oil vehicle (2 ml/kg). Dams were allowed to litter, and their adult male offspring were killed at postnatal day (PND) 100 +/- 10. Anogenital distance was measured at PND 1 and 100. Areolae were scored at PND 13, and permanent nipples evaluated at PND 100. No reproductive tract malformations were found in control male offspring. In the treated groups, malformations were noted following exposure at every GD, although the incidence of specific malformations varied by GD. At GD 16, the highest incidence was noted for permanent nipples (46% pups, 60% litters), epispadias (12% pups, 30% litters), and missing epididymal components (5% pups, 20% litters). The highest incidences for hypospadias (58% pups, 80% litters), vaginal pouch (49% pups, 70% litters), cleft prepuce (29% pups, 60% litters), and missing prostate lobes (12% pups, 60% litters) were noted at GD 17. At GD 18 the highest incidence of malformations noted were epispadias (5% pups, 30% litters), reduced prostate size (32% pups, 90% litters), and abnormal kidneys (3% pups, 30% litters) and bladders (7% pups, 30% litters), while on GD 19 70% of the litters had animals with abnormal seminal vesicles. Testicular and epididymal morphological changes were noted at all GDs and were consistent with the gross observations and peaked in incidence and severity on GD17. The major discrepancy between this study and previous multiple-dose studies was in the very few numbers of animals presenting with cryptorchidism (only one each on GDs 16 and 17), suggesting that exposure over multiple days may be required to induce this malformation. Thus, a single gestational exposure of flutamide induced numerous reproductive tract malformations consistent with previously reports following multiple exposures, with the timing of the exposure producing marked tissue selectivity in the response noted in adult offspring.  相似文献   

13.
Bromantan (N-[2-adamantil]-N-[para-bromphenyl]amine) is an "actoprotective" drug widely used in Russia as a muscle performance-enhancing agent for sportsmen and as an immunostimulator in medicine. Experiments were conducted to determine whether this compound has adverse effects on the reproduction and development of offspring. Sexually mature female rats, weighing 180-200 g, were orally given bromantan at doses of 30 mg/kg (30-mg/kg group), 150 mg/kg (150-mg/kg group) and 600 mg/kg (600-mg/kg group) daily for 16 days, while the controls received the vehicle, amylaceous solution. Afterwards, treated females were mated with untreated males. The body weight change of the pregnant rats was monitored, as well as the length of gestation, litter size, sex ratio and number of stillborn. The offsprings were weighed and observed for external malformations, abnormalities of conditioned and unconditioned reflexes and open-field behaviour. Observation of rat dams revealed that their general state and activity in all groups did not differ significantly both during and after bromantan treatment. Bromantan had no adverse effects on body weight and gestation length of dams. Number of dams delivered per group did not differ from controls. There were stillborn rat pups in all litters, but the control group had less. One dam in the first group delivered a rat pup with a head hematoma. Litter size of the 30- and 600-mg/kg groups was decreased (by 34.9% and 44.2%, respectively) and increased in the 150-mg/kg group (by 45.1%, P< .05) in comparison with controls. Bromantan had insignificant different effects on the sex ratio of newborn in all treatment groups. Survival of pups over the first 3 months showed a loss of 40% for the 150-mg/kg group and 20% for controls. During the remaining time, death rate did not exceed 3-6% and did not differ from those of the controls. Pups in the 30- and 600-mg/kg groups showed significantly higher weight gain during the first week (7th PND) of observation by 83.69% and 58.02%, respectively, compared to controls; subsequently, this difference in the 600-mg/kg group decreased rapidly to insignificant levels, but the 30-mg/kg group remained significantly different until PND 35 and then again at PND 77-112. Dynamics of body weight gain of rat pups in the 150-mg/kg group during the whole (but not on PND 7) period of observation was insignificantly (on PNDs 14, 42 and 49 significantly) lower than that of the control group. Study of the functional state of rat pups' nervous system at different stages of postnatal development revealed insignificant differences in the expression of reflexes compared with those of the control group. Negative geotaxis was completed by the 8th day in controls and in treated groups earlier by an average of 1-2 days. Surface righting was completed by the controls on the 8th day, in the 30-mg/kg group on the 6th day and in other treated groups on the 7th day. Cliff avoidance appeared a day ahead for rat pups in treated groups compared with controls. Air righting reflex in the 30- and 600-mg/kg groups was observed a day earlier than in the controls. Significant differences were observed only for two parameters (negative geotaxis and surface righting); in both cases, rat pups of the 30-mg/kg group differed from the control and 150-mg/kg groups. Early development of physical parameters was also noted, but significant differences from the control group were obtained only in the 30-mg/kg group for incisor eruption. While all pups demonstrated strength of fore and hind limbs by postnatal day 16, treated pups increased their times of maintaining their grasp (PND 15). Open-field testing (PND 40) resulted in an insignificant decrease of exploratory and locomotor behaviors for the 30-, 150- and 600-mg/kg groups. The number of grooming episodes was insignificantly decreased for the 30-mg/kg group and insignificantly increased for the 600-mg/kg group. In the passive avoidance testing, on the retention day (72 h later), entry latency for rat pups in the 30-, 150- and 600-mg/kg groups increased by 259.0%, 175.3% and 160.7%, respectively (P< .05), over their training day, while in the control group, time increased only by 1.8%.  相似文献   

14.
Perfluorononanoic acid (PFNA) is a ubiquitous and persistent environmental contaminant. Although its levels in the environment and in humans are lower than those of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA), a steady trend of increases in the general population in recent years has drawn considerable interest and concern. Previous studies with PFOS and PFOA have indicated developmental toxicity in laboratory rodent models. The current study extends the evaluation of these adverse outcomes to PFNA in mice. PFNA was given to timed-pregnant CD-1 mice by oral gavage daily on gestational day 1–17 at 1, 3, 5 or 10 mg/kg; controls received water vehicle. Dams given 10 mg/kg PFNA could not carry their pregnancy successfully and effects of this dose group were not followed. Similar to PFOS and PFOA, PFNA at 5 mg/kg or lower doses produced hepatomegaly in the pregnant dams, but did not affect the number of implantations, fetal viability, or fetal weight. Mouse pups were born alive and postnatal survival in the 1 and 3 mg/kg PFNA groups was not different from that in controls. In contrast, although most of the pups were also born alive in the 5 mg/kg PFNA group, 80% of these neonates died in the first 10 days of life. The pattern of PFNA-induced neonatal death differed somewhat from those elicited by PFOS or PFOA. A majority of the PFNA-exposed pups survived a few days longer after birth than those exposed to PFOS or PFOA, which typically died within the first 2 days of postnatal life. Surviving neonates exposed to PFNA exhibited dose-dependent delays in eye opening and onset of puberty. In addition, increased liver weight seen in PFNA-exposed offspring persisted into adulthood and was likely related to the persistence of the chemical in the tissue. Evaluation of gene expression in fetal and neonatal livers revealed robust activation of peroxisome proliferator-activated receptor-alpha (PPARα) target genes by PFNA that resembled the responses of PFOA. Our results indicate that developmental toxicity of PFNA in mice is comparable to that of PFOS and PFOA, and that these adverse effects are likely common to perfluoroalkyl acids that persist in the body.  相似文献   

15.
The maternal-fetal transfer of tobramycin (TBM) was investigated in the rat by means of a microbiological assay, to assess the presence and amount in the kidneys and placentae of fetuses at gestational day (GD) 20, in the kidneys of newborns 6 and 11 days after the end of treatment and in the kidneys of the dams. In the qualitative assay, pregnant rats were injected i.p. with 0, 30, 60 mg/kg b.w. of TBM on GD 10-19. A group of dams treated in parallel with 30 mg/kg b.w. was utilized for a microbiological semiquantitative assay. All litters contained some fetuses showing no detectable TBM accumulation in either kidney or in placentae: at 30 mg/kg/b.w. accumulation appeared more prevalent in placenta than in the kidneys of the corresponding fetuses, as confirmed also by the semiquantitative assay. Some newborns (about 6%) of both groups showed detectable renal TBM residues on the 6th and on the 11th day after the end of treatment. The frequency of newborns showing residues was not obviously related to the dose or the day of sampling, and the concentrations of TBM found were comparable to those observed in fetuses. It is possible that they represent a particularly sensitive subgroup.  相似文献   

16.
Our studies suggested that prenatal exposure to the herbicide atrazine (ATR) could delay vaginal opening (VO) and mammary development in the offspring of Long-Evans (LE) rats. To evaluate ATR exposure parameters required for pubertal delays, including mammary gland development, we used cross-fostering to determine if effects were strictly dam-mediated (via milk) or a direct effect (transplacental) on the pups. Timed-pregnant LE rats (N = 20/treatment group) were gavaged on gestational days (GD) 15-19 with 100 mg ATR/kg body weight (BW) or vehicle (controls, C). On PND1, half of all litters were cross-fostered, creating four treatment groups: C-C, ATR-C, C-ATR, and ATR-ATR (dam-milk source, respectively). A significant delay in VO and increase in VO BW was seen only in the litters receiving milk from ATR-exposed dams. However, mammary glands of female offspring (two per dam) in all groups exposed to ATR (ATR-C, C-ATR, and ATR-ATR) displayed significant delays in epithelial development. These changes were detected as early as PND4 and stunted development was evident through PND40. Further, at all developmental stages examined, offspring in the ATR-ATR group exhibited the least developed glands. These delays in pubertal endpoints do not appear to be related to body weight or endocrine hormone concentrations. Our data suggest that the delay in VO of ATR-exposed offspring (C-ATR lactationally, ATR-ATR lactationally and in utero) is mediated via the dam [milk], whereas brief direct exposure to ATR in utero can cause delays in mammary gland development. Our data suggest that milk-derived factors (growth factors or hormones), in addition to transplacental exposure during mammary bud outgrowth, may be involved in ATR mode of action on delayed mammary gland development.  相似文献   

17.
Pregnant CD rats were exposed dermally to 0.05, 1, 10, 50, and250 mg/kg/day of Clarified Slurry Oil (CSO) on Days 0–19of gestation to determine its potential developmental toxicity.Untreated and vehicle controls were included in the study. Day20 of gestation Caesarean-derived fetuses were examined forgross, external, and visceral or skeletal alterations. Dosagesof 1 mg/kg/day and higher significantly decreased maternal bodyweight, body weight gain, feed consumption, gravid uterine weight,and live litter size and significantly increased resorptionrate. These dosages also significantly reduced fetal weightsand retarded development of the brain, kidney, thoracic andcaudal vertebrae, metacarpals, and hindpaw phalanges in dosagegroups with live fetuses (high dosage group dams resorbed allconceptuses). The 50- and 250-mg/kg/day dosage group dams hadonly placentas and/or dark red viscous fluid in the uterus orvagina and significant body weight loss (associated with resorption).The highest dosage also caused emaciation, slight dehydration,and swollen dark anogenital areas. These results indicate thatCSO produces adverse developmental effects at maternally toxicdosages. The maternal and developmental NOAELs (no observedadverse effect levels) were 0.05 mg/kg/day. In a second study,groups of 10 mated female rats were exposed to "pulse" exposuresand dosages of 1, 50, or 250 mg/kg/day of CSO applied dermallyfor 2- or 3-day intervals that spanned the gestation period.All dosages reduced maternal feed consumption and body weightgain during the treatment period. Dosages of 50 and 250 mg/kg/dayalso produced early resorptions when administered on Days 6through 8 and 9 through 11 of gestation. However, no increasein fetal alterations occurred, indicating that the effects onembryo–fetal development were due to early death and notto the death of malformed conceptuses.  相似文献   

18.
Exemestane is an orally active, irreversible inactivator of aromatase, structurally related to the natural substrate androstenedione, in clinical use at 25 mg daily for the treatment of advanced breast cancer in postmenopausal women. The reproductive and developmental toxicity of exemestane was assessed in rats and rabbits with oral administration. Pivotal experiments included a fertility study (Segment I), in which female rats received exemestane doses of 4, 20, or 100 mg/kg/day from two weeks premating until GD 20 (cesarean-sectioned dams), or until GD 15 and then from D 1 to D 21 postpartum (dams allowed to deliver), and developmental toxicity studies (Segment II), in which rats and rabbits were treated from GD 6 through GD 17 (rats) or GD 18 (rabbits) at doses of 10, 50, 250, or 810 mg/kg/day and 30, 90, or 270 mg/kg/day, respectively. All rabbits and two-thirds of the rats were cesarean sectioned toward the end of pregnancy to determine litter parameters and examine structural abnormalities in the fetuses; the remaining one-third of the rats was allowed to litter and rear pups to weaning. No pivotal male fertility or peri- and postnatal studies were performed, taking into consideration the therapeutic use. Postnatal effects on the first generation offspring were assessed in both studies in rats, in the portion of dams allowed to deliver. Their F1 offspring were raised to adulthood, when they were evaluated for reproductive performance, and the F1 females were terminated on GD 20. The dosing schedule for the Segment I study in rats, which included a postnatal component, was established to exclude exposure before and during parturition (by withdrawing treatment from GD 16 until the end of parturition). This withdrawal of treatment was put in place because in a preliminary study with treatment including the peripartum period, doses from 5 to 200 mg/kg/day prolonged gestation and interfered with parturition.Overall, studies in rats showed that female fertility was not affected up to 100 mg/kg/day, but doses higher than 4 mg/kg/day, which is approximately the pharmacologically active dose (ED50 = 3.7 mg/kg), prolonged gestation and impaired parturition, leading to maternal deaths in labor and perinatal deaths of offspring. Rats killed on GD 20 showed nondose-related increases in resorptions at doses higher than 10 mg/kg/day, a reduction in fetal body weights at 20 and 100 mg/kg/day (fertility study) and 810 mg/kg/day (developmental toxicity study), and an increase in placental weights at all doses. Female fetuses exposed in utero until GD 20 at 100 mg/kg/day showed an increase in the anogenital distance, very likely related to an increase of the potent androgen DHT as a consequence of aromatase inhibition. Morphologic examinations in fetuses and born pups that were exposed in utero up to the end of the organogenesis period, as well as postnatal investigations on offspring up to adulthood, showed no treatment-related effects. In a developmental toxicity study in rabbits, treatment at 270 mg/kg/day affected maternal food intake and body weight gain, caused abortion or total resorption in about 30% of pregnant females, and reduced body weight and numbers of live fetuses, but did not affect fetal morphology. It was concluded that exemestane did not affect parturition in rats at 4 mg/kg/day or pregnancy in rabbits at 90 mg/kg/day (about 1.5 and 70 times the human dose, respectively, on a mg/m2 basis) and was not teratogenic in rats and rabbits.Exemestane is marketed for use only in postmenopausal women. Its labeling includes a contraindication to use in pregnant or lactating women.  相似文献   

19.
Pergolide mesylate is a dopamine agonist and, therefore, reduces prolactin secretion. In Experiment I, pregnant mice were given oral doses of 0, 0.1, 0.3, 1.0 or 3.0 mg/kg/day pergolide on GD 15 through PD 10 or 20 to identify a tolerated dose which would not markedly reduce offspring survival during late gestational and lactational exposure. Offspring survival was not affected at any dose, but dose-related decreases in progeny body weights occurred at weaning. On PD 10, suckling-induced increases in maternal serum prolactin concentrations did not occur in dams treated with 3.0 mg/kg/day. In Experiment II, pregnant mice were given oral doses of 0, 0.002, 0.1 or 3.0 mg/kg/day pergolide on GD 15 through PD 20. Dams were allowed to deliver and maintain their offspring throughout a 21-day lactation period. Growth and behavioral performance of one F1 male and one F1 female per litter were monitored, followed by a reproduction trial and terminal organ weight measurements. There were no treatment-related effects on maternal body weights, food consumption, or terminal organ weights and pathology. Three dams showed overt signs of mammary inflammation and lactational insufficiency and mean progeny survival was decreased slightly in the 3.0 mg/kg/day group. There were no adverse effects on growth, development or reproductive performance in the F1 treatment-derived generation. Neonatal negative geotaxis, 1-h activity levels at 30 and 60 days of age, auditory startle habituation at 55 days of age, and two-way active avoidance performance at 65 days of age were not affected significantly by treatment. Thus doses of pergolide that did not inhibit lactation completely in the F0 dams were found to have no enduring effects on offspring development.  相似文献   

20.
The maternal and developmental toxicities of perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. PFOS is an environmentally persistent compound used as a surfactant and occurs as a degradation product of both perfluorooctane sulfonyl fluoride and substituted perfluorooctane sulfonamido components found in many commercial and consumer applications. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestational day (GD) 2 to GD 20; CD-1 mice were similarly treated with 1, 5, 10, 15, and 20 mg/kg PFOS from GD 1 to GD 17. Controls received 0.5% Tween-20 vehicle (1 ml/kg for rats and 10 ml/kg for mice). Maternal weight gain, food and water consumption, and serum chemistry were monitored. Rats were euthanized on GD 21 and mice on GD 18. PFOS levels in maternal serum and in maternal and fetal livers were determined. Maternal weight gains in both species were suppressed by PFOS in a dose-dependent manner, likely attributed to reduced food and water intake. Serum PFOS levels increased with dosage, and liver levels were approximately fourfold higher than serum. Serum thyroxine (T4) and triiodothyronine (T3) in the PFOS-treated rat dams were significantly reduced as early as one week after chemical exposure, although no feedback response of thyroid-stimulating hormone (TSH) was observed. A similar pattern of reduction in T4 was also seen in the pregnant mice. Maternal serum triglycerides were significantly reduced, particularly in the high-dose groups, although cholesterol levels were not affected. In the mouse dams, PFOS produced a marked enlargement of the liver at 10 mg/kg and higher dosages. In the rat fetuses, PFOS was detected in the liver but at levels nearly half of those in the maternal counterparts, regardless of administered doses. In both rodent species, PFOS did not alter the numbers of implantations or live fetuses at term, although small deficits in fetal weight were noted in the rat. A host of birth defects, including cleft palate, anasarca, ventricular septal defect, and enlargement of the right atrium, were seen in both rats and mice, primarily in the 10 and 20 mg/kg dosage groups, respectively. Our results demonstrate both maternal and developmental toxicity of PFOS in the rat and mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号