首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this multicenter clinical field study was to assess the benefits of the new Freedom 24 sound processor for cochlear implant (CI) users implanted with the Nucleus 24 cochlear implant system. The study included 48 postlingually profoundly deaf experienced CI users who demonstrated speech comprehension performance with their current speech processor on the Oldenburg sentence test (OLSA) in quiet conditions of at least 80% correct scores and who were able to perform adaptive speech threshold testing using the OLSA in noisy conditions. Following baseline measures of speech comprehension performance with their current speech processor, subjects were upgraded to the Freedom 24 speech processor. After a take-home trial period of at least 2 weeks, subject performance was evaluated by measuring the speech reception threshold with the Freiburg multisyllabic word test and speech intelligibility with the Freiburg monosyllabic word test at 50 dB and 70 dB in the sound field. The results demonstrated highly significant benefits for speech comprehension with the new speech processor. Significant benefits for speech comprehension were also demonstrated with the new speech processor when tested in competing background noise.In contrast, use of the Abbreviated Profile of Hearing Aid Benefit (APHAB) did not prove to be a suitably sensitive assessment tool for comparative subjective self-assessment of hearing benefits with each processor. Use of the preprocessing algorithm known as adaptive dynamic range optimization (ADRO) in the Freedom 24 led to additional improvements over the standard upgrade map for speech comprehension in quiet and showed equivalent performance in noise. Through use of the preprocessing beam-forming algorithm BEAM, subjects demonstrated a highly significant improved signal-to-noise ratio for speech comprehension thresholds (i.e., signal-to-noise ratio for 50% speech comprehension scores) when tested with an adaptive procedure using the Oldenburg sentences in the clinical setting S(0)N(CI), with speech signal at 0 degrees and noise lateral to the CI at 90 degrees . With the convincing findings from our evaluations of this multicenter study cohort, a trial with the Freedom 24 sound processor for all suitable CI users is recommended. For evaluating the benefits of a new processor, the comparative assessment paradigm used in our study design would be considered ideal for use with individual patients.  相似文献   

2.
OBJECTIVE: The performance of an adaptive beam-former in a 2-microphone, behind-the-ear hearing aid for speech understanding in noisy environments was evaluated. Physical and perceptual evaluations were carried out. This was the first large-scale test of a wearable real-time implementation of this algorithm. The main perceptual research questions of this study were related to the influence on the noise reduction performance of (1) the spectro-temporal character of the jammer sound, (2) the jammer sound scene, (3) hearing impairment, and (4) the basic microphone configuration in the hearing aid. Four different speech materials were used for the perceptual evaluations. All tests were carried out in an acoustical environment comparable to living room reverberation. DESIGN: The adaptive beamformer was implemented in Audallion, a small, body-worn processor, linked to a Danasound 2-microphone behind-the-ear aid. The strategy was evaluated physically in different acoustical environments. Using speech reception threshold (SRT) measurements, the processing was evaluated perceptually and the different research questions addressed with three groups of subjects. Groups I, II, and III consisted of 10 normal-hearing, 5 hearing-impaired, and 7 normal-hearing persons, respectively. The tests were carried out in three spectro-temporally different jammer sounds (unmodulated and modulated speech weighted noise, multitalker babble) and in three different noise scenarios (single noise source at 90 degrees, noise sources at 90 degrees and 270 degrees relative to speaker position, diffuse noise scene). Two microphone configurations were compared: a device equipped with two omnidirectional microphones and a device equipped with one hardware directional and one omnidirectional microphone. In each of these conditions, the adaptive beamformer and the directional and omnidirectional microphone configurations were tested. RESULTS: The improvement in signal-to-noise ratio from the use of the adaptive beamformer did not depend on the spectro-temporal character of the jammer sounds and the speech materials used, although the absolute levels of the SRTs varied appreciably for different speech-noise combinations. The performance of the adaptive noise reduction depended on the jammer sound scene. CONCLUSIONS: No difference in signal-to-noise ratio improvement was observed between hearing-impaired and normal-hearing listeners, although individual SRT levels may differ. On average, an SRT improvement of 7.7 and 3.9 dB for a single noise source at 90 degrees and 5.9 and 3.4 dB for two noise sources at 90 degrees and 270 degrees was obtained for both normal-hearing and hearing-impaired listeners, using the adaptive beamformer and the directional microphone, respectively, relative to the omnidirectional microphone signal. In diffuse noise, only small improvements were obtained.  相似文献   

3.
ObjectivesThe aim of this study was to investigate whether experienced paediatric cochlear implant users could show benefits to speech perception outcomes from the introduction of noise reduction and automated scene classification technologies as implemented in the Nucleus® 6 sound processor. Previous research with adult cochlear implant users had shown significant improvements in speech intelligibility for listening in noisy conditions and good user acceptance for upgrading to the Nucleus 6 processor. In adults, these improvements for listening in noise were primarily attributed to the use of a range of new input processing technologies including noise reduction, as well as introduction of automatic scene classification technology.MethodsExperienced paediatric cochlear implant users (n = 25) were recruited from four clinics located in three countries. Research participants were evaluated on three occasions, an initial session using their Nucleus 5 sound processor; a second session in which participants used the Nucleus 6 processor programmed with the same technologies as were used in their Nucleus 5 sound processor; and a final session in which participants used the Nucleus 6 processor programmed with the default technologies including automatic scene classification (SCAN) which automatically selects the microphone directionality, noise reduction (SNR-NR), and wind noise reduction (WNR) technologies. Prior to both the second and third evaluations, research participants had approximately two weeks take-home experience with the new system. Speech perception performances on monosyllabic word tests presented in quiet and in noise, and a sentence test presented in noise, were compared across the three processor conditions. Acceptance of the Nucleus 6 default settings was assessed in a final session.ResultsNo group mean difference in performance was found for monosyllabic words in quiet. A significant improvement in speech perception was found for both monosyllabic words and sentences in noise with the default Nucleus 6 program condition as compared with the Nucleus 5 condition. No acceptance issues were noted for any of the children.ConclusionsExperienced paediatric cochlear implant users showed a significant improvement in speech perception in listening in noise when upgraded to the Nucleus 6 sound processor primarily due to the introduction of a noise reduction technology, and all children accepted the default program. These findings suggest that school-aged children may benefit from upgrading to the Nucleus 6 sound processor using the default program.  相似文献   

4.
OBJECTIVE: In this study the performance of a noise reduction strategy applied to cochlear implants is evaluated. The noise reduction strategy is based on a 2-channel adaptive filtering strategy using two microphones in a single behind-the-ear hearing aid. DESIGN: Four adult LAURA cochlear implant users (Peeters et al., 1993) took part in the experiments. The tests included identification of monosyllabic CVC (consonant-vowel-consonant) words and measurements of the speech reception threshold (SRT) of lists of numbers, in background noise presented at 90 degrees relative to the 0 degrees frontal direction of the speech. Percent correct phoneme scores for the CVC words at signal to noise ratios (SNRs) of -5, 0, and +5 dB in steady speech-weighted noise at 60 dB SPL and SRTs for numbers in speech-weighted steady and nonsteady ICRA noise were both obtained in conditions with and without the noise reduction pre-processing. Physical SNR improvements of the noise reduction system are evaluated as well, as a function of the direction of the noise source. RESULTS: Highly significant improvements in speech understanding, corresponding on average to an SNR improvement of about 10 dB, were observed with this 2-channel adaptive filtering noise reduction strategy using both types of speech-noise test materials. These perceptual evaluations agree with physical evaluations and simulations of this noise reduction strategy. Taken together, these data demonstrate that cochlear implantees may increase their speech intelligibility in noisy environments with the use of multimicrophone noise reduction systems.  相似文献   

5.
Abstract

To evaluate whether speech recognition in noise differs according to whether a wireless remote microphone is connected to just the cochlear implant (CI) or to both the CI and to the hearing aid (HA) in bimodal CI users. The second aim was to evaluate the additional benefit of the directional microphone mode compared with the omnidirectional microphone mode of the wireless microphone. This prospective study measured Speech Recognition Thresholds (SRT) in babble noise in a ‘within-subjects repeated measures design’ for different listening conditions. Eighteen postlingually deafened adult bimodal CI users. No difference in speech recognition in noise in the bimodal listening condition was found between the wireless microphone connected to the CI only and to both the CI and the HA. An improvement of 4.1?dB was found for switching from the omnidirectional microphone mode to the directional mode in the CI only condition. The use of a wireless microphone improved speech recognition in noise for bimodal CI users. The use of the directional microphone mode led to a substantial additional improvement of speech perception in noise for situations with one target signal.  相似文献   

6.
The recognition of phonemes in consonant-vowel-consonant words, presented in speech-shaped random noise, was measured as a function of signal to noise ratio (S/N) in 10 normally hearing adults and 10 successful adult users of the Nucleus cochlear implant. Optimal scores (measured at a S/N of +25 dB) were 98% for the average normal subject and 42% for the average implantee. Phoneme recognition threshold was defined as the S/N at which the phoneme recognition score fell to 50% of its optimal value. This threshold was -2 dB for the average normal subject and +9 dB for the average implantee. Application of a digital noise suppression algorithm (INTEL) to the mixed speech plus noise signal had no effect on the optimal phoneme recognition score of either group or on the phoneme recognition threshold of the normal group. It did, however, improve the phoneme recognition threshold of the implant group by an average of 4 to 5 dB. These findings illustrate the noise susceptibility of Nucleus cochlear implant users and suggest that single-channel digital noise reduction techniques may offer some relief from this problem.  相似文献   

7.
Objective: To evaluate the benefit of a wireless remote microphone (MM) for speech recognition in noise in bimodal adult cochlear implant (CI) users both in a test setting and in daily life. Design: This prospective study measured speech reception thresholds in noise in a repeated measures design with factors including bimodal hearing and MM use. The participants also had a 3-week trial period at home with the MM. Study sample: Thirteen post-lingually deafened adult bimodal CI users. Results: A significant improvement in SRT of 5.4?dB was found between the use of the CI with the MM and the use of the CI without the MM. By also pairing the MM to the hearing aid (HA) another improvement in SRT of 2.2?dB was found compared to the situation with the MM paired to the CI alone. In daily life, participants reported better speech perception for various challenging listening situations, when using the MM in the bimodal condition. Conclusion: There is a clear advantage of bimodal listening (CI and HA) compared to CI alone when applying advanced wireless remote microphone techniques to improve speech understanding in adult bimodal CI users.  相似文献   

8.
9.
In this study speech intelligibility in background noise was evaluated with 10 binaural hearing-aid users for hearing aids with one omnidirectional microphone and a hearing aid with a two-microphone configuration (enabling an omnidirectional as well as a directional mode). Signal-to-noise ratio (SNR) measurements were carried out for three different types of background noise (speech-weighted noise, traffic noise and restaurant noise) and two kinds of speech material (bisyllabic word lists and sentences). The average SNR improvement of the directional microphone configuration relative to the omnidirectional one was 3.4 dB for noise presented from 90 degrees azimuth. This improvement was independent of the specific type of noise and speech material, indicating that one speech-in-noise condition may yield enough relevant information in the evaluation of directional microphones and speech understanding in noise.  相似文献   

10.
Chung K  Nelson L  Teske M 《Hearing research》2012,291(1-2):41-51
The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI?+?NR), and adaptive directional microphone plus noise reduction algorithm (ADM?+?NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed.  相似文献   

11.
OBJECTIVE: To quantify binaural advantage for auditory localization in the horizontal plane by bilateral cochlear implant (CI) recipients. Also, to determine whether the use of dual microphones with one implant improves localization. METHODS: Twenty subjects from the UK multicenter trial of bilateral cochlear implantation with Nucleus 24 K/M device were recruited. Sound localization was assessed in an anechoic room with an 11-loudspeaker array under four test conditions: right CI, left CI, binaural CI, and dual microphone. Two runs were undertaken for each of five stimuli (speech, tones, noise, transients, and reverberant speech). Order of conditions was counterbalanced across subjects. RESULTS: Mean localization error with bilateral implants was 24 degrees compared with 67 degrees for monaural implant and dual microphone conditions (chance performance is 65 degrees). Normal controls average 2 to 3 degrees in similar conditions. Binaural performance was significantly better than monaural performance for all subjects, for all stimulus types, and for different sound sources. Only small differences in performance with different stimuli were observed. CONCLUSIONS: Bilateral cochlear implantation with the Nucleus 24 device provides marked improvement in horizontal plane localization abilities compared with unilateral CI use for a range of stimuli having different spectral and temporal characteristics. Benefit was obtained by all subjects, for all stimulus types, and for all sound directions. However, binaural performance was still worse than that obtained by normal hearing listeners and hearing aid users with the same methodology. Monaural localization performance was at chance. There is no benefit for localization with dual microphones.  相似文献   

12.
The objective of this study was to evaluate the effect of the increased instantaneous input dynamic range (IIDR) in the Nucleus Freedom cochlear implant (CI) system on recipients' ability to perceive soft speech and speech in noise. Ten adult Freedom CI recipients participated. Two maps differing in IIDR were placed on each subject's processor at initial activation. The IIDR was set to 30 dB for one map and 40 dB for the other. Subjects used both maps for at least one month prior to speech perception testing. Results revealed significantly higher scores for words (50 dB SPL), for sentences in background babble (65 dB SPL), and significantly lower sound field threshold levels with the 40 compared to the 30 dB IIDR map. Ceiling effects may have contributed to non-significant findings for sentences in quiet (50 dB SPL). The Freedom's increased IIDR allows better perception of soft speech and speech in noise.  相似文献   

13.
OBJECTIVE: People with cochlear implants have severe problems with speech understanding in noisy surroundings. This study evaluates and quantifies the effect of two assistive directional microphone systems compared to the standard headpiece microphone on speech perception in quiet surroundings and in background noise, in a laboratory setting developed to reflect a situation whereby the listener is disturbed by a noise with a mainly diffuse character due to many sources in a reverberant room. DESIGN: Thirteen postlingually deafened patients, implanted in the Leiden University Medical Centre with the Clarion CII device, participated in the study. An experimental set-up with 8 uncorrelated steady-state noise sources was used to test speech perception on monosyllabic words. Each subject was tested with a standard headpiece microphone, and the two assistive directional microphones, TX3 Handymic by Phonak and the Linkit array microphone by Etymotic Research. Testing was done in quiet at a level of 65 dB SPL and with decreasing signal-to-noise ratios (SNR) down to -15 dB. RESULTS: Using the assistive directional microphones, speech recognition in background noise improved substantially and was not affected in quiet. At an SNR of 0 dB, the average CVC scores improved from 45% for the headpiece microphone to 67% and 62% for the TX3 Handymic and the Linkit respectively. Compared to the headpiece, the Speech Reception Threshold (SRT) improved by 8.2 dB SNR and 5.9 dB SNR for the TX3 Handymic and the Linkit respectively. The gain in SRT for TX3 Handymic and Linkit was neither correlated to the SRT score with headpiece nor the duration of CI-use. CONCLUSION: The speech recognition test in background noise showed a clear benefit from the assistive directional microphones for cochlear implantees compared to the standard microphone. In a noisy environment, the significant benefit from these assistive device microphones may allow understanding of speech with greater ease.  相似文献   

14.
Journal of the Association for Research in Otolaryngology - Poor spectral resolution contributes to the difficulties experienced by cochlear implant (CI) users when listening to speech in noise....  相似文献   

15.
To investigate the cortical activities while listening to noise and speech in cochlear implant (CI) users, we compared cerebral blood flow in postlingually deafened CI users with that in normal hearing subjects using positron emission tomography. While noise activation in CI users did not significantly differ from that in normal subjects, hearing speech activated more cortical areas in CI users than in normal subjects. A comparison of speech activation in these two groups revealed higher activation in CI users not only in the temporal cortices but also in Broca's area and its right hemisphere homologue, the supplementary motor area and the anterior cingulate gyrus. In postlingually deafened subjects, the hearing of speech coded by CI may be accompanied by increased activation of both the temporal and frontal cortices.  相似文献   

16.
Objectives: The purpose of this study was to investigate speech recognition in noise and listening effort among a group of adults with cochlear implants (CIs). Two main research questions were addressed. First, what are the effects of omni versus directional microphone configuration on speech recognition and listening effort for noisy conditions? Second, what is the effect of unilateral versus bimodal or bilateral CI listening on speech recognition and listening effort in noisy conditions?

Design: Sixteen adults (mean age 58 years) with CIs participated. Listening effort was measured using a dual-task paradigm and also using a self-reported rating of difficulty scale. In the dual-task measure, participants were asked to repeat monosyllabic words while at the same time press a button in response to a visual stimulus. Participants were tested in two baseline conditions (speech perception alone and visual task alone) and in the following experimental conditions: (1) quiet with an omnidirectional microphone, (2) noise with an omnidirectional microphone, (3) noise with a directional microphone, and (4) noise with a directional microphone and with a second sided CI or hearing aid. When present, the noise was fixed with a +5?dB signal-to-noise ratio. After each listening condition, the participants rated the degree of listening difficulty.

Results: Changing the microphone from omni to directional mode significantly enhanced speech recognition in noise performance. There were no significant changes in speech recognition between the unilateral and bimodal/bilateral CI listening conditions. Listening effort, as measured by reaction time, increased significantly between the baseline and omnidirectional quiet listening condition though did not change significantly across the remaining listening conditions. Self-perceived listening effort revealed a greater effort for the noisy conditions, and reduced effort with the move from an omni to a directional microphone.

Conclusions: Directional microphones significantly improve speech in noise recognition over omnidirectional microphones and allowed for decreased self-perceived listening effort. The dual task used in this study failed to show any differences in listening effort across the experimental conditions and may not be sensitive enough to detect changes in listening effort.  相似文献   

17.

Background

An important parameter for characterization of the acoustic quality of closed rooms is reverberation. There is a rising interest in evaluating the ability of cochlear implant (CI) users to understand speech in real-world environments. Whereas the influence of noise on speech perception has been widely investigated, much less is known about the detrimental effect of reverberation. The present study aimed to investigate the influence of reverberation time on the speech perception of CI users and subjects with normal hearing.

Method

A reverberated version of the sentences of the Oldenburg sentence test (OLSA) which is a widely used German test to measure speech reception thresholds (SRT) in cochlear implant users was generated using professional audio processing software. The reverberation times used were 0.7, 1.0, 1.5 and 2.0 s. For these four reverberation times and for a non-reverberated control condition, the SRT was measured in eight adult CI users and in eight subjects with normal hearing.

Results

To characterize the detrimental effect of reverberation the SRT differences between the reverberated and non-reverberated conditions were calculated. These SRT differences revealed a significant effect of reverberation in CI users with, e.g. a mean SRT increase of 2.9 dB in CI users and 0.9 dB in subjects with normal hearing for a reverberation time of 0.7 s. A strong correlation was found between the SRT increase and the SRT in the non-reverberated condition, highlighting the problems of poor performers in reverberant environments.

Conclusion

The results of the current investigation indicated that reverberation results in decreased speech understanding of CI users.  相似文献   

18.
King Chung  Fan-Gang Zeng   《Hearing research》2009,250(1-2):27-37
The goal of this study was to investigate whether adaptive microphone directionality could enhance cochlear implant performance. Speech stimuli were created by fitting a digital hearing aid with programmable omnidirectional (OM), fixed directional (FDM), or adaptive directional (ADM) microphones to KEMAR, and recording the hearing aid output in three noise conditions. The first condition simulated a diffused field with noise sources from five stationary locations, whereas the second and third condition represented one or three non-stationary locations in the back hemifield of KEMAR. Speech was always presented to 0° azimuth and the overall signal-to-noise ratio (SNR) was +5 dB in the sound field. Eighteen postlingually deafened cochlear implant users listened to the recorded test materials via the direct audio input of their speech processors. Their speech recognition ability and overall sound quality preferences were assessed and the correlation between the amount of noise reduction and the improvement in speech recognition were calculated. The results indicated that ADM yielded significantly better speech recognition scores and overall sound quality preference than FDM and OM in all three noise conditions and the improvement in speech recognition scores was highly correlated with the amount of noise reduction. Factors influencing the noise level are discussed.  相似文献   

19.
Cochlear Limited (Cochlear) released the fourth-generation cochlear implant system, Nucleus Freedom, in 2005. Freedom is based on 25 years of experience in cochlear implant research and development and incorporates advances in medicine, implantable materials, electronic technology, and sound coding. This article presents the development of Cochlear's implant systems, with an overview of the first 3 generations, and details of the Freedom system: the CI24RE receiver-stimulator, the Contour Advance electrode, the modular Freedom processor, the available speech coding strategies, the input processing options of Smart Sound to improve the signal before coding as electrical signals, and the programming software. Preliminary results from multicenter studies with the Freedom system are reported, demonstrating better levels of performance compared with the previous systems. The final section presents the most recent implant reliability data, with the early findings at 18 months showing improved reliability of the Freedom implant compared with the earlier Nucleus 3 System. Also reported are some of the findings of Cochlear's collaborative research programs to improve recipient outcomes. Included are studies showing the benefits from bilateral implants, electroacoustic stimulation using an ipsilateral and/or contralateral hearing aid, advanced speech coding, and streamlined speech processor programming.  相似文献   

20.
Abstract

Objective: The aim of this study was to describe common properties (reproducibility, discrimination function, and its steepness) of matrix tests used for cochlear implant (CI) users and to obtain data for the German-language version matrix test, the Oldenburg sentence test (OLSA), presented in noise. Design: The speech reception thresholds (SRT) in noise were measured by means of an adaptive test procedure, and by measurement at various signal-to-noise ratios to determine the course of the entire discrimination function per subject. Study sample: The measurements were performed on 38 CI users fitted with a Cochlear? Freedom® or a Cochlear? Nucleus® 5 CI system. Results: The test–retest reproducibility showed a significant dependence on the SRT in noise. For the better performers, the test-retest difference was found to be smaller, while for the poorer performers the difference increased. For the better performers, the slope of the discrimination function at SRT (s50) was comparable to that for individuals with normal hearing, while for the poorer performers the s50 tended to be significantly reduced. Conclusions: As the CI users differed significantly in their SRT and their s50, a unified discrimination function for CI users must not be used. Further tailoring of the procedure may be required, especially for poorer CI performers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号