首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
目的 定量分析不同成像条件下兆伏级锥形束CT(MVCBCT)的影像质量,为临床应用提供参考.方法 采用西门子ONCOR直线加速器上的MVCBCT设备,在不同的成像条件下扫描影像质昔模体.通过分析影像均匀性、噪声、空间分辨率、对比度分辨率及成像剂量来评估其影像质量,并与常规大孔径CT影像进行定量比较.结果 MVCBCT影像噪声随加速器出束跳数(MU)增加而减少.均匀性指数与成像MU数及重建矩阵无线件关系.空间分辨率上采用256×256重建矩阵除5MU条件下为0.25 lp/mm,其他皆为0.4 lp/mm.随MU数增加对比度分辨率增加.成像剂量上头颈患者接受最大剂量为1.2 cGy/MU,中心位置剂量为0.8~0.9 cGy/MU,腹部最大和中心处分别为1.3cGy/MU和0.7 cGy/MU.结论 MVCBCT的噪声、均匀性、空间分辨率及对比度分辨率都差于常规扇形束CT.通过选择恰当成像参数和重建参数,可在患者接受尽量低成像剂量的同时获得足够分辨率来分辨骨组织、空腔及部分软组织用于影像引导放疗.  相似文献   

2.
Objective To quantitatively analyze the image quality of megavoltage cone-beam CT (MVCBCT) under different scanning conditions to provide reference in clinical applications. Methods Si-emens ONCOR linear accelerator with MVCBCT was used to scan the phantom under different conditions. The image quality was evaluated in terms of image noise, uniformity, spatial resolution, contrast resolution, the number of Monitor Units(MUs) used in imaging,and the size of the reconstruction matrix. The comparison of the image quality between MVCBCT and conventional simulator CT was also analyzed. Results The image noise was decreased with the increase of the number of MUs. The uniformity index showed that the system u-niformity was weakly dependent on MU numbers or the size of the reconstruction matrix. Except for the ima-ges with 5 MUs,all other images had the spatial resolution of 0.4 lp/mm with a reconstruction matrix of 256 ×256. Better low contrast resolution was achieved by using more MUs. For typical pelvis and head-and-neck patients,the imaging dose at the center was 0.8 cGy/MU and 0.7 cGy/MU, respectively,and the maxi-mum dose was about 1.2 cGy/MU. For typical abdomen patients,the image maximum dose and center dose was 1.3 cGy/MU and 0.7 cGy/MU,respectively. Conclusions The image quality of MVCBCT is inferior to the conventional kilo-voltage CT. However,with the optimization of the parameters in imaging,we can a-chieve sufficient image contrast in the bone,air and some soft-tissue structures with low imaging dose to pa-tients. Such images can be used for IGRT.  相似文献   

3.
Objective To quantitatively analyze the image quality of megavoltage cone-beam CT (MVCBCT) under different scanning conditions to provide reference in clinical applications. Methods Si-emens ONCOR linear accelerator with MVCBCT was used to scan the phantom under different conditions. The image quality was evaluated in terms of image noise, uniformity, spatial resolution, contrast resolution, the number of Monitor Units(MUs) used in imaging,and the size of the reconstruction matrix. The comparison of the image quality between MVCBCT and conventional simulator CT was also analyzed. Results The image noise was decreased with the increase of the number of MUs. The uniformity index showed that the system u-niformity was weakly dependent on MU numbers or the size of the reconstruction matrix. Except for the ima-ges with 5 MUs,all other images had the spatial resolution of 0.4 lp/mm with a reconstruction matrix of 256 ×256. Better low contrast resolution was achieved by using more MUs. For typical pelvis and head-and-neck patients,the imaging dose at the center was 0.8 cGy/MU and 0.7 cGy/MU, respectively,and the maxi-mum dose was about 1.2 cGy/MU. For typical abdomen patients,the image maximum dose and center dose was 1.3 cGy/MU and 0.7 cGy/MU,respectively. Conclusions The image quality of MVCBCT is inferior to the conventional kilo-voltage CT. However,with the optimization of the parameters in imaging,we can a-chieve sufficient image contrast in the bone,air and some soft-tissue structures with low imaging dose to pa-tients. Such images can be used for IGRT.  相似文献   

4.
Objective To quantitatively analyze the image quality of megavoltage cone-beam CT (MVCBCT) under different scanning conditions to provide reference in clinical applications. Methods Si-emens ONCOR linear accelerator with MVCBCT was used to scan the phantom under different conditions. The image quality was evaluated in terms of image noise, uniformity, spatial resolution, contrast resolution, the number of Monitor Units(MUs) used in imaging,and the size of the reconstruction matrix. The comparison of the image quality between MVCBCT and conventional simulator CT was also analyzed. Results The image noise was decreased with the increase of the number of MUs. The uniformity index showed that the system u-niformity was weakly dependent on MU numbers or the size of the reconstruction matrix. Except for the ima-ges with 5 MUs,all other images had the spatial resolution of 0.4 lp/mm with a reconstruction matrix of 256 ×256. Better low contrast resolution was achieved by using more MUs. For typical pelvis and head-and-neck patients,the imaging dose at the center was 0.8 cGy/MU and 0.7 cGy/MU, respectively,and the maxi-mum dose was about 1.2 cGy/MU. For typical abdomen patients,the image maximum dose and center dose was 1.3 cGy/MU and 0.7 cGy/MU,respectively. Conclusions The image quality of MVCBCT is inferior to the conventional kilo-voltage CT. However,with the optimization of the parameters in imaging,we can a-chieve sufficient image contrast in the bone,air and some soft-tissue structures with low imaging dose to pa-tients. Such images can be used for IGRT.  相似文献   

5.
Objective To quantitatively analyze the image quality of megavoltage cone-beam CT (MVCBCT) under different scanning conditions to provide reference in clinical applications. Methods Si-emens ONCOR linear accelerator with MVCBCT was used to scan the phantom under different conditions. The image quality was evaluated in terms of image noise, uniformity, spatial resolution, contrast resolution, the number of Monitor Units(MUs) used in imaging,and the size of the reconstruction matrix. The comparison of the image quality between MVCBCT and conventional simulator CT was also analyzed. Results The image noise was decreased with the increase of the number of MUs. The uniformity index showed that the system u-niformity was weakly dependent on MU numbers or the size of the reconstruction matrix. Except for the ima-ges with 5 MUs,all other images had the spatial resolution of 0.4 lp/mm with a reconstruction matrix of 256 ×256. Better low contrast resolution was achieved by using more MUs. For typical pelvis and head-and-neck patients,the imaging dose at the center was 0.8 cGy/MU and 0.7 cGy/MU, respectively,and the maxi-mum dose was about 1.2 cGy/MU. For typical abdomen patients,the image maximum dose and center dose was 1.3 cGy/MU and 0.7 cGy/MU,respectively. Conclusions The image quality of MVCBCT is inferior to the conventional kilo-voltage CT. However,with the optimization of the parameters in imaging,we can a-chieve sufficient image contrast in the bone,air and some soft-tissue structures with low imaging dose to pa-tients. Such images can be used for IGRT.  相似文献   

6.
Objective To quantitatively analyze the image quality of megavoltage cone-beam CT (MVCBCT) under different scanning conditions to provide reference in clinical applications. Methods Si-emens ONCOR linear accelerator with MVCBCT was used to scan the phantom under different conditions. The image quality was evaluated in terms of image noise, uniformity, spatial resolution, contrast resolution, the number of Monitor Units(MUs) used in imaging,and the size of the reconstruction matrix. The comparison of the image quality between MVCBCT and conventional simulator CT was also analyzed. Results The image noise was decreased with the increase of the number of MUs. The uniformity index showed that the system u-niformity was weakly dependent on MU numbers or the size of the reconstruction matrix. Except for the ima-ges with 5 MUs,all other images had the spatial resolution of 0.4 lp/mm with a reconstruction matrix of 256 ×256. Better low contrast resolution was achieved by using more MUs. For typical pelvis and head-and-neck patients,the imaging dose at the center was 0.8 cGy/MU and 0.7 cGy/MU, respectively,and the maxi-mum dose was about 1.2 cGy/MU. For typical abdomen patients,the image maximum dose and center dose was 1.3 cGy/MU and 0.7 cGy/MU,respectively. Conclusions The image quality of MVCBCT is inferior to the conventional kilo-voltage CT. However,with the optimization of the parameters in imaging,we can a-chieve sufficient image contrast in the bone,air and some soft-tissue structures with low imaging dose to pa-tients. Such images can be used for IGRT.  相似文献   

7.
Objective To quantitatively analyze the image quality of megavoltage cone-beam CT (MVCBCT) under different scanning conditions to provide reference in clinical applications. Methods Si-emens ONCOR linear accelerator with MVCBCT was used to scan the phantom under different conditions. The image quality was evaluated in terms of image noise, uniformity, spatial resolution, contrast resolution, the number of Monitor Units(MUs) used in imaging,and the size of the reconstruction matrix. The comparison of the image quality between MVCBCT and conventional simulator CT was also analyzed. Results The image noise was decreased with the increase of the number of MUs. The uniformity index showed that the system u-niformity was weakly dependent on MU numbers or the size of the reconstruction matrix. Except for the ima-ges with 5 MUs,all other images had the spatial resolution of 0.4 lp/mm with a reconstruction matrix of 256 ×256. Better low contrast resolution was achieved by using more MUs. For typical pelvis and head-and-neck patients,the imaging dose at the center was 0.8 cGy/MU and 0.7 cGy/MU, respectively,and the maxi-mum dose was about 1.2 cGy/MU. For typical abdomen patients,the image maximum dose and center dose was 1.3 cGy/MU and 0.7 cGy/MU,respectively. Conclusions The image quality of MVCBCT is inferior to the conventional kilo-voltage CT. However,with the optimization of the parameters in imaging,we can a-chieve sufficient image contrast in the bone,air and some soft-tissue structures with low imaging dose to pa-tients. Such images can be used for IGRT.  相似文献   

8.
Objective To quantitatively analyze the image quality of megavoltage cone-beam CT (MVCBCT) under different scanning conditions to provide reference in clinical applications. Methods Si-emens ONCOR linear accelerator with MVCBCT was used to scan the phantom under different conditions. The image quality was evaluated in terms of image noise, uniformity, spatial resolution, contrast resolution, the number of Monitor Units(MUs) used in imaging,and the size of the reconstruction matrix. The comparison of the image quality between MVCBCT and conventional simulator CT was also analyzed. Results The image noise was decreased with the increase of the number of MUs. The uniformity index showed that the system u-niformity was weakly dependent on MU numbers or the size of the reconstruction matrix. Except for the ima-ges with 5 MUs,all other images had the spatial resolution of 0.4 lp/mm with a reconstruction matrix of 256 ×256. Better low contrast resolution was achieved by using more MUs. For typical pelvis and head-and-neck patients,the imaging dose at the center was 0.8 cGy/MU and 0.7 cGy/MU, respectively,and the maxi-mum dose was about 1.2 cGy/MU. For typical abdomen patients,the image maximum dose and center dose was 1.3 cGy/MU and 0.7 cGy/MU,respectively. Conclusions The image quality of MVCBCT is inferior to the conventional kilo-voltage CT. However,with the optimization of the parameters in imaging,we can a-chieve sufficient image contrast in the bone,air and some soft-tissue structures with low imaging dose to pa-tients. Such images can be used for IGRT.  相似文献   

9.
Objective To quantitatively analyze the image quality of megavoltage cone-beam CT (MVCBCT) under different scanning conditions to provide reference in clinical applications. Methods Si-emens ONCOR linear accelerator with MVCBCT was used to scan the phantom under different conditions. The image quality was evaluated in terms of image noise, uniformity, spatial resolution, contrast resolution, the number of Monitor Units(MUs) used in imaging,and the size of the reconstruction matrix. The comparison of the image quality between MVCBCT and conventional simulator CT was also analyzed. Results The image noise was decreased with the increase of the number of MUs. The uniformity index showed that the system u-niformity was weakly dependent on MU numbers or the size of the reconstruction matrix. Except for the ima-ges with 5 MUs,all other images had the spatial resolution of 0.4 lp/mm with a reconstruction matrix of 256 ×256. Better low contrast resolution was achieved by using more MUs. For typical pelvis and head-and-neck patients,the imaging dose at the center was 0.8 cGy/MU and 0.7 cGy/MU, respectively,and the maxi-mum dose was about 1.2 cGy/MU. For typical abdomen patients,the image maximum dose and center dose was 1.3 cGy/MU and 0.7 cGy/MU,respectively. Conclusions The image quality of MVCBCT is inferior to the conventional kilo-voltage CT. However,with the optimization of the parameters in imaging,we can a-chieve sufficient image contrast in the bone,air and some soft-tissue structures with low imaging dose to pa-tients. Such images can be used for IGRT.  相似文献   

10.
兆伏级锥形束CT影像质量定量分析   总被引:3,自引:2,他引:1  
Objective To quantitatively analyze the image quality of megavoltage cone-beam CT (MVCBCT) under different scanning conditions to provide reference in clinical applications. Methods Si-emens ONCOR linear accelerator with MVCBCT was used to scan the phantom under different conditions. The image quality was evaluated in terms of image noise, uniformity, spatial resolution, contrast resolution, the number of Monitor Units(MUs) used in imaging,and the size of the reconstruction matrix. The comparison of the image quality between MVCBCT and conventional simulator CT was also analyzed. Results The image noise was decreased with the increase of the number of MUs. The uniformity index showed that the system u-niformity was weakly dependent on MU numbers or the size of the reconstruction matrix. Except for the ima-ges with 5 MUs,all other images had the spatial resolution of 0.4 lp/mm with a reconstruction matrix of 256 ×256. Better low contrast resolution was achieved by using more MUs. For typical pelvis and head-and-neck patients,the imaging dose at the center was 0.8 cGy/MU and 0.7 cGy/MU, respectively,and the maxi-mum dose was about 1.2 cGy/MU. For typical abdomen patients,the image maximum dose and center dose was 1.3 cGy/MU and 0.7 cGy/MU,respectively. Conclusions The image quality of MVCBCT is inferior to the conventional kilo-voltage CT. However,with the optimization of the parameters in imaging,we can a-chieve sufficient image contrast in the bone,air and some soft-tissue structures with low imaging dose to pa-tients. Such images can be used for IGRT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号