首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
BACKGROUND AND PURPOSE: To evaluate the repositioning accuracy of a commercially available thermoplastic mask system for single dose radiosurgery treatments and fractionated treatment courses. PATIENTS AND METHODS: The repositioning accuracy of the Raycast-HP mask system (Orfit Industries, Wijnegem, Belgium) was analyzed. Twenty-two patients that were treated by intensity-modulated radiation therapy (IMRT) or intensity modulated radiosurgery (IMRS) for 43 intracranial lesions, underwent repeated CT imaging during their course of treatment, or as a positional control immediately before radiosurgery. We evaluated multiple anatomical landmark coordinates and their respective shifts in consecutive repeated CT-controls. An iterative optimization algorithm allowed for the calculation of the x, y and z-components of translation of the target isocenter(s) for each repeated CT, as well as rotation in the respective CT data sets. In addition to absolute target isocenter translation, the total magnitude vector (i.e. sum-vector) of isocenter motion was calculated along with patient rotations about the three principle axes. RESULTS: Fifty-five control CT datasets were analyzed for the target isocenter's respective position relative to the original treatment planning CT simulation. Mean target isocenter translation was 0.74+/-0.53, 0.75+/-0.60 and 0.93+/-0.78 mm in x, y and z-directions, respectively. Mean rotation about the x, y and z-axes was 0.67+/-0.66, 0.61+/-0.63 and 0.67+/-0.61 degrees, respectively. The respective median and mean magnitude vectors of isocenter translation were 1.28 and 1.59+/-0.84 mm. Analysis of the accuracy of the first setup control, representative of setup accuracy for radiosurgery treatments, compared with setup accuracy throughout a fractionated radiation treatment course were statistically equivalent (P= 0.15) thus indicating no measurable deterioration of setup accuracy throughout the treatment course. CONCLUSIONS: The analyzed Orfit thermoplastic mask system performed favorably compared with other mask immobilization systems for which peer-reviewed repositioning data exist. While the performance of the system for fractionated treatment courses was considered to be excellent, use of this mask system for radiosurgery immobilization in our clinic is subject to additional quality assurance measures to prohibit the delivery of treatments with target dislocations larger than 2 mm. The measured data in the present study should enable the users of this system to assign appropriate margins for the generation of planning target volumes.  相似文献   

2.
PURPOSE: To present the TALON removable head frame system as an immobilization device for single-fraction intensity-modulated stereotactic radiosurgery (IMRS) and fractionated stereotactic intensity-modulated radiotherapy (FS-IMRT); and to evaluate the repositioning accuracy by measurement of anatomic landmark coordinates in repeated computed tomography (CT) examinations. METHODS AND MATERIALS: Nine patients treated by fractionated stereotactic intensity-modulated radiotherapy underwent repeated CTs during their treatment courses. We evaluated anatomic landmark coordinates in a total of 26 repeat CT data sets and respective x, y, and z shifts relative to their positions in the nine treatment-planning reference CTs. An iterative optimization algorithm was employed using a root mean square scoring function to determine the best-fit orientation of subsequent sets of anatomic landmark measurements relative to the original image set. This allowed for the calculation of the x, y, and z components of translation of the target isocenter for each repeat CT. In addition to absolute target isocenter translation, the magnitude (sum vector) of isocenter motion and the patient/target rotation about the three principal axes were calculated. RESULTS: Anatomic landmark analysis over a treatment course of 6 weeks revealed a mean target isocenter translation of 0.95 +/- 0.55, 0.58 +/- 0.46, and 0.51 +/- 0.38 mm in x, y, and z directions, respectively. The mean magnitude of isocenter translation was 1.38 +/- 0.48 mm. The 95% confidence interval ([CI], mean translation plus two standard deviations) for repeated isocenter setup accuracy over the 6-week period was 2.34 mm. Average rotations about the x, y, and z axes were 0.41 +/- 0.36, 0.29 +/- 0.25, and 0.18 +/- 0.15 degrees, respectively. Analysis of the accuracy of the first repeated setup control, representative of single-fraction stereotactic radiosurgery situations, resulted in a mean target isocenter translation in the x, y, and z directions of 0.52 +/- 0.38, 0.56 +/- 0.30, and 0.46 +/- 0.25 mm, respectively. The mean magnitude of isocenter translation was 0.99 +/- 0.28 mm. The 95% confidence interval for these radiosurgery situations was 1.55 mm. Average rotations at first repeated setup control about the x, y, and z axes were 0.24 +/- 0.19, 0.19 +/- 0.17, and 0.19 +/- 0.12 degrees, respectively. CONCLUSION: The TALON relocatable head frame was seen to be well suited for immobilization and repositioning of single-fraction stereotactic radiosurgery treatments. Because of its unique removable design, the system was also seen to provide excellent repeat immobilization and alignment for fractionated stereotactic applications. The exceptional accuracy for the single-fraction stereotactic radiosurgical application of the system was seen to deteriorate only slightly over a 6-week fractionated stereotactic treatment course.  相似文献   

3.
PURPOSE: To evaluate the setup accuracy that can be achieved with a novel noninvasive patient fixation technique based on a body cast attached to a recently developed stereotactic body frame during fractionated extracranial stereotactic radiotherapy. METHODS AND MATERIALS: Thirty-one CT studies (> or = 20 slices, thickness: 3 mm) from 5 patients who were immobilized in a body cast attached to a stereotactic body frame for treatment of paramedullary tumors in the thoracic or lumbar spine were evaluated with respect to setup accuracy. The immobilization device consisted of a custom-made wrap-around body cast that extended from the neck to the thighs and a separate head mask, both made from Scotchcast. Each CT study was performed immediately before or after every second or third actual treatment fraction without repositioning the patient between CT and treatment. The stereotactic localization system was mounted and the isocenter as initially located stereotactically was marked with fiducials for each CT study. Deviation of the treated isocenter as compared to the planned position was measured in all three dimensions. RESULTS: The immobilization device can be easily handled, attached to and removed from the stereotactic frame and thus enables treatment of multiple patients with the same stereotactic frame each day. Mean patient movements of 1.6 mm+/-1.2 mm (laterolateral [LL]), 1.4 mm+/-1.0 mm (anterior-posterior [AP]), 2.3 mm+/-1.3 mm (transversal vectorial error [VE]) and < slice thickness = 3 mm (craniocaudal [CC]) were recorded for the targets in the thoracic spine and 1.4 mm+/-1.0 mm (LL), 1.2 mm+/-0.7 mm (AP), 1.8 mm+/-1.2 mm (VE), and < 3 mm (CC) for the lumbar spine. The worst case deviation was 3.9 mm for the first patient with the target in the thoracic spine (in the LL direction). Combining those numbers (mean transversal VE for both locations and maximum CC error of 3 mm), the mean three-dimensional vectorial patient movement and thus the mean overall accuracy can be safely estimated to be < or = 3.6 mm. CONCLUSION: The presented combination of a body cast and head mask system in a rigid stereotactic body frame ensures reliable noninvasive patient fixation for fractionated extracranial stereotactic radiotherapy and may enable dose escalation for less radioresponsive tumors that are near the spinal cord or otherwise critically located while minimizing the risk of late sequelae.  相似文献   

4.
PURPOSE: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. METHODS AND MATERIALS: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. RESULTS: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (< or = 2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. CONCLUSION: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging.  相似文献   

5.
头颈肿瘤立体定向分次照射靶区定位的误差分析   总被引:2,自引:0,他引:2  
Chen LX  Li WJ  He XH  Huang JL  Zeng ZF  Huang SM 《癌症》2004,23(2):223-226
背景与目的:明确靶区定位的精确度是立体定向分次照射质量保证的基本要求。本文主要分析头颈肿瘤立体定向分次照射(fractionatedstereotacticradiotherapy,FSRT)中机械等中心、CT定位、治疗摆位以及CT图像误差等可能引起的靶区定位误差。方法:使用立体定向治疗计划系统、靶点模拟器、头部定位框架检查各个治疗阶段靶区定位的误差。设置任意5个参考点,使用靶点模拟器检查CT定位误差;选取7个不同机器臂架/治疗床角度,定期用胶片检验使用的PhilipsSL-18直线加速器等中心误差大小;用验证片检查治疗摆位误差;对自制模体行CT扫描,分析CT图像伪影可能引起的图像误差。结果:CT定位误差约为(1.5±0.4)mm;在检查的不同机器臂架/治疗床角度中机械等中心最大误差为(1.0±0.6)mm;患者摆位的距离误差为(1.0±0.3)mm;整个治疗过程中靶区定位误差约为(2.1±0.8)mm。结论:立体定向分次照射中需要综合考虑各个阶段中可能对治疗靶区定位产生的影响,误差分析结果可用来确定治疗的计划靶区。  相似文献   

6.
PURPOSE: To design and implement a noninvasive stereotactic immobilization technique with daily CT image-guided positioning to treat patients with paraspinal lesions accurately and to quantify the systematic and random patient setup errors occurring with this method. METHODS AND MATERIALS: A stereotactic body frame (SBF) was developed for "rigid" immobilization of paraspinal patients. The inherent accuracy of this system for stereotactic CT-guided treatment was evaluated with phantom studies. Seven patients with thoracic and lumbar spine lesions were immobilized with the SBF and positioned for 33 treatment fractions using daily CT scans. For all 7 patients, the daily setup errors, as assessed from the daily CT scans, were corrected at each treatment fraction. A retrospective analysis was also performed to assess what the impact on patient treatment would have been without the CT-based corrections (i.e., if patient setup had been performed only with the SBF). RESULTS: The average magnitude of systematic and random errors from uncorrected patient setups using the SBF was approximately 2 mm and 1.5 mm (1 SD), respectively. For fixed phantom targets, the system accuracy for the SBF localization and treatment was shown to be within 1 mm (1 SD) in any direction. Dose-volume histograms incorporating these uncertainties for an intensity-modulated radiotherapy plan for lumbar spine lesions were generated, and the effects on the dose-volume histograms were studied. CONCLUSION: We demonstrated a very accurate and precise method of patient immobilization and treatment delivery based on a noninvasive SBF and daily image guidance for paraspinal lesions. The SBF provides excellent immobilization for paraspinal targets, with setup accuracy better than 2 mm (1 SD). However, for highly conformal paraspinal treatments, uncorrected systematic and random errors of 2 mm in magnitude can result in a significantly greater (>100%) dose to the spinal cord than planned, even though the planned target coverage may not change substantially. With daily CT guidance using the SBF, we showed that the maximal spinal cord dose is ensured to be within 10-15% of the planned value.  相似文献   

7.
BACKGROUND: This study is situated in the area of measuring set-up accuracy and time periods of single-session extracranial radiotherapy (SSRT) for simple-shaped targets (e.g., spherical or rotational symmetrical) definitively located in the peripheral lung. METHODS AND MATERIALS: After adaptation of the stereotactic body frame, the patient has to remain in the vacuum pillow during planning computed tomography (CT), fast three-dimensional (3-D) treatment planning, and direct irradiation after verification. Fast preplanning is performed by using virtual simulation software to accelerate the method. RESULTS: In our new procedure, SSRT is applied in approximately 1.5 h. The mean setup accuracy vector was 2.4+/-0.7 mm in the range of 1.34 to 4 mm. Mean intrafractional patient movement in the stereotactic body frame before and after radiation was 0.70 mm+/-0.5 mm and 0.76+/-0.76 mm in the range of 0 to 2.8 mm. Mean time period steps were measured at (1) planning CT with 3-D treatment planning: 76+/-12 min; (2) irradiation and verification: 33+/-7 min; and (3) complete procedure duration: 109+/-11 min (range, 89-169). CONCLUSIONS: The main difference between the positioning technique of SSRT and that of conventional extracranial radiosurgery is the tighter patient fixation, which guarantees minimal patient movement. The main advantages are procedure acceleration and omission of CT simulation. SSRT is a preliminary stage of real-time treatment.  相似文献   

8.
鼻咽癌适形调强放射治疗中计划靶体积不确定度的研究   总被引:1,自引:0,他引:1  
Lin CG  Li GW  Lin LW  Wu YQ  Xiao DY  Zhao C  Lu TX  Cui NJ 《癌症》2007,26(2):200-203
背景与目的:鼻咽癌的适形调强放疗为减少正常组织的放射损伤,提高患者的生存质量提供了契机.但是,高度适形的治疗技术使肿瘤和正常组织之间的剂量梯度变得非常陡峭,每日的摆位不确定度对理想化的治疗计划产生的影响也会因此而加大.本研究探讨使用热塑面罩固定时,该治疗过程的摆位不确定度,以及为补偿这种不确定度需要在临床靶体积周围所加的安全边界的大小.方法:选取首次做适形调强放疗的早期鼻咽癌患者19例.每周进行一次CT重复扫描,方法与做治疗计划时完全相同.共获取85次扫描参数.通过读图软件对每周扫描的CT图像与计划设计的CT图像进行比较,求出每次摆位与首次定位时感兴趣的解剖标记点在三维方向上的差异.结果:19例患者的85次扫描参数比较,不同解剖骨性标记点在X、Y、Z方向的绝对位移值分别为(0.89±0.69)mm、(0.82±0.79)mm、(0.95±1.24)mm、矢量位移的系统误差分别为0.94 mm、1.00mm、1.32mm,随机误差分别为0.87 mm、0.80 mm、1.04 mm.等中心点的三维矢量位移的平均值为1.87 mm,95%可信区间为2.03~7.24 mm,平均值3.82 mm.结论:对早期鼻咽癌患者的适形调强放疗,其X、Y、Z轴向上由临床靶体积统一外扩3.00 mm形成临床靶体积-计划靶体积安全边界来弥补由于体位固定的不确定度对靶区剂量分布造成的影响应该是足够的.  相似文献   

9.
PURPOSE: To compare the setup accuracy, comfort level, and setup time of two immobilization systems used in head-and-neck radiotherapy. METHODS AND MATERIALS: Between February 2004 and January 2005, 21 patients undergoing radiotherapy for head-and-neck tumors were assigned to one of two immobilization devices: a standard thermoplastic head-and-shoulder mask fixed to a carbon fiber base (Type S) or a thermoplastic head mask fixed to the Accufix cantilever board equipped with the shoulder depression system. All patients underwent planning computed tomography (CT) followed by repeated control CT under simulation conditions during the course of therapy. The CT images were subsequently co-registered and setup accuracy was examined by recording displacement in the three cartesian planes at six anatomic landmarks and calculating the three-dimensional vector errors. In addition, the setup time and comfort of the two systems were compared. RESULTS: A total of 64 CT data sets were analyzed. No difference was found in the cartesian total displacement errors or total vector displacement errors between the two populations at any landmark considered. A trend was noted toward a smaller mean systemic error for the upper landmarks favoring the Accufix system. No difference was noted in the setup time or comfort level between the two systems. CONCLUSION: No significant difference in the three-dimensional setup accuracy was identified between the two immobilization systems compared. The data from this study reassure us that our technique provides accurate patient immobilization, allowing us to limit our planning target volume to <4 mm when treating head-and-neck tumors.  相似文献   

10.
11.
12.
背景与目的:准确的靶区位置是肺部肿瘤立体定向放疗的重要影响因素.该研究旨在分析在肺部肿瘤患者立体定向放疗中基于锥形束CT(cone-beam CT,CBCT)影像的摆位误差及其影响因素.方法:29例单发肺部恶性肿瘤行立体定向放疗的患者,每次放疗前行CBCT扫描,将得到的CBCT图像与定位CT图像匹配,获得前后、头脚和左右方向的摆位误差值,并计算临床靶区(clinical target volume,CTV)外扩至计划靶区(planning target volume,PTV)的边界.同时,还分析对可能影响摆位误差的临床参数等进行分层比较.结果:29例患者共获得155幅CBCT图像.考虑误差方向时前后、头脚和左右方向摆位误差分别为(-1.68±3.62)、(-1.34±3.90)和(0.36±2.15)mm,只考虑误差数值大小时分别为(3.16±2.42)、(3.29±2.48)和(1.74±1.30)mm.根据摆位误差得到CTV外扩至PTV的边界在前后、头脚和左右方向分别为9.6、10.0和5.3 mm.病灶位于周围的肺部肿瘤患者前后方向摆位误差更大(P=0.007),下肺病灶、右肺病灶、肺转移灶在头脚方向摆位误差更大(P=0.008、0.000和0.000).结论:肺部肿瘤患者放疗中的头脚和前后方向摆位误差较大,立体定向放疗需采用锥形束CT扫描、呼吸控制等技术以减少摆位误差.  相似文献   

13.
A new stereotactic frame system was designed at Indiana University to utilize the precision motion control of newer accelerator couches and treat obese patients previously untreatable in other frame systems during stereotactic body radiation therapy (SBRT). The repositioning accuracy and target reproducibility of this frame was evaluated in the treatment of both lung and liver tumors. The external coordinate system on the new frame was validated using a phantom system. Translational motions were carried out using couch motors. Five patients were treated with SBRT and twenty-three verification CT scans were acquired. The displacement of the gross tumor volume (GTV) and adjacent vertebral body between the original CT scan and the verification CT scans was determined. The mean setup accuracy for the patient study was less than 5 mm. Mean displacement of the GTV was 3.0 mm (0.0-6.0 mm) in the lateral (x) direction, 4.1 mm (0.0-8.9 mm) in the superior-inferior (y) direction, and 2.6 mm (0.0-10.0 mm) in the cranio-caudal (z) direction. Comparison of vertebral body position showed mean displacement of 2.4 mm (0.0 to 8.0 mm), 1.9 mm (0.0 mm to 2.0 mm), and 0.9 mm (0.0 to 5.0 mm) for the same shift directions. Repositioning could be accurately carried out from an initial reference position using the treatment couch controllers. Adequate set-up accuracy using a frame system capable of accommodating wide girth patients was achieved and was comparable to other published studies for narrower frames. With these results, a 5 mm expansion for PTV margins remains the standard for our institution.  相似文献   

14.
PURPOSE: To investigate the dosimetric effects of translational and rotational patient positioning errors on the treatment of spinal and paraspinal metastases using computed tomography image-guided stereotactic body radiotherapy. The results of this study provide guidance for the treatment planning process and recognition of the dosimetric consequences of daily patient treatment setup errors. METHODS AND MATERIALS: The data from 20 patients treated for metastatic spinal cancer using image-guided stereotactic body radiotherapy were investigated in this study. To simulate the dosimetric effects of residual setup uncertainties, 36 additional plans (total, 756 plans) were generated for each isocenter (total, 21 isocenters) on the planning computed tomography images, which included isocenter lateral, anteroposterior, superoinferior shifts, and patient roll, yaw, and pitch rotations. Tumor volume coverage and the maximal dose to the organs at risk were compared with those of the original plan. Six daily treatments were also investigated to determine the dosimetric effect with or without the translational and rotational corrections. RESULTS: A 2-mm error in translational patient positioning error in any direction can result in >5% tumor coverage loss and >25% maximal dose increase to the organs at risk. Rotational correction is very important for patients with multiple targets and for the setup of paraspinal patients when the isocenter is away from bony structures. Compared with the original plans, the daily treatment data indicated that translational adjustments could correct most of the setup errors to mean divergences of -1.4% for tumor volume coverage and -0.3% for the maximal dose to the organs at risk. CONCLUSION: For the best dosimetric results, spinal stereotactic treatments should have setup translational errors of < or =1 mm and rotational errors of < or =2 degrees .  相似文献   

15.
PURPOSE: The intensity-modulated radiation therapy (IMRT) treatment planning system generates tightly constricted isodose lines. It is very important to define the margins that are acceptable in the treatment of prostate cancer to maximize the dose escalation and normal tissue avoidance advantages offered by IMRT. It is necessary to take into account subclinical disease and the potential for extracapsular spread. Organ and patient motion as well as setup errors are variables that must be minimized and defined to avoid underdosing the tumor or overdosing the normal tissues. We have addressed these issues previously. The purpose of the study was twofold: to quantify the radial distance of extracapsular extension in the prostatectomy specimens, and to quantify differences between the pathologic prostate volume (PPV), CT-based gross tumor volume (GTV), and planning target volume (PTV). MATERIALS AND METHODS: Two related studies were undertaken. A total of 712 patients underwent prostatectomy between August 1983 and September 1995. Pathologic assessment of the radial distance of extracapsular extension was performed. Shrinkage associated with fixation was accounted for with a linear shrinkage factor. Ten patients had preoperative staging studies including a CT scan of the pelvis. The GTV was outlined and volume determined from these CT scans. The PTV, defined as GTV with a 5-mm margin in all dimensions, was then calculated. The Peacock inverse planning system (NOMOS Corp., Sewickley, PA) was used. The PPV, GTV, and PTV were compared for differences and evaluated for correlation. RESULTS: Extracapsular extension (ECE) (i.e., prostatic capsular invasion level 3 [both focal and established]) was found in 299 of 712 patients (42.0%). Measurable disease extending radially outside the prostatic capsule (i.e., ECE level 3 established) was noted in 185 of 712 (26.0%). The median radial extension was 2.0 mm (range 0.50-12.00 mm) outside the prostatic capsule. As a group, 20 of 712 (2.8%) had extracapsular extension of more than 5 mm. In the volumetric comparison and correlation study of the GTV and PTV to the PPV, the average GTV was 2 times larger than the PPV. The average PTV was 4.1 times larger than the PPV. CONCLUSIONS: This is the largest series in the literature quantitatively assessing prostatic capsular invasion (i.e., the radial extracapsular extension). It is the first report of a comparison of PPV to CT-planned GTV and PTV. Using patient and prostate immobilization, 5 mm of margin to the GTV in this study provided sufficient coverage of the tumor volume based on data gathered from 712 patients. In the absence of prostate immobilization, additional margins of differing amounts depending on the technique employed would have to be placed to account for target, patient, and setup uncertainties. The large mean difference between CT-based estimates of the tumor volume and target volume (GTV+PTV) and PPV added further evidence for adequacy of tumor coverage. Target immobilization, setup error, and coverage of subclinical disease must be addressed carefully before successful implementation of IMRT to maximize its ability to escalate dose and to spare normal tissue simultaneously and safely.  相似文献   

16.
Purpose: To quantify the variability in prostate and seminal vesicle position during a course of external beam radiotherapy, and to measure the proportion of target variability due to setup error.

Methods and Materials: Forty-four weekly planning computerized tomography (CT) studies were obtained on six patients undergoing radiotherapy for prostate cancer. All patients were scanned in the radiotherapy treatment position, supine with an empty bladder, with no immobilization device. All organs were outlined on 3-mm-thick axial CT images. Anterior and lateral beam’s eye view digitally reconstructed radiographs and multiplanar reformatted images were generated. The position of the prostate and seminal vesicles relative to the isocenter location as set that day was recorded for each CT study. Target position relative to a bony landmark was measured to determine the relative contribution of setup error to the target position variability.

Results: The seminal vesicle and prostate position variability was most significant in the anterior–posterior (AP) direction, followed by cranial–caudal (CC) and mediolateral (ML) directions. Setup error contributed significantly to the total target position variability. Rectal filling was associated with a trend to anterior movement of the prostate, whereas bladder filling was not associated with any trends. Although most deviations from the target position determined at the initial planning CT scan were within 10 mm, deviations as large as 15 mm and 19 mm were seen in the prostate and seminal vesicles respectively. Target position variations were evenly distributed around the initial target position for some patient studies, but unpredictable patterns were also seen. From a simulation based on the observed variability in target position, the AP, CC, and ML planning target volume (PTV) borders around the clinical target volume (CTV) required for target coverage with 95% certainty are 12.4 mm, 10.3 mm, and 5.6 mm respectively for the prostate and 13.8 mm, 8.6 mm, and 3.9 mm respectively for the seminal vesicles.

Conclusion: Target position variability is significant during prostate radiotherapy, requiring large PTV borders around the CTV. This target position variability may be potentially reduced by improving the setup accuracy.  相似文献   


17.
The aim of this study was to evaluate the uncertainty of patient immobilization within the Elekta body frame (SBF) used for stereotactic body radiotherapy (SBRT) and to suggest margins sufficient to ensure dose coverage to the gross target volume (GTV). The study was based on the evaluation of repeated CT-scans of 30 patients treated by SBRT. The overall uncertainty was divided between uncertainty related to internal movement of the tumor and uncertainty in the patient set-up. Standard deviations of the overall tumor displacement were 2 mm, 3 mm and 4 mm in medial-lateral (m-l), anterior-posterior (a-p), and cranio-caudal (c-c) directions, respectively. In a model based on the data, an ellipsoid planned target volume (PTV) corresponding to the standard deviations in the orthogonal directions and a scaling factor, K defined a 3-dimentional (3-D) probability density. According to the model, a 90% probability of full dose coverage of the GTV was secured using margins of 9 mm (m-l), 9 mm (a-p) and 13 mm (c-c), respectively. The overall uncertainty was dominated by internal tumor movements whereas the set-up uncertainty of the patient in the SBF was less pronounced. It was concluded that the Elekta SBF is useful for immobilisation of patients for SBRT. However, due to internal movement conventional margins of 5 mm in m-l and a-p and 10 mm in the c-c directions may be insufficient for full dose coverage.  相似文献   

18.
We analyzed the inter-user variability of patient setup for prostate radiotherapy using a stereotactic ultrasound-targeting device. Setup variations in 20 prostate cancer patients were analyzed. Users were a radiation oncologist, a medical physicist, four radiation technologists (RTT) and a radiologist. The radiation oncologist, radiologist, physicist and two RTTs were experienced users of the system (>18 months of experience); two RTTs were users new to the system. Gold standard for this analysis was a control CT acquired immediately following ultrasound targeting. For inter-user variability assessments, the radiation oncologist provided a set of axial and sagittal freeze-frames (standard freeze-frames) for virtual targeting by all users. Additionally each user acquired individual freeze-frames for target alignments. We analyzed the range of virtual setups in each patient along the principal room axes based on standard and individual freeze-frames. The magnitude of residual setup error and percentage of setup change for each user was assessed by control CT/planning CT comparison with individual virtual shifts. A total of 184 alignments were analyzed. The range of virtual shifts between users was 2.7+/-1.4, 3.6+/-1.1, and 4.4+/-1.4 mm (mean+/-SD) in x, y and z-direction for setups based on standard freeze-frames and 3.9+/-2.6, 6.0+/-4.7, and 5.4+/-2.7 mm for setups based on individual freeze-frames. When only virtual shifts of experienced users were analyzed, the mean ranges were reduced by up to 2.4 mm. Average magnitude of initial setup error before ultrasound targeting was 14.3 mm. Average improvement of prostate setup was 63.1+/-23.4% in experienced and 35.14+/-37.7% in inexperienced users, respectively (p<0.0001). Only 5 of 184 (2.7%) virtual alignments would have introduced new larger setup errors (mean 3.2 mm, range 0.2 to 9.5 mm) than the magnitude of the initial setup error. We conclude that ultrasound guided treatment setup for patients treated for prostate cancer can be performed with high inter-user consistency and does lead to improved treatment setup in more than 97% of attempted setups. Experienced use is correlated with a reduced range of setups between users and higher degree of setup improvement when compared with users new to the system  相似文献   

19.
To facilitate image-guided stereotactic body radiotherapy (IG-SBRT) of spinal and paraspinal tumors, the authors have developed an on-line image registration system for automated target localization and patient position verification with high precision. When rotations are present in a patient's daily setup position, a setup error of a few millimeters can be introduced in localization of the isocenter by using surrounding bony structures. This setup error not only will deteriorate the dose coverage of the tumor, more importantly it will overdose the spinal cord. To resolve this issue, the image registration program developed by the authors detects translational shifts as well as rotational shifts using 3D CT image registration. Unacceptable rotations were corrected by either repositioning the patient or adjusting the treatment couch that was capable of rotational corrections when such a couch was available for clinical use. One pair of orthogonal digitally reconstructed radiographs (DRR) were generated from the daily pretreatment CT scan to compare with the corresponding DRRs generated from the planning CT scan to confirm the target shift correction. After the patient's position was corrected a pair of orthogonal portal images were taken for final verification. The accuracy of the image registration result was found to be within 0.1 mm on a head and neck phantom. Target shifts of a fraction of a millimeter were readily visible in our DRR comparison and portal image verification. The time needed to complete the image registration and DRR comparison was about 3 minutes. An integrated system that combines a high-speed CT scanner and a linear accelerator was used for imaging and treatment delivery. Application of the program in actual IG-SBRT cases demonstrated that it was accurate, fast, and reliable. It serves as a useful tool for image-guided radiotherapy where high precision of target localization is required.  相似文献   

20.
AIMS AND BACKGROUND: The importance of optimal daily patient positioning has been stressed in order to ensure treatment reproducibility and gain in accuracy and precision. We report our data on the 3D setup uncertainty during radiation therapy for prostate cancer using the CT image fusion technique. METHODS: Ten consecutive patients scheduled for radiation therapy for prostate cancer underwent 5 prone position CT scans using an individualized immobilization cast. These different setups were analyzed using the image fusion module of the ERGO 3D-Line Medical System (Milan, Italy) treatment planning system. The isocenter and the body marker displacements were measured. RESULTS: The 3D isocenter dislocations were quantified: systematic error was sigma(3D) = 3.9 mm, whereas random error was sigma(3D) = 1 mm. The mean of the minimum displacements was 0.2 +/- 1 mm showing that the immobilization device used allows an accurate setup to be obtained. Single direction errors were also measured showing systematic errors, sigma(AP), = 2.6 mm, sigma(LL) = 0.6 mm, SigmaSI = 3 mm in the anterior-posterior, latero-lateral, superior-inferior direction, respectively. Related random errors were sigma(AP), = 1 mm, sigma(LL) = 0.6 mm, sigma(SI) = 1.2 mm. In terms of accuracy, our uncertainties are similar to those reported in the literature. CONCLUSIONS: By applying the CT image fusion technique, a 3D study on setup accuracy was performed. We demonstrated that the use of an individualized immobilization system for prostate treatment is adequate to obtain good setup accuracy, as long as a high-quality positioning control method, such as the stereoscopic X-ray-based positioning system, is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号