首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brucella abortus vaccine strain RB51 is a natural stable attenuated rough mutant derived from the virulent strain 2308. The genetic mutations that are responsible for the roughness and the attenuation of strain RB51 have not been identified until now. Also, except for an assay based on pulsed-field gel electrophoresis, no other simple method to differentiate strain RB51 from its parent strain 2308 is available. In the present study, we demonstrate that the wboA gene encoding a glycosyltransferase, an enzyme essential for the synthesis of O antigen, is disrupted by an IS711 element in B. abortus vaccine strain RB51. Exploiting this feature, we developed a PCR assay that distinguishes strain RB51 from all other Brucella species and strains tested.  相似文献   

2.
Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells.  相似文献   

3.
4.
Brucella abortus, the causative agent of brucellosis, can survive and replicate within host cells. Understanding bacterial virulence factors and bacteria-host cell interactions is critical for controlling brucellosis. However, little is known regarding the pathogenic mechanisms of brucellosis. A lipoprotein mutant (Gene Bank ID: 3339351) of B. abortus showed a lower rate of intracellular replication than did the wild-type strain in HeLa cells and RAW 264.7 macrophages. The adherent activity of the lipoprotein mutant was slightly increased compared to that of the wild-type strain in HeLa cells. After infection into macrophages, the lipoprotein mutant co-localized with either late endosomes or lysosomes. In mice infected with the lipoprotein mutant, fewer lipoprotein mutants were recovered from the spleen at 8 weeks post-infection compared to the wild-type strain. The ability to protect the lipoprotein mutant against infection by the virulent B. abortus strain 544 was similar to that of strain RB51. Our results indicate that the B. abortus lipoprotein is an important factor for survival within phagocytes and mice, and the B. abortus lipoprotein mutant may help improve live vaccines used to control brucellosis.  相似文献   

5.
Brucella abortus is an intracellular pathogen that replicates within a membrane-bounded compartment. In this study, we have examined the intracellular pathway of the virulent B. abortus strain 2308 (S2308) and the attenuated strain 19 (S19) in HeLa cells. At 10 min after inoculation, both bacterial strains are transiently detected in phagosomes characterized by the presence of early endosomal markers such as the early endosomal antigen 1. At ~1 h postinoculation, bacteria are located within a compartment positive for the lysosome-associated membrane proteins (LAMPs) and the endoplasmic reticulum (ER) marker sec61β but negative for the mannose 6-phosphate receptors and cathepsin D. Interestingly, this compartment is also positive for the autophagosomal marker monodansylcadaverin, suggesting that S2308 and S19 are located in autophagic vacuoles. At 24 h after inoculation, attenuated S19 is degraded in lysosomes, while virulent S2308 multiplies within a LAMP- and cathepsin D-negative but sec61β- and protein disulfide isomerase-positive compartment. Furthermore, treatment of infected cells with the pore-forming toxin aerolysin from Aeromonas hydrophila causes vacuolation of the bacterial replication compartment. These results are compatible with the hypothesis that pathogenic B. abortus exploits the autophagic machinery of HeLa cells to establish an intracellular niche favorable for its replication within the ER.  相似文献   

6.
Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies.  相似文献   

7.
The O antigen of Brucella abortus has been described as a major virulence determinant based on the attenuated survival of fortuitously isolated rough variants. However, the lack of genetic definition of these mutants and the virulence of naturally occurring rough species, Brucella ovis and Brucella canis, has confused interpretation. To better characterize the role of O antigen in virulence and survival, transposon mutagenesis was used to generate B. abortus rough mutants defective in O-antigen presentation. Sequence analysis of DNA flanking the site of Tn5 insertion was used to verify insertion in genes encoding lipopolysaccharide (LPS) biosynthetic functions. Not surprisingly, each of the rough mutants was attenuated for survival in mice, but unexpected differences among the mutants were observed. In an effort to define the basis for the observed differences, the structure of the rough LPS and the sensitivity of these mutants to individual killing mechanisms were examined in vitro. All of the B. abortus rough mutants exhibited a 4- to 5-log-unit increase, compared to the smooth parental strain, in sensitivity to complement-mediated lysis. Little change was evident in the sensitivity of these organisms to hydrogen peroxide, consistent with an inability of O antigen to exclude relatively small molecules. Sensitivity to polymyxin B, which was employed as a model cationic, amphipathic peptide similar to defensins found in phagocytic cells, revealed survival differences among the rough mutants similar to those observed in the mouse. One mutant in particular exhibited hypersensitivity to polymyxin B and reduced survival in mice. This mutant was characterized by a truncated rough LPS. DNA sequence analysis of this mutant revealed a transposon interruption in the gene encoding phosphomannomutase (pmm), suggesting that this activity may be required for the synthesis of a full-length core polysaccharide in addition to O antigen. B. abortus O antigen appears to be essential for extra- and intracellular survival in mice.  相似文献   

8.
Salmonella enterica serovar Gallinarum is the etiological agent of fowl typhoid, which constitutes a considerable economic problem for poultry growers in developing countries. The vaccination of chickens seems to be the most effective strategy to control the disease in those areas. We constructed S. Gallinarum strains with a deletion of the global regulatory gene fur and evaluated their virulence and protective efficacy in Rhode Island Red chicks and Brown Leghorn layers. The fur deletion mutant was avirulent and, when delivered orally to chicks, elicited excellent protection against lethal S. Gallinarum challenge. It was not as effective when given orally to older birds, although it was highly immunogenic when delivered by intramuscular injection. We also examined the effect of a pmi mutant and a combination of fur deletions with mutations in the pmi and rfaH genes, which affect O-antigen synthesis, and ansB, whose product inhibits host T-cell responses. The S. Gallinarum Δpmi mutant was only partially attenuated, and the ΔansB mutant was fully virulent. The Δfur Δpmi and Δfur ΔansB double mutants were attenuated but not protective when delivered orally to the chicks. However, a Δpmi Δfur strain was highly immunogenic when administered intramuscularly. All together, our results show that the fur gene is essential for the virulence of S. Gallinarum, and the fur mutant is effective as a live recombinant vaccine against fowl typhoid.  相似文献   

9.
The live attenuated Brucella abortus strain RB51 is a rifampin-resistant, lipopolysaccharide (LPS) O-chain-deficient mutant of virulent B. abortus 2308. The reduced O-chain content in RB51 prevents this bacterium from inducing antibodies detectable by the conventional serologic tests for bovine brucellosis diagnosis that mainly identify antibodies to LPS. The absence of available serologic tests for RB51 also complicates the diagnosis of possible RB51 infections in humans exposed to this strain. The purpose of this study was to evaluate the suitability of a complement fixation (CF) test performed with the rough strain B. abortus RB51, previously deprived of anticomplementary activity, in detecting anti-B. abortus RB51 antibodies in cattle and sheep experimentally vaccinated with this strain. The results of this study showed that a CF test with RB51 as the antigen is able to specifically detect antibodies following RB51 vaccination in cattle and sheep. In addition, this method could be a useful tool for detecting B. abortus RB51 infection in humans.  相似文献   

10.
The bacterial adrenergic sensor kinases QseC and QseE respond to epinephrine and/or norepinephrine to initiate a complex phosphorelay regulatory cascade that modulates virulence gene expression in several pathogens. We have previously shown that QseC activates virulence gene expression in Salmonella enterica serovar Typhimurium. Here we report the role of QseE in S. Typhimurium pathogenesis as well as the interplay between these two histidine sensor kinases in gene regulation. An S. Typhimurium qseE mutant is hampered in the invasion of epithelial cells and intramacrophage replication. The ΔqseC strain is highly attenuated for intramacrophage survival but has only a minor defect in invasion. However, the ΔqseEC strain has only a slight attenuation in invasion, mirroring the ΔqseC strain, and has an intermediary intramacrophage replication defect in comparison to the ΔqseE and ΔqseC strains. The expressions of the sipA and sopB genes, involved in the invasion of epithelial cells, are activated by epinephrine via QseE. The expression levels of these genes are still decreased in the ΔqseEC double mutant, albeit to a lesser extent, congruent with the invasion phenotype of this mutant. The expression level of the sifA gene, important for intramacrophage replication, is decreased in the qseE mutant and the ΔqseEC double mutant grown in vitro. However, as previously reported by us, the epinephrine-dependent activation of this gene occurs via QseC. In the systemic model of S. Typhimurium infection of BALB/c mice, the qseC and qseE mutants are highly attenuated, while the double mutant has an intermediary phenotype. Altogether, these data suggest that both adrenergic sensors play an important role in modulating several aspects of S. Typhimurium pathogenesis.  相似文献   

11.
Previously, we identified a spontaneous, essentially avirulent mutant, FSC043, of the highly virulent strain SCHU S4 of Francisella tularensis subsp. tularensis. We have now characterized the phenotype of the mutant and the mechanisms of its attenuation in more detail. Genetic and proteomic analyses revealed that the pdpE gene and most of the pdpC gene were very markedly downregulated and, as previously demonstrated, that the strain expressed partially deleted and fused fupA and fupB genes. FSC043 showed minimal intracellular replication and induced no cell cytotoxicity. The mutant showed delayed phagosomal escape; at 18 h, colocalization with LAMP-1 was 80%, indicating phagosomal localization, whereas the corresponding percentages for SCHU S4 and the ΔfupA mutant were <10%. However, a small subset of the FSC043-infected cells contained up to 100 bacteria with LAMP-1 colocalization of around 30%. The unusual intracellular phenotype was similar to that of the ΔpdpC and ΔpdpC ΔpdpE mutants. Complementation of FSC043 with the intact fupA and fupB genes did not affect the phenotype, whereas complementation with the pdpC and pdpE genes restored intracellular replication and led to marked virulence. Even higher virulence was observed after complementation with both double-gene constructs. After immunization with the FSC043 strain, moderate protection against respiratory challenge with the SCHU S4 strain was observed. In summary, FSC043 showed a highly unusual intracellular phenotype, and based on our findings, we hypothesize that the mutation in the pdpC gene makes an essential contribution to the phenotype.  相似文献   

12.
The gene designated BAB1_1460 in the Brucella abortus 2308 genome sequence is predicted to encode the manganese transporter MntH. Phenotypic analysis of an isogenic mntH mutant indicates that MntH is the sole high-affinity manganese transporter in this bacterium but that MntH does not play a detectable role in the transport of Fe2+, Zn2+, Co2+, or Ni2+. Consistent with the apparent selectivity of the corresponding gene product, the expression of the mntH gene in B. abortus 2308 is repressed by Mn2+, but not Fe2+, and this Mn-responsive expression is mediated by a Mur-like repressor. The B. abortus mntH mutant MWV15 exhibits increased susceptibility to oxidative killing in vitro compared to strain 2308, and a comparative analysis of the superoxide dismutase activities present in these two strains indicates that the parental strain requires MntH in order to make wild-type levels of its manganese superoxide dismutase SodA. The B. abortus mntH mutant also exhibits extreme attenuation in both cultured murine macrophages and experimentally infected C57BL/6 mice. These experimental findings indicate that Mn2+ transport mediated by MntH plays an important role in the physiology of B. abortus 2308, particularly during its intracellular survival and replication in the host.Brucella abortus is a gram-negative bacterium that is responsible for the zoonotic disease brucellosis. Brucellosis causes spontaneous abortion and sterility in ruminants (27) and a debilitating febrile illness in humans known as undulant fever (17). The ability of brucellae to cause disease is directly related to their capacity to establish and maintain intracellular infection in host macrophages (63). Within the phagosomal compartment in these host cells, brucellae must cope with oxidative stress, low pH, and nutrient deprivation. The availability of metal ions is restricted within this environment due in part to the activity of the host natural resistance-associated macrophage protein (NRAMP-1), which transports divalent cations out of the phagosome (40). Mn2+ serves as an important cofactor for a variety of bacterial enzymes, including those involved in carbon metabolism, induction of the stringent response, and detoxification of reactive oxygen species (ROS) (55). Consequently, the inability of brucellae to acquire sufficient levels of this divalent cation may compromise their ability to successfully adapt to the environmental conditions encountered during residence in their intracellular niche.Manganese uptake by bacteria is typically accomplished through the activity of either ABC-type transporters such as the SitABC complex (4, 42, 59, 65) or H+-dependent manganese transporters such as MntH (37, 41, 52, 60). Many bacteria possess both types of Mn2+ transporters (55), but a survey of the publicly available Brucella genome sequences (14, 20, 36, 57) suggests that these bacteria do not produce a SitABC-type transporter and rely solely on an MntH homolog for the high-affinity transport of Mn2+. Escherichia coli MntH was originally described as being able to transport both Mn2+ and Fe2+ (52), but subsequent studies indicated that this and other bacterial MntH proteins are highly selective Mn2+ transporters that play a minor, if any, role in Fe2+ transport under physiologically relevant conditions (41). To examine the role of Brucella MntH in Mn2+ transport and virulence, the gene annotated as BAB1_1460 in the B. abortus 2308 genome sequence was disrupted in this strain by gene replacement and the phenotype of the resulting mutant (MWV15) was examined. The results of these studies indicate that MntH plays a critical role in Mn2+ transport in B. abortus 2308 and that the presence of this manganese transporter is essential for the wild-type resistance of this strain to oxidative killing in vitro and its virulence in the mouse model.  相似文献   

13.
Modulation of host cell death pathways appears to be a prerequisite for the successful lifestyles of many intracellular pathogens. The facultative intracellular bacterium Francisella tularensis is highly pathogenic, and effective proliferation in the macrophage cytosol leading to host cell death is a requirement for its virulence. To better understand the prerequisites of this cell death, macrophages were infected with the F. tularensis live vaccine strain (LVS), and the effects were compared to those resulting from infections with deletion mutants lacking expression of either of the pdpC, iglC, iglG, or iglI genes, which encode components of the Francisella pathogenicity island (FPI), a type VI secretion system. Within 12 h, a majority of the J774 cells infected with the LVS strain showed production of mitochondrial superoxide and, after 24 h, marked signs of mitochondrial damage, caspase-9 and caspase-3 activation, phosphatidylserine expression, nucleosome formation, and membrane leakage. In contrast, neither of these events occurred after infection with the ΔiglI or ΔiglC mutants, although the former strain replicated. The ΔiglG mutant replicated effectively but induced only marginal cytopathogenic effects after 24 h and intermediate effects after 48 h. In contrast, the ΔpdpC mutant showed no replication but induced marked mitochondrial superoxide production and mitochondrial damage, caspase-3 activation, nucleosome formation, and phosphatidylserine expression, although the effects were delayed compared to those obtained with LVS. The unique phenotypes of the mutants provide insights regarding the roles of individual FPI components for the modulation of the cytopathogenic effects resulting from the F. tularensis infection.  相似文献   

14.
15.
16.
Braun (murein) lipoprotein (Lpp) and lipopolysaccharide (LPS) are major components of the outer membranes of Enterobacteriaceae family members that are capable of triggering inflammatory immune responses by activating Toll-like receptors 2 and 4, respectively. Expanding on earlier studies that demonstrated a role played by Lpp in Yersinia pestis virulence in mouse models of bubonic and pneumonic plague, we characterized an msbB in-frame deletion mutant incapable of producing an acyltransferase that is responsible for the addition of lauric acid to the lipid A moiety of LPS, as well as a Δlpp ΔmsbB double mutant of the highly virulent Y. pestis CO92 strain. Although the ΔmsbB single mutant was minimally attenuated, the Δlpp single mutant and the Δlpp ΔmsbB double mutant were significantly more attenuated than the isogenic wild-type (WT) bacterium in bubonic and pneumonic animal models (mouse and rat) of plague. These data correlated with greatly reduced survivability of the aforementioned mutants in murine macrophages. Furthermore, the Δlpp ΔmsbB double mutant was grossly compromised in its ability to disseminate to distal organs in mice and in evoking cytokines/chemokines in infected animal tissues. Importantly, mice that survived challenge with the Δlpp ΔmsbB double mutant, but not the Δlpp or ΔmsbB single mutant, in a pneumonic plague model were significantly protected against a subsequent lethal WT CO92 rechallenge. These data were substantiated by the fact that the Δlpp ΔmsbB double mutant maintained an immunogenicity comparable to that of the WT strain and induced long-lasting T-cell responses against heat-killed WT CO92 antigens. Taken together, the data indicate that deletion of the msbB gene augmented the attenuation of the Δlpp mutant by crippling the spread of the double mutant to the peripheral organs of animals and by inducing cytokine/chemokine responses. Thus, the Δlpp ΔmsbB double mutant could provide a new live-attenuated background vaccine candidate strain, and this should be explored in the future.  相似文献   

17.
Smooth Brucella spp. inhibit macrophage apoptosis, whereas rough Brucella mutants induce macrophage oncotic and necrotic cell death. However, the mechanisms and genes responsible for Brucella cytotoxicity have not been identified. In the current study, a random mutagenesis approach was used to create a mutant bank consisting of 11,354 mutants by mariner transposon mutagenesis using Brucella melitensis rough mutant 16MΔmanBA as the parental strain. Subsequent screening identified 56 mutants (0.49% of the mutant bank) that failed to cause macrophage cell death (release of 10% or less of the lactate dehydrogenase). The absence of cytotoxicity during infection with these mutants was independent of demonstrable defects in in vitro bacterial growth or uptake and survival in macrophages. Interrupted genes in 51 mutants were identified by DNA sequence analysis, and the mutations included interruptions in virB encoding the type IV secretion system (T4SS) (n = 36) and in vjbR encoding a LuxR-like regulatory element previously shown to be required for virB expression (n = 3), as well as additional mutations (n = 12), one of which also has predicted roles in virB expression. These results suggest that the T4SS is associated with Brucella cytotoxicity in macrophages. To verify this, deletion mutants were constructed in B. melitensis 16M by removing genes encoding phosphomannomutase/phosphomannoisomerase (ΔmanBA) and the T4SS (ΔvirB). As predicted, deletion of virB from 16MΔmanBA and 16M resulted in a complete loss of cytotoxicity in rough strains, as well as the low level cytotoxicity observed with smooth strains at extreme multiplicities of infection (>1,000). Taken together, these results demonstrate that Brucella cytotoxicity in macrophages is T4SS dependent.  相似文献   

18.
Brucella abortus is an intracellular bacterial pathogen that causes chronic infections in humans and a number of agriculturally important species of animals. It has been shown that BALB/c mice are more susceptible to infections with virulent strains of Brucella abortus than C57BL/6 or C57BL/10 strains. In experiments described here, gene knock-out mice were utilized to elucidate some of the salient components of resistance. Resistant C57BL/6 mice with gene deletions or disruptions in the interferon-γ (IFN-γ), perforin or β2-microglobulin genes had decreased abilities to control intracellular infections with B. abortus strain 2308 during the first week after infection. However, only the IFN-γ knock-out mice had a sustained inability to control infections and this resulted in death of the mice at approximately 6 weeks post-infection. These mice had a continual increase in the number of bacterial colony-forming units (CFU) in their spleens until death. When BALB/c mice with the disrupted IFN-γ gene were infected they had more splenic CFU at one week post-infection than control mice but the increase was not statistically significant and by 3 weeks they did not have more CFU than control mice. Moreover, the number of splenic bacteria did not increase in the BALB/c IFN-γ knock-out mice between 6 and 10·5 weeks, although they died at 10·5 weeks, the time by which normal BALB/c mice were clearing the infection. Death in both strains of IFN-γ gene disrupted mice coincided with symptoms of cachexia and macrophages comprised ≥75% of the splenic leucocytes.  相似文献   

19.
Using the shuttle vector pMCO2 and the vaccinia virus wild-type WR strain, we constructed a recombinant virus expressing an 18-kDa outer membrane protein of Brucella abortus. BALB/c mice inoculated with this virus produced 18-kDa protein-specific antibodies, mostly of immunoglobulin G2a isotype, and in vitro stimulation of splenocytes from these mice with purified maltose binding protein–18-kDa protein fusion resulted in lymphocyte proliferation and gamma interferon production. However, these mice were not protected against a challenge with the virulent strain B. abortus 2308. Disruption of the 18-kDa protein's gene in vaccine strain B. abortus RB51 did not affect either the strain's protective capabilities or its in vivo attenuation characteristics. These observations suggest that the 18-kDa protein plays no role in protective immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号