首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rationale Tardive dyskinesia is a syndrome of abnormal and involuntary movements which occurs as a complication of long-term neuroleptic therapy especially classical neuroleptics such as haloperidol and chlorpromazine. Dysfunction of GABA receptor mediated inhibition, and increased glutamatergic neurotransmission has been implicated in the development of orofacial dyskinesia in rats and tardive dyskinesia in humans. Neurosteroids modulate both GABAergic as well as glutamatergic neurotransmission in various brain areas. Objective The objective of the present study was to elucidate the role of various neurosteroids in neuroleptic-induced vacuous chewing movements and related behaviors in rats by using behavioral, biochemical, and neurochemical parameters. Materials and methods Animals chronically treated with haloperidol (1 mg/kg i.p.) for a period of 21 days exhibited marked increase in vacuous chewing movements, tongue protrusions, and facial jerkings as compared to vehicle-treated controls. It also resulted in increased superoxide anion levels and lipid peroxidation, whereas decreased levels of endogenous antioxidant enzymes (catalase and superoxide dismutase) in rat brain striatum homogenates. Neurochemical studies revealed that chronic administration of haloperidol resulted in significant decrease in the levels of dopamine, serotonin, and norepinephrine in rat brain striatum homogenates, whereas urine biogenic amines metabolite levels were increased. In a series of experiments, rats co-administered with allopregnanolone (0.5, 1, and 2 mg/kg i.p.) and progesterone (5, 10, and 20 mg/kg i.p.), both positive GABA-modulating [negative N-methyl-d-aspartate (NMDA)-modulating] neurosteroids prevented, whereas pregnenolone (0.5, 1, and 2 mg/kg i.p.) and dihydroxyepiandrosterone sulfate (0.5, 1, and 2 mg/kg i.p.) both negative GABA-modulating (positive NMDA-modulating) neurosteroids aggravated all the behavioral, biochemical, and neurochemical parameters. Conclusions These results suggest that neurosteroids may play a significant role in the pathophysiology of vacuous chewing movements and related behaviors by virtue of their action on either the GABA or NMDA modulation. Furthermore, neurosteroids showing selectivity for positive GABA modulation and/or negative NMDA modulation may be particularly efficacious as novel therapeutic agents for the treatment of tardive dyskinesia and deserve further evaluation.  相似文献   

2.
Tardive dyskinesia (TD) is a serious motor side-effect of chronic neuroleptic therapy. Chronic treatment with neuroleptics leads to the development of oral abnormal movements in rats known as vacuous chewing movements (VCMs). Vacuous chewing movements in rats have been widely accepted as an animal model of tardive dyskinesia. Chronic blockade of D2 inhibitory dopamine (DA) receptors localized on glutamatergic terminals in the striatum leads to the persistent enhanced release of glutamate that kills the striatal output neurons. The object of the present study was to explore the role of glutamatergic modulation on the neuroleptic-induced VCMs. Rats were chronically (for 21 days) treated with haloperidol (1.5 mg/kg, i.p.) to produce VCMs. The neuroleptic-induced VCMs viz., vertical jaw movements, tongue protrusions and bursts of jaw tremors, were counted during a 5 min observation period. Dizocilpine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, dose dependently (0.02 and 0.05 mg/kg) reduced haloperidol-induced VCMs. Felodipine (5 and 10 mg/kg), an L-type calcium-channel blocker, also significantly reduced the VCM count. N-omega-nitro-L-arginine methyl ester (L-NAME) (25 and 50 mg/kg), a nitric oxide synthase inhibitor, also reduced the VCM count in an L-arginine-sensitive manner. In conclusion, the findings of the present study indicated NMDA receptor involvement in haloperidol-induced VCMs, and also suggested the possible involvement of calcium and nitric oxide in haloperidol-induced VCMs.  相似文献   

3.
Tardive dyskinesia (TD) is a syndrome of potentially irreversible and involuntary hyperkinetic disorders that occurs during chronic neuroleptic therapy and is a major limitation of such therapy. Vacuous chewing movements (VCMs) in rats have been widely accepted as an animal model of tardive dyskinesia. In the present study isoniazid (1, 2 and 5 microM i.c.v.) dose-dependently produced VCMs in rats. The response produced by a 10-microM dose was lower than that of earlier doses but was statistically significant when compared to a saline-treated group. Diazepam (1 and 4 mg/kg i.p.) and progabide (50 and 100 mg/kg i.p.) dose-dependently reversed the isoniazid-induced VCMs. Haloperidol (0.5 and 1 mg/kg i.p.) and SCH-23390 (0.25 and 0.5 mg/kg i.p.) reversed the isoniazid-induced VCMs in a dose-dependent manner. Sulpiride (25 and 50 mg/kg i.p.), a dopamine D2 receptor antagonist, had no effect on isoniazid-induced VCMs. SKF-38393 (10 and 15 mg/kg i.p.) dose-dependently augmented the isoniazid-induced VCMs. Quinpirole 0.02 mg/kg i.p. had no effect on isoniazid-induced VCMs but a higher quinpirole dose (0.05 mg/kg) significantly reduced isoniazid-induced VCMs. Isoniazid (2 microM i.c.v.) produced stereotypy (grooming and rearing) in rats. Haloperidol (0.5 and 1 mg/kg i.p.), SCH-23390 (0.25 and 0.5 mg/kg i.p.) and sulpiride (25 and 50 mg/kg i.p.) decreased the severity of isoniazid-induced stereotypy. SKF-38393 (10 and 15 mg/kg i.p.) dose-dependently augmented the isoniazid-induced grooming behavior more prominently as compared to quinpirole (0.02 and 0.05 mg/kg i.p.); on the other hand quinpirole potentiated isoniazid-induced rearing behavior. In conclusion, the results of the present study demonstrated the differential involvement of dopamine D1 and D2 receptors in isoniazid-induced VCMs.  相似文献   

4.
The non-competitive NMDA receptor antagonist phencyclidine (PCP) is known to produce a discriminative stimulus in rats. The first aim of the present study was to investigate which NMDA receptor subtype(s) is involved in this effect of PCP. Rats were trained to discriminate PCP (2 mg/kg; i.p.) from saline in a two lever operant task. The NMDA channel blocker, (+)MK-801 (0.1 mg/kg; i.p.) and the competitive NMDA receptor antagonist SDZ 220-581 (3 mg/kg; i.p.) produced 76% of PCP-lever selection (ED50=0.045 and 2 mg/kg, respectively), whereas their respective inactive enantiomers (-)MK-801 (0.025-0.1 mg/kg) and SDZ 221-653 (2-5 mg/kg) induced less than 30% of PCP-appropriate responding. Another competitive NMDA antagonist, SDZ EAB-515 (30 mg/kg; i.p.), induced 63% of PCP-lever responding (ED50=23.48 mg/kg). The selective antagonist of NMDA receptors containing the NR1A/NR2B-subunits Ro 25-6981 (20 mg/kg; i.p.) resulted in a complete substitution (more than 80% of PCP-lever selection) for PCP (ED50=8.59 mg/kg). In contrast, the NR1A/NR2A NMDA receptor-preferring antagonist NVP-AAM077 (2-10 mg/kg; i.p.) failed to produce PCP-like discriminative stimuli. At high doses SDZ 220-581 (ED50=2.44), NVP-AAM077 (ED50=8.33) and SDZ EAB-515 (ED50=25.81) decreased the performance of the rats in this operant task. The ability of these NMDA receptor antagonists to disrupt the prepulse inhibition (PPI) of the startle response and to alter locomotor activity was also studied. PCP (0.5-2 mg/kg; s.c.), SDZ 220-581 (0.5-5 mg/kg; s.c.), SDZ EAB-515 (1-30 mg/kg; i.p.) and Ro 25-6981 (5-20 mg/kg; i.p.) disrupted PPI and at high doses produced hyperlocomotion. In contrast, NVP-AAM077 (5-20 mg/kg; i.p.) did not disrupt PPI and reduced locomotor activity. In conclusion, it appears that the NMDA receptor containing the NR2B, rather than the NR2A subunit, may play a major role in the PCP-like discriminative stimulus. In addition, sensory motor gating disturbances associated with NMDA antagonists do not seem to result from a blockade of NR1/NR2A-containing NMDA receptors.  相似文献   

5.
Chronic treatment with neuroleptics leads to the development of abnormal orofacial movements described as vacuous chewing movements (VCMs) in rats. Vacuous chewing movements in rodents are widely accepted as one of the animal models of tardive dyskinesia. Oxidative stress and the products of lipid peroxidation are implicated in the pathophysiology of various neurological disorders including tardive dyskinesia. In the present study chronic haloperidol (1.0 mg kg−1 for 21 days) treatment induced vacuous chewing movements and tongue protrusions in rats. Co-administration of quercetin, a bioflavonoid, dose dependently (25–100 mg kg−1) reduced haloperidol-induced vacuous chewing movements and tongue protrusions. Biochemical analysis revealed that chronic haloperidol treatment induces lipid peroxidation and decreases the glutathione (GSH) levels in the forebrains of rats. The antioxidant defense enzymes, superoxide dismutase (SOD) and catalase were also decreased due to chronic haloperidol treatment. Co-administration of quercetin (25–100 mg kg−1) significantly reduced the lipid peroxidation and restored the decreased glutathione levels in these animals. Further quercetin (50–100 mg kg−1) also reversed the haloperidol-induced decrease in forebrain SOD and catalase levels in rats. The major findings of the present study suggested that oxidative stress plays a significant role in neuroleptic-induced orofacial dyskinesia and quercetin co-administration reverses these behavioral and biochemical changes. Quercetin, a naturally occurring bioflavonoid could prove to be a useful agent in neuroleptic-induced orofacial dyskinesia.  相似文献   

6.
Rationale. Tardive dyskinesia is a serious neurological syndrome associate with long-term administration of neuroleptics to humans and experimental animals. It may be caused by loss of dopaminergic cells, due to free radicals as a product of high synaptic dopamine levels. Quercetin is a bioflavonoid with strong antioxidant properties. Objectives. To evaluate the effect of chronic quercetin treatment on haloperidol-induced orofacial dyskinesia. Methods. Vacuous chewing movements (VCM) in rats, a widely accepted animal model of tardive dyskinesia was employed in the present study. VCM were induced in rats by daily administration of haloperidol (1.0 mg/kg) for a period of 21 days. Animals with established dyskinesia were given quercetin for a period of 4 weeks and behavioral scoring was recorded every week before administration of quercetin. Animals were killed after the last behavioral recordings and biochemical estimations were carried out. Results. Chronic haloperidol (1.0 mg/kg for 21 days) treatment significantly induced VCM and tongue protrusions in rats and quercetin (25–100 mg/kg for 4 weeks) significantly reversed haloperidol-induced VCM and tongue protrusions. Biochemical analysis revealed that chronic haloperidol treatment significantly induced lipid peroxidation, decreased glutathione (GSH), superoxide dismutase (SOD), and catalase levels in the brains of rats. Quercetin (25–100 mg/kg for 4 weeks) significantly reduced lipid peroxidation and restored GSH, SOD and catalase levels. Conclusions. The results of the present study clearly indicate that quercetin has a protective role against haloperidol-induced orofacial dyskinesia. Consequently, the use of quercetin as a therapeutic agent for the treatment of tardive dyskinesia should be considered. Electronic Publication  相似文献   

7.
21-Aminosteroid, or lazaroid, is one of a novel class of antioxidant drugs designed to inhibit iron-dependent lipid peroxidation in biological lipid environments. They have shown promising results in several animal models of traumatic, ischemic and hemorrhagic injury of the central nervous system. Neuroleptic-induced orofacial dyskinesia is an animal model of tardive dyskinesia whose pathophysiology has been related to oxidative stress in the basal ganglia. In this study, we have examined the protective role of U-74500A [pregna-1,4,9(11)-triene-3,20-dione, 21-(4-(5,6-bis(diethylamino)-2-pyridinyl)-1-piperazinyl)-16-ethyl-HCl (16-alpha)], a 21-aminosteroid having antioxidant property in attenuating the behavioral and biochemical effects of chronic haloperidol and chlorpromazine administration. Haloperidol (1 mg/kg/day i.p.) and chlorpromazine (5 mg/kg/day i.p.) administered for 21 days caused a significant increase in vacuous chewing movements (VCMs), tongue protrusion (TP) and the number of facial twitchings (FT) observed on day 22. U-74500A (1, 2 and 5 mg/kg i.p.), administered every day, along with haloperidol (1 mg/kg/day i.p.) and chlorpromazine (5 mg/kg/day), attenuated the increase of VCMs and related behaviors on day 22. Haloperidol and chlorpromazine significantly increased lipid peroxidation in various brain areas such as the cortex, striatum and subcortical parts characterized by an increase in MDA levels. The coadministration of U-74500A limited the effect of haloperidol and chlorpromazine on MDA levels in the cortex and striatum but not in the subcortical parts. U-74500A, an aminosteroid, may have therapeutic use in typical neuroleptic-induced tardive dyskinesia-like effects.  相似文献   

8.
Treatment with classical neuroleptics in humans can produce a serious side effect, known as tardive dyskinesia (TD). Here, we examined the possible neuroprotective effects of resveratrol, a polyphenol compound contained in red grapes and red wine, in an animal model of orofacial dyskinesia (OD) induced by acute treatment with fluphenazine. Adult male rats were treated during 3 weeks with fluphenazine enantate (25 mg/kg, i.m., single administration) and/or resveratrol (1 mg/kg, s.c., 3 times a week). Vacuous chewing movements (VCMs), locomotor and exploratory performance were evaluated. Fluphenazine treatment produced VCM in 70% of rats and the concomitant treatment with resveratrol decreased the prevalence to 30%, but did not modify the intensity of VCMs. Furthermore, the fluphenazine administration reduced the locomotor and exploratory activity of animals in the open field test. Resveratrol co-treatment was able to protect the reduction of both parameters. Taken together, our data suggest that resveratrol could be considered a potential neuroprotective agent by reducing motor disorders induced by fluphenazine treatment.  相似文献   

9.
1. Tardive dyskinesia (TD), a syndrome of potentially irreversible, involuntary hyperkinetic disorder occurring in 20 - 40% of the patient population undergoing chronic neuroleptic treatment is a major limitation of neuroleptic therapy. 2. Oxidative stress and products of lipid peroxidation are implicated in the pathophysiology of various neurological disorders including tardive dyskinesia. 3. Chronic treatment with neuroleptics leads to the development of abnormal oral movements in rats known as vacuous chewing movements (VCMs). Vacuous chewing movements in rats are widely accepted as an animal model of tardive dyskinesia. 4. All the antipsychotics were administered i.p. once daily for 21 days, whereas carvedilol (also i.p.) was administered twice daily. Rats chronically treated with haloperidol (1.0 mg kg(-1)) or chlorpromazine (5 mg kg(-1)) but not clozapine (2 mg kg(-1)) significantly developed vacuous chewing movements and tongue protrusions. Carvedilol dose dependently (0.5 - 2 mg kg(-1)) reduced the haloperidol or chlorpromazine-induced vacuous chewing movements and tongue protrusions. 5. Biochemical analysis revealed that chronic haloperidol or chlorpromazine but not clozapine treatment significantly induced lipid peroxidation and decreased the glutathione (GSH) levels in the forebrains of rats. Chronic haloperidol or chlorpromazine but not clozapine treated rats showed decreased forebrain levels of antioxidant defence enzymes, superoxide dismutase (SOD) and catalase. 6. Co-administration of carvedilol (0.5-2 mg kg(-1)) significantly reduced the lipid peroxidation and restored the decreased glutathione levels by chronic haloperidol or chlorpromazine treatment. Co-administration of carvedilol (1-2 mg kg(-1)) significantly reversed the haloperidol or chlorpromazine-induced decrease in forebrain SOD and catalase levels in rats. However, lower dose of carvedilol (0.5 mg kg(-1)) failed to reverse chronic haloperidol or chlorpromazine-induced decrease in forebrain SOD and catalase levels. 7. The major findings of the present study suggest that oxidative stress might play a significant role in neuroleptic-induced orofacial dyskinesia. In conclusion, carvedilol could be a useful drug for the treatment of neuroleptic-induced orofacial dyskinesia.  相似文献   

10.
Previously, enhanced levels of spermine which stimulates N-methyl-D-aspartate (NMDA) receptors, particularly those containing the NR2B subunit, were found in brains of dt(sz) mutant hamsters, a model of paroxysmal dyskinesia in which dystonic episodes occur in response to stress. Therefore, the effects of the NR2B selective NMDA receptor antagonist Ro 25-6981 ([R-(R,S)]-alpha-(4-hydroxyphenyl)-beta-methyl-4-phenyl-methyl)-1-piperidine-propanol] on severity of dystonia were investigated in the dt(sz) hamster. Ro 25-6981 failed to exert antidystonic effects, but even caused a moderate aggravation at higher doses (10.0, 12.5 mg/kg). This result indicates that overstimulation of receptors that include the NR2B subunit by polyamines is not involved in the dystonic syndrome. NR2B-selective NMDA receptor antagonists seem not to provide a novel approach in the treatment of hereditary paroxysmal dyskinesias.  相似文献   

11.
NR2B-subtype-selective antagonists differ from MK-801, a nonselective NMDA receptor antagonist. MK-801 antagonizes electrical seizures at doses as low as 0.1 to 0.18 mg/kg and elicits popping at doses as low as 0.5 mg/kg, whereas ifenprodil and Ro 8-4304 were unable to do so at the doses tested. Ro 25-6981, however, was able to antagonize electrically-precipitated tonic hindlimb extension at 100 mg/kg, but was not able to elicit popping behavior at this dose.  相似文献   

12.
Dopamine (DA) receptor blockade induces catalepsy in rats which increases in strength upon retesting. This increase in catalepsy represents a form of sensitization which has been shown to be completely context dependent. Sensitization of catalepsy therefore represents a good model for studying the neurobiological mechanisms underlying the interaction between the cellular effect of a drug (DA-receptor blockade) and the context. This study investigated whether glutamatergic mechanisms are involved in the development of sensitization. Rats were treated with either haloperidol or haloperidol plus an N-methyl-D-aspartate (NMDA) receptor antagonist. Haloperidol consistently induced catalepsy which developed sensitization upon retesting. Co-administration of D-CPPene (5 mg/kg and 10 mg/kg, i.p.), eliprodil (30 mg/kg, i.p.) or Ro 25-6981 (15 mg/kg, i.p.) did not have any effect on sensitization, although all three drugs exerted some anticataleptic effects. When sensitization developed under haloperidol plus NMDA receptor antagonist, the sensitized response was expressed only in the presence of the NMDA receptor antagonist. This strongly suggests that the NMDA receptor antagonists represent contextual stimuli to which catalepsy has been conditioned, and this implies that the expression of sensitization has been rendered state-dependent.  相似文献   

13.
Mixed research findings have led to a debate regarding the effect of N-methyl-D-aspartate (NMDA) receptor antagonists on opiate analgesia. NMDA antagonists have been found in various studies to enhance, to inhibit, or to have no effect on opiate analgesia. The present research used a single protocol to explore the effects of six NMDA receptor antagonists on acute morphine (3.0 mg/kg s.c.) and fentanyl (0.05 mg/kg s.c.) analgesia in adult male Sprague-Dawley rats. NMDA receptor antagonists were selected based on their abilities to block various sites on the NMDA receptor complex, including the noncompetitive antagonists MK-801 (0.1 and 0.3 mg/kg i.p.), dextromethorphan (10.0 and 30.0 mg/kg i.p.), and memantine (3.0 and 10.0 mg/kg i.p.), a glycine site antagonist, (+)-HA-966 (10.0 and 30.0 mg/kg i.p.), a competitive antagonist, LY235959 (1.0 and 3.0 mg/kg i.p.), and a polyamine site antagonist, ifenprodil (1.0 and 3.0 mg/kg i.p.). Analgesia was assessed using the tail-flick test. A single dose of each opiate was used. The low doses of the antagonists, which are known to produce significant neural and behavioral actions at NMDA receptors, had no effect on morphine or fentanyl analgesia. At the higher doses, morphine analgesia was significantly enhanced by LY235959 (3.0 mg/kg), and fentanyl analgesia was significantly enhanced by LY235959 (3.0 mg/kg), dextromethorphan (30.0 mg/kg), and (+)-HA-966 (30.0 mg/kg). Enhancement of analgesia occurred without any apparent adverse side effects. None of the NMDA antagonists affected tail-flick responses on their own, except the higher dose of LY235959 (3.0 mg/kg), which produced a mild analgesic effect. Because no consistent effects were observed, the data suggest that NMDA receptors are not involved in acute mu-opioid analgesia. The mechanisms underlying the enhancement of opiate analgesia by selected NMDA antagonists, such as LY235959, dextromethorphan, and (+)-HA-966, remain to be determined.  相似文献   

14.
《Pharmaceutical biology》2013,51(6):691-697
Context: Orofacial dyskinesia (OD) is a late complication of prolonged neuroleptic treatment characterized by involuntary movements of the oral region. Chronic treatment with neuroleptics leads to development of vacuous chewing movements (VCMs). VCMs in rats are widely accepted as an animal model of OD.

Objective: To study the effect of Murraya koenigii L. (Rutaceae) leaves on haloperidol-induced OD.

Materials and methods: Effect of alcohol extract of M. koenigii leaves (EEMK) and its alkaloid fraction (AMK) on body weight, locomotor activity, behavioral parameters, such as VCMs, tongue protrusions (TPs), orofacial bursts (OBs), and biochemical parameters such as antioxidant defense enzymes levels [superoxide dismutase (SOD) and catalase (CAT)], glutathione (GSH) levels, and lipid peroxidation (LPO) in the forebrain region was studied in haloperidol-treated rats.

Results: Rats chronically treated with haloperidol (1?mg/kg, i.p., 21 days) significantly decreased locomotion and developed VCMs, OBs, and TPs. Biochemical analysis reveals that chronic haloperidol-treated rats also showed decreased levels of SOD and CAT. Chronic haloperidol treatment significantly induced LPO and decreased the forebrain GSH levels in the rats. Co-administration of EEMK (100 and 300?mg/kg, p.o.) and AMK (30 and 100?mg/kg, p.o.) along with haloperidol significantly reversed the effect on locomotion. EEMK and AMK significantly reversed the haloperidol-induced decrease in forebrain SOD and CAT levels in rats and significantly reduced the LPO and restored the decreased GSH levels by chronic haloperidol treatment.

Conclusion: The study concludes that M. koenigii could be screened as a potential drug for the prevention or treatment of neuroleptic-induced OD.  相似文献   

15.
Tardive dyskinesia is a serious motor side effect of chronic neuroleptic therapy. Chronic treatment or rats with neuroleptics leads to the development of abnormal oral movements called vacuous chewing movements. Vacuous chewing movements in rats are widely accepted as an animal model of tardive dyskinesia. Atypical antipsychotics such as clozapine and rispiridone are associated with a lower incidence of extrapyramidal side effects and tardive dyskinesia. The present study was aimed to explore the role of 5-HT1A, 5-HT2A/2C receptors in the expression of neuroleptic-induced orofacial dyskinesia. In the present study rats were chronically (for 21 days) treated with haloperidol (1.5 mg/kg, i.p.) to elicit vacuous chewing movements. The neuroleptic-induced vacuous chewing movements, viz., vertical jaw movements, tongue protrusions and bursts of jaw tremors, were counted during a 5-min observation period. Acute treatment with 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, dose-dependently (0.05, 0.1 and 0.2 mg/kg, i.p.) reduced the haloperidol-induced vacuous chewing movements and headshakes. Both acute and chronic administration of seganserin, ketanserin and ritanserin, 5-HT2A/2C receptor antagonists, also reduced haloperidol-induced vacuous chewing movements in a dose-dependent (0.05, 0.1 and 0.2 mg/kg, i.p.) manner. In acute studies a higher dose of ritanserin (1 mg/kg) but not ketanserin (1 mg/kg) increased vacuous chewing movements, whereas a higher dose of seganserin (1 mg/kg) did not have any effect on vacuous chewing movements. All the drugs reduced haloperidol-induced headshakes in a dose-dependent fashion. These findings indicate that the serotonergic system, and particularly 5-HT1A and 5-HT2A/2C receptors, may be involved in haloperidol-induced orofacial dyskinesia, and that 5-HT receptors may provide novel targets for the development of drugs that can be used to reverse or prevent the extrapyramidal side effects associated with long-term antipsychotic treatment.  相似文献   

16.
Previous work revealed that adenosine antagonists as theophylline reversed neuroleptic-induced catalepsy and potentiated anticataleptic effects of dopamine agonists reflecting specific adenosine-dopamine receptor interactions in the central nervous system. We tested whether similar functional interactions exist between adenosine receptors and glutamate receptors of the N-methyl-D-asparte (NMDA) subtype. The present study demonstrates that the anticataleptic effects of the competitive NMDA receptor antagonist CGP37849 and the non-competitive NMDA receptor antagonist dizocilpine can be potentiated by coadministration of a threshold dose of the adenosine receptor antagonist theophylline (2.5 mg/kg, i.p.) in haloperidol (0.5 mg/kg, i.p.)-pretreated rats. This potentiation was elicited only with higher doses of CGP37849 (4 and 8 mg/kg, i.p.) or dizocilpine (0.16 mg/kg, i.p.) in haloperidol (0.5 mg/kg, i.p.), but not in reserpine (5 mg/kg, i.p.) plus -methyl-ptyrosine (100 mg/kg, i.p.)-pretreated animals. Therefore, these synergistic interactions seem to be brought about by indirect monoamine-dependent mechanisms rather than direct functional interrelationships between NMDA and adenosine A2a receptors.  相似文献   

17.
Vacuous chewing movements (VCMs) in three different rat strains developed at considerably different rates after 19 weeks of continual haloperidol treatment at an average daily dose of 1.5 mg/kg. Sprague Dawley (SD) rats displayed relatively high rates of VCMs with low variability, compared to Wistar (W) and Long Evan (LE) rats. Atropine decreased but did not abolish VCMs in two of the three strains (LE>SD). After haloperidol withdrawal, VCMs remitted gradually in all strains, but least rapidly in the SD rats. In a separate group of SD rats, VCMs were rated weekly from the start of haloperidol treatment and showed considerable interindividual variability. Even after 24 weeks of continuous haloperidol, 12 out of 32 treated rats showed no VCMs at all, while 13 out of 32 had intense movements, analogous to the clinical situation in which only some patients treated with neuroleptics develop tardive dyskinesia. These results indicate that there are individual and strain differences in the development of VCMs, and suggest that there may also be genetically determined differences in the development of tardive dyskinesia.  相似文献   

18.
Tran DH  Gong R  Tang SJ 《Neuropharmacology》2007,53(2):252-256
Protein synthesis in dendrites is critical for long-term synaptic plasticity. Previous studies have identified an essential role of NMDA receptors in control of activity-dependent dendritic protein synthesis, but the contribution of NR2A- and NR2B-containing NMDA receptors, the two predominant subtypes of NMDA receptors in the forebrain, has not been determined. Using a pharmacological approach, we investigated the role of NR2A and NR2B subtypes in the regulation of NMDA-induced dendritic translation of a GFP reporter mRNA controlled by CaMKII untranslated regions (UTRs). We found that ifenprodil and Ro25-6981, two specific inhibitors of NR2B-containing NMDA receptors, did not affect dendritic GFP synthesis induced by NMDA. In contrast, NVP-AAM077, an antagonist that preferentially blocks the NR2A subtype, completely abolished NMDA-induced GFP synthesis in dendrites. Our results together suggest that NR2A but not NR2B subtypes are indispensable for NMDA receptor-dependent dendritic protein synthesis.  相似文献   

19.
The effects of the N-methyl-D-aspartate (NMDA) receptor antagonists CPP, TCP, PK 26124 and ifenprodil, and of the minor tranquillizer diazepam on stress-induced changes of dopamine metabolism in the nucleus accumbens were investigated in the rat. Dopamine metabolism was assessed by measuring the extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) by means of in vivo differential pulse voltammetry with electrochemically pretreated carbon fiber electrodes. Physical immobilization of the rats for 4 min caused a marked and long-lasting increase in extracellular DOPAC levels in the nucleus accumbens. A similar, though shorter-lasting, augmentation of extracellular DOPAC was observed in the nucleus accumbens after systemic administration of the anxiogenic agent methyl-beta-carboline-3-carboxylate (beta-CCM) (10 mg/kg s.c.). Pretreatment with CPP (1 mg/kg i.p.), TCP (3 mg/kg i.p.), PK 26124 (3 mg/kg i.p.), ifenprodil (3 mg/kg i.p.) or diazepam (2 mg/kg i.p.) totally antagonized the immobilization-induced increase in extracellular DOPAC in the nucleus accumbens. Diazepam and the benzodiazepine (omega 1-2) receptor antagonist flumazenil (30 mg/kg i.p.), but not ifenprodil, also antagonized the beta-CCM-induced activation of dopamine metabolism in the nucleus accumbens. Finally, systemic administration of haloperidol (25 micrograms/kg i.p.) increased the extracellular concentrations of DOPAC in the nucleus accumbens, but pretreatment with ifenprodil (3 mg/kg i.p.) did not modify this response. These data indicate that NMDA receptor antagonists prevent the activation of dopamine metabolism in the nucleus accumbens caused by immobilization stress but not by beta-CCM-induced anxiogenic stimulation. These results suggest that NMDA receptor antagonists may possess an anxiolytic-like action in the rodent, which is exerted via neuroanatomical circuits distinct from those acted upon by diazepam.  相似文献   

20.
Tardive dyskinesia is a syndrome characterized by repetitive involuntary movements usually involving the mouth, face and tongue. It is considered as the late onset adverse effect of prolonged administration of typical neuroleptic drugs. Adenosine is now widely accepted as the major inhibitory neuromodulators in the central nervous system besides GABA. Both, agonists of adenosine A(1) and A(2) receptors and the antagonists of A(2A) receptors are known to protect against neuronal damage caused by toxins as well as they can also protect against the cell damage inflicted by reactive oxygen species. The present study investigated the effect of adenosine and A(2A) receptor antagonist, caffeine in an animal model of tardive dyskinesia by using different behavioural (orofacial dyskinetic movements, stereotypic rearing, locomotor activity, % retention), biochemical (lipid peroxidation, reduced glutathione levels, antioxidant enzyme levels (superoxide dismutase and catalase) and neurochemical (neurotransmitter levels) parameters. Chronic administration of haloperidol (1 mg/kg i.p. for 21 days) significantly increased vacuous chewing movements (VCMs), tongue protrusions, facial jerking in rats which was dose dependently inhibited by adenosine and caffeine. Chronic administration of haloperidol also resulted in an increased dopamine receptor sensitivity as evident by increased locomotor activity and stereotypic rearing after day 14. Chronic administration of haloperidol also decreased % retention time on elevated plus maze paradigm. Treatment with adenosine or caffeine reversed these behavioural changes. Besides, haloperidol also induced oxidative damage in all regions of brain which was prevented by caffeine and adenosine, especially in striatum. On chronic administration of haloperidol there was a decrease in dopamine and norepinephrine turnover which was dose-dependently reversed by treatment with adenosine or caffeine. When caffeine and adenosine were co-administered, there was no synergistic effect, possibly due to mutual antagonistic effects. The findings of the present study suggested the involvement of adenosinergic receptor system in the genesis of neuroleptic-induced tardive dyskinesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号