首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proximal renal tubular acidosis (pRTA) results from an impairment of bicarbonate (HCO(3)(-)) reabsorption in the renal proximal tubules and is characterized by a decreased renal HCO(3)(-) threshold. Proximal RTA most commonly occurs in association with multiple defects of proximal tubular transport (renal Fanconi syndrome). Although much more rare, pRTA may occur without other functional defects in proximal tubules (isolated pRTA). The presenting clinical symptom of isolated pRTA is usually growth retardation in infancy or early childhood. Three categories of isolated pRTA have been identified: (1) autosomal dominant pRTA; (2) autosomal recessive pRTA with ocular abnormalities; and (3) sporadic isolated pRTA. Autosomal dominant and autosomal recessive pRTA are usually permanent; life-long alkali therapy is needed. In contrast, sporadic isolated pRTA is transient; alkali therapy can be discontinued after several years without reappearance of symptoms. Recent genetic studies have begun to elucidate the molecular pathogenesis of inherited isolated pRTA. Studies in knockout mice have identified a candidate gene for autosomal dominant pRTA, SLC9A3, a gene encoding one of the five plasma membrane Na(+)/H(+) exchangers (NHE3). Patients with autosomal recessive pRTA and ocular abnormalities have recently been found to have mutations in the kidney type Na(+)/HCO(3)(-) cotransporter gene (SLC4A4). Identification of these gene mutations provides new insights into the molecular pathogenesis of pRTA.  相似文献   

2.
The kidney plays key roles in extracellular fluid pH homeostasis by reclaiming bicarbonate (HCO(3)(-)) filtered at the glomerulus and generating the consumed HCO(3)(-) by secreting protons (H(+)) into the urine (renal acidification). Sodium-proton exchangers (NHEs) are ubiquitous transmembrane proteins mediating the countertransport of Na(+) and H(+) across lipid bilayers. In mammals, NHEs participate in the regulation of cell pH, volume, and intracellular sodium concentration, as well as in transepithelial ion transport. Five of the 10 isoforms (NHE1-4 and NHE8) are expressed at the plasma membrane of renal epithelial cells. The best-studied isoform for acid-base homeostasis is NHE3, which mediates both HCO(3)(-) absorption and H(+) excretion in the renal tubule. This article reviews some important aspects of NHEs in the kidney, with special emphasis on the role of renal NHE3 in the maintenance of acid-base balance.  相似文献   

3.
In the mammalian proximal tubule NaCl reabsorption occurs by both passive and active transport processes. Passive NaCl reabsorption occurs in the presence of a high luminal chloride and a low luminal bicarbonate concentration. These anion gradients provide the driving forces for diffusive Na and Cl movement. Na is driven by the lumen positive PD effected by the greater permeability of the tubular wall to Cl than to HCO3. Cl is driven by its high tubular concentration. Passive NaCl reabsorption accounts for only about 10% to 15% of total proximal NaCl transport. The remaining proximal NaCl is reabsorbed by active transport processes and occurs both in the presence or absence of anion gradients reabsorption. Two mechanisms of active NaCl reabsorption participate in active NaCl reabsorption along the proximal tubule. Firstly, active NaCl reabsorption is electrogenic. In the early proximal tubule Na enters to cell coupled to organic solute transport. This Na reabsorption generates a lumen negative PD and effects "coupled" electrogenic NaCl reabsorption. This mechanism is limited by the supply of organic solutes and is blunted by the greater Na than Cl permeability in the proximal tubule; it probably can account for no more than 10% of proximal NaCl reabsorption. In the terminal proximal tubule, the proximal straight tubule, the apical membrane appears to possess a channel for Na entry. This Na reabsorption also generates a lumen negative PD and effects "simple" electrogenic NaCl reabsorption. This mechanism is limited by the low transport capacity of this segment and probably accounts for no more than 5% to 10% of total proximal NaCl reabsorption. The great bulk of proximal NaCl reabsorption occurs along the entire proximal tubule by active, transcellular electroneutral NaCl reabsorption. The precise cellular transport mechanisms responsible for this process are only recently being defined. At the apical membrane parallel ion exchangers are responsible for NaCl entry into the cell. Na enters via the apical membrane Na-H antiporter. Cl most likely crosses the apical membrane by some combination of Cl-OH and Cl-HCO2 exchangers but not via a Cl-HCO3 exchanger. The relative contributions of Cl-OH and Cl-HCO2 exchange have not been defined. There are two important considerations in this question. First is the availbility of OH versus HCO2. Although there is an infinite supply of OH and a small equilibrium supply of HCO2, it is possible that the luminal concentration of HCO2 could be increased by an USL that raises the concentration of HCO2 to a degree sufficient to supply H2CO2 recycling for physiological transcellular Cl transport rates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Heteromeric amino acid transporters explain inherited aminoacidurias   总被引:1,自引:0,他引:1  
In the past 5 years, the first genes responsible for aminoacidurias caused by defects in renal reabsorption transport mechanisms have been identified. These diseases are type I and non-type I cystinuria and lysinuric protein intolerance. This knowledge came from the molecular characterization of the first heteromeric amino acid transporters in mammals. In 1992, rBAT and 4F2hc (genes SLC3A1 and SLC3A2, respectively, in the nomenclature of the Human Genome Organization) were identified as putative heavy subunits of mammalian amino acid transporters. In 1994, it was demonstrated that mutations in SLC3A1 cause type I cystinuria. Very recently, several light subunits of the heteromeric amino acid transporters have been identified. In 1999, a putative light subunit of rBAT (the SLC7A9 gene; complementary DNA and protein termed amino acid transporter) and a light subunit of 4F2hc (the SLC7A7 gene; cDNA and protein termed y+LAT-1) were shown to be the non-type I cystinuria and lysinuric protein intolerance genes, respectively. In this review, the characteristics of these heteromeric amino acid transporters and their role in these inherited aminoacidurias is described.  相似文献   

5.

Purpose

We reviewed the literature describing recent advances in the understanding of the nature of the transport proteins involved in the renal transport of cystine, properties of the solute carrier family 3, member 1 (SLC3A1) gene, which is involved in renal cystine transport, and the mutations reported in this gene, which have been shown to be the causative factor in approximately half of the cases of type I cystinuria studied.

Materials and Methods

The MEDLINE data base from 1966 to date and the internet online mendelian inheritance in man were searched using cystinuria, cystine crossed with biological transporters and cystine transporter as key words. Selected citations within these references were also reviewed.

Results

The SLC3A1 gene has been shown to code for a protein that, when expressed in Xenopus oocytes, confers on these cells the ability to transport cystine, arginine, lysine and ornithine. To date 21 different mutations and 9 polymorphisms have been reported in the SLC3A1 gene isolated from cystinuric patients.

Conclusions

Type I cystinuria appears to be due to mutations in the SLC3A1 gene, while the molecular genetic determinants of types II and III cystinuria remain to be delineated.  相似文献   

6.
Mutations in the human gene that encodes the AE1 Cl(-)/HCO(3)(-) exchanger (SLC4A1) cause autosomal recessive and dominant forms of distal renal tubular acidosis (dRTA). A mouse model that lacks AE1/slc4a1 (slc4a1-/-) exhibited dRTA characterized by spontaneous hyperchloremic metabolic acidosis with low net acid excretion and, inappropriately, alkaline urine without bicarbonaturia. Basolateral Cl(-)/HCO(3)(-) exchange activity in acid-secretory intercalated cells of isolated superfused slc4a1-/- medullary collecting duct was reduced, but alternate bicarbonate transport pathways were upregulated. Homozygous mice had nephrocalcinosis associated with hypercalciuria, hyperphosphaturia, and hypocitraturia. A severe urinary concentration defect in slc4a1-/- mice was accompanied by dysregulated expression and localization of the aquaporin-2 water channel. Mice that were heterozygous for the AE1-deficient allele had no apparent defect. Thus, the slc4a1-/- mouse is the first genetic model of complete dRTA and demonstrates that the AE1/slc4a1 Cl(-)/HCO(3)(-) exchanger is required for maintenance of normal acid-base homeostasis by distal renal regeneration of bicarbonate in the mouse as well as in humans.  相似文献   

7.
目的利用单细胞测序、微量蛋白质组学及免疫组化三部分数据深入分析肾脏尿酸转运蛋白的细胞分布及表达丰度。 方法利用2个成人健康肾脏的单细胞测序数据集(GSE131685)分析12个肾脏尿酸转运基因的细胞定位及表达丰度,进一步利用激光微切割联合质谱检测大鼠肾小管14个区段蛋白质数据集12个蛋白的定位和丰度,最后利用ProteinAtlas数据库检索上述蛋白在肾脏中的免疫组化染色结果。 结果单细胞测序数据集GSE131685中,12个尿酸转运蛋白集中表达于近端小管细胞,而在KIT数据集中,除了ABCG2、SLC22A12和SLC22A13外,其余都集中表达于近端肾小管S1,S2和S3段细胞。KEAT蛋白数据集的分析结果与KIT数据结果类似:ABCG2,SLC17A3,SLC22A12,SLC22A6和SLC22A8在近端小管S1,S2和S3段有显著的表达,尤其是SLC22A6仅富集在S2段肾小管,而ABCG2在S3段有较强的富集,其它的蛋白表达丰度相对较低。ProteinAtlas的免疫组化数据显示出与单细胞测序及蛋白质组的结果有较大的差异:ABCC2、SLC17A4、SLC22A6、SLC22A11、SLC22A12、SLC22A13及SLC2A9显示在近端小管比较特异的表达定位,其中ABCC2、SLC22A6、SLC22A11和SLC22A13信号较强。ABCC4、ABCG2和SLC16A9的表达丰度相对较低,特异性较差。 结论尿酸转运蛋白在肾脏主要集中表达于小管的S1,S2和S3段细胞,蛋白质组数据和单细胞测序数据比较接近。单细胞测序及微切割的微量蛋白组学是研究蛋白精细定位的良好工具。本研究为今后研究尿酸转运蛋白的功能及研发降尿酸药物提供基础依据。  相似文献   

8.
Citrate transport by the kidney and intestine   总被引:10,自引:0,他引:10  
Citrate is an important metabolite that is transported in the kidney and intestine. Low urinary citrate concentrations, which may be determined in part by transport processes in the kidney, are associated with the development of kidney stones. Citrate is reabsorbed from the tubular filtrate in the renal proximal tubule on a sodium-coupled transporter, the Na+/dicarboxylate cotransporter, with a broad substrate specificity for Krebs cycle intermediates. The same transporter is found on the brush-border membrane of enterocytes. In contrast to the well-characterized apical pathway for citrate, there is relatively little information about citrate transport across the basolateral membrane. Recently, the complementary DNAs coding for the Na+/citrate transporters from the apical membranes of rabbit and human kidney, NaDC-1 and hNaDC-1, have been cloned and sequenced. These transporters belong to a separate gene family that includes the renal Na+/sulfate cotransporter, NaSi-1.  相似文献   

9.
Uptake of SO(4) (2-) by articular chondrocytes is an essential step in the pathway for sulphation of glycosaminoglycans (GAGs), with mutations in SO(4) (2-) transport proteins resulting in abnormalities of skeletal growth. In the present study, the transporters mediating SO(4) (2-) transport in bovine articular chondrocytes have been characterized. Expression of candidate transporters was determined using RT-PCR, while SO(4) (2-) transport was measured in radioisotope flux experiments. RT-PCR experiments showed that bovine articular chondrocytes express three transporters known to transport SO(4) (2-): AE2 (SLC4a2), DTDST (SLC26a2), and SLC26a11. Other transporters--NaS-1 (SLC13a1), SAT-1 (SLC26a1), DRA (SLC26a3), SLC26a6 (PAT1), SLC26a7, SLC26a8 (Tat-1), and SLC26a9--were, however, not detected. In functional experiments, SO(4) (2-) uptake was temperature-sensitive, inhibited by 60% by DIDS (50 microM) and exhibited saturation kinetics, with a K(m) value of 16 mM. Uptake was also inhibited at alkaline extracellular pH. In further experiments, a K(i) value for DIDS inhibition of SO(4) (2-) efflux of 5 microM was recorded. A DIDS-sensitive component of SO(4) (2-) efflux persisted in solutions lacking Cl(-) ions. These data are interpreted as evidence for the preferential operation of carrier-mediated exchange of SO(4) (2-) for Cl(-), while an alternative SO(4) (2-)-OH(-) exchange mode is also possible.  相似文献   

10.
During chronic metabolic acidosis (CMA), the plasma levels of glutamine are increased and so is glutamine metabolism in the kidney tubule cells. Degradation of glutamine results in the formation of ammonium (NH(4)(+)) and bicarbonate (HCO(3)(-)) ions, which are excreted in the pre-urine and transported to the peritubular blood, respectively. This process contributes to counteract acidosis and to restore normal pH, but the molecular mechanism, the localization of the proteins involved and the regulation of glutamine transport into the renal tubular cells, remains unknown. SN1, a Na(+)- and H(+)-dependent glutamine transporter has previously been identified molecularly, and its mRNA has been detected in tubule cells in the medulla of the kidney. Now shown is the selective targeting of the protein to the basolateral membranes of the renal tubule cells of the S3 segment throughout development of the normal rat kidney. During CMA, SN1 expression increases five- to six-fold and appears also in cortical tubule cells in parallel with the increased expression and activity of phosphate-activated glutaminase, a mitochondrial enzyme involved in ammoniagenesis. However, SN1 remains sorted to the basolateral membranes. The unique ability of SN1 to change transport direction according to physiologic changes in transmembrane gradients of [glutamine] and pH and its sorting to the basolateral membranes and the presence of a putative pH responsive element in the 3' untranslated region (UTR) of the gene (supported here by the demonstration in CMA kidney of a protein that binds SN1 mRNA) are conducive to the function of this transporter in pH regulation.  相似文献   

11.
12.
The role of the Na(+)-coupled HCO(3)(-) transporter (NBC) family is indispensable in acid-base homeostasis. Almost all tissues express a member of the NBC family. NBC has been studied extensively in the kidney and plays a role in proximal tubule HCO(3)(-) reabsorption. Although the exact function of this transporter family on other tissues is not very clear, the ubiquitous expression of NBC family suggests a role in cell pH regulation. Altered NBC activity caused by mutations of the gene responsible for NBC protein expression results in pathophysiologic conditions. Mutations of NBC resulting in important clinical disorders have been reported extensively on one member of the NBC family, the kidney NBC (NBC1). These mutations have led to several structural studies to understand the mechanism of the abnormal NBC1 activity.  相似文献   

13.
The past few years have witnessed great progress in elucidating the molecular basis of inherited renal tubular acidosis. Consistent with the physiologically defined importance of multiple gene products in urinary acidification, heritable renal tubular acidosis is genetically heterogeneous. Autosomal dominant distal renal tubular acidosis has been associated with a small number of mutations in the AE1 Cl-/HCO3- exchanger although the pathophysiologic mechanisms behind these mutations remain unclear. Rarely, autosomal recessive distal RTA is caused by homozygosity or compound heterozygosity for the loss-of-function mutation AE1 G701D. A larger proportion, often accompanied by hearing loss, is associated with mutations in the ATP6B1 gene encoding the 58 kDa B1 subunit of the vacuolar H+-ATPase. Mutations in the gene encoding the Na+/HCO3- cotransporter, NBC1, have recently been identified in proximal renal tubular acidosis with corneal calcification.  相似文献   

14.
Abnormalities of the inorganic phosphate (Pi) reabsorption in the kidney result in various metabolic disorders. Na+-dependent Pi (Na/Pi) transporters in the brush border membrane of proximal tubular cells mediate the rate-limiting step in the overall Pi-reabsorptive process. Type IIa and type IIc Na/Pi cotransporters are expressed in the apical membrane of proximal tubular cells and mediate Na/Pi cotransport; the extent of Pi reabsorption in the proximal tubules is determined largely by the abundance of the type IIa Na/Pi cotransporter. However, several studies suggest that the type IIc cotransporter in Pi reabsorption may also play a role in this process. For example, mutation of the type IIc Na/Pi cotransporter gene results in hereditary hypophosphatemic rickets with hypercalciuria, suggesting that the type IIc transporter plays an important role in renal Pi reabsorption in humans and may be a key determinant of the plasma Pi concentration. The type IIc Na/Pi transporter is regulated by parathyroid hormone, dietary Pi, and fibroblast growth factor 23, and studies suggest a differential regulation of the IIa and IIc transporters. Indeed, differences in temporal and/or spatial expression of the type IIa and type IIc Na/Pi transporters may be required for normal phosphate homeostasis and bone development. This review will briefly summarize the regulation of renal Pi transporters in various Pi-wasting disorders and highlight the role of a relatively new member of the Na/Pi cotransporter family: the type IIc Na/Pi transporter/SLC34A3.  相似文献   

15.
One of the major tasks of the renal proximal tubule is to secrete acid into the tubule lumen, thereby reabsorbing approximately 80% of the filtered HCO3- as well as generating new HCO3- for regulating blood pH. This review summarizes the cellular and molecular events that underlie four major processes in HCO3- reabsorption. The first is CO2 entry across the apical membrane, which in large part occurs via a gas channel (aquaporin 1) and acidifies the cell. The second process is apical H+ secretion via Na-H exchange and H+ pumping, processes that can be studied using the NH4+ prepulse technique. The third process is the basolateral exit of HCO3- via the electrogenic Na/HCO3 co-transporter, which is the subject of at least 10 mutations that cause severe proximal renal tubule acidosis in humans. The final process is the regulation of overall HCO3- reabsorption by CO2 and HCO3- sensors at the basolateral membrane. Together, these processes ensure that the proximal tubule responds appropriately to acute acid-base disturbances and thereby contributes to the regulation of blood pH.  相似文献   

16.
Solute-linked carrier 26 (SLC26) isoforms are members of a large, conserved family of anion exchangers, many of which display highly restricted and distinct tissue distribution. Cloning experiments have identified 10 SLC26 genes or isoforms (SLC26A1-11). Except for SLC26A5 (prestin), all function as anion exchangers with versatility with respect to transported anions. Modes of transport mediated by SLC26 members include the exchange of chloride for bicarbonate, hydroxyl, sulfate, formate, iodide, or oxalate with variable specificity. Other anion exchange modes not involving chloride also have been reported for some of the members of this family. Several members of SLC26 isoforms are expressed in the kidney. These include SLC26A1 (SAT1), SLC26A4 (pendrin), SLC26A6 (putative anion transporter [PAT1] or chloride/formate exchange [CFEX]), SLC26A7, and SLC26A11. Each isoform displays a specific nephron segment distribution with a distinct subcellular localization. Coupled to expression studies and examination of genetically engineered mice deficient in various SLC26 isoforms, the evolving picture points to important roles for the SLC26 family in chloride absorption, vascular volume homeostasis, acid-base regulation, and oxalate excretion in the kidney. This review summarizes recent advances in the identification and characterization of SLC26 family members, with specific emphasis on their distribution and role in kidney physiology. Specifically, the roles of A4 (pendrin), A6 (PAT1), and A7 (PAT2) in chloride homeostasis, oxalate excretion, and acid-base balance are discussed.  相似文献   

17.
BACKGROUND: The human amino acid transporter asc-1 (SLC7A10) exhibits substrate selectivity for small neutral amino acids, including cysteine, is expressed in kidney, is located close to the cystinuria B gene and presents sequence variants (e.g., E112D) in some cystinuria patients. We have cloned human asc-1, assessed its transport characteristics, localized its expression in kidney, searched for mutations in cystinuria patients, and tested the transport function of variant E112D. METHODS: We used an EST-based homology cloning strategy. Transport characteristics of asc-1 were assessed by coexpression with 4F2hc in Xenopus oocytes and HeLa cells. Localization of asc-1 mRNA in kidney was assessed by in situ hybridization. Exons and intron-exon boundaries were polymerase chain reaction (PCR)-amplified from blood cell DNA and mutational screening was performed by single-stranded conformational polymorphism (SSCP). RESULTS: Asc-1 reaches the plasma membrane in HeLa cells, unlike in oocytes, most probably by interaction with endogenous 4F2hc and presents similar transport characteristics to those in oocytes coexpressing asc-1/4F2hc. Asc-1 mediates a substantial efflux of alanine in a facilitated diffusion mode of transport. Expression of asc-1 mRNA localized to Henle's loop, distal tubules, and collecting ducts. Finally, SLC7A10 polymorphisms were identified in cystinuria probands and the SLC7A10 sequence variant E112D showed full transport activity. CONCLUSION: The lack of expression of asc-1 in the proximal tubule indicates that it plays no role in the bulk of renal reabsorption of amino acids. No mutations causing cystinuria have been found in SLC7A10. The facilitated diffusion mode of transport and the expression in distal nephron suggest a role for asc-1 in osmotic adaptation.  相似文献   

18.
Cellular and molecular aspects of drug transport in the kidney   总被引:29,自引:0,他引:29  
The kidney plays an important role in the elimination of numerous hydrophilic xenobiotics, including drugs, toxins, and endogenous compounds. It has developed high-capacity transport systems to prevent urinary loss of filtered nutrients, as well as electrolytes, and simultaneously to facilitate tubular secretion of a wide range of organic ions. Transport systems for organic anions and cations are primarily involved in the secretion of drugs in renal tubules. The identification and characterization of organic anion and cation transporters have been progressing at the molecular level. To date, many members of the organic anion transporter (OAT), organic cation transporter (OCT), and organic anion-transporting polypeptide (oatp) gene families have been found to mediate the transport of diverse organic anions and cations. It has also been suggested that ATP-dependent primary active transporters such as MDR1/P-glycoprotein and the multidrug resistance-associated protein (MRP) gene family function as efflux pumps of renal tubular cells for more hydrophobic molecules and anionic conjugates. Tubular reabsorption of peptide-like drugs such as beta-lactam antibiotics across the brush-border membranes appears to be mediated by two distinct H+/peptide cotransporters: PEPT1 and PEPT2. Renal disposition of drugs is the consequence of interaction and/or transport via these diverse secretory and absorptive transporters in renal tubules. Studies of the functional characteristics, such as substrate specificity and transport mechanisms, and of the localization of cloned drug transporters could provide information regarding the cellular network involved in renal handling of drugs. Detailed information concerning molecular and cellular aspects of drug transporters expressed in the kidney has facilitated studies of the mechanisms underlying renal disposition as well as transporter-mediated drug interactions.  相似文献   

19.
Congenital chloride diarrhea is due to mutations in the intestinal Cl(-)/HCO(3)(-) exchange (SLC26A3) which results in sodium chloride and fluid depletion leading to hypochloremic and hypokalemic metabolic alkalosis. Although treatment with sodium and potassium chloride offers protection from renal involvement in childhood, the long-term renal outcome remains unclear. Here we describe two cases of congenital chloride diarrhea-associated end-stage renal disease with transplantation. Further, we show that there is a high incidence of mild chronic kidney disease in 35 other patients with congenital chloride diarrhea. The main feature of the renal injury was nephrocalcinosis, without hypercalciuria or nephrolithiasis with small sized kidneys and commensurately reduced glomerular filtration rates. This suggests that diarrhea-related sodium chloride and volume depletion, the first signs of non-optimal salt substitution, promote urine supersaturation and crystal precipitation. The poor compliance with salt substitution along with long-lasting hypochloremic and hypokalemic metabolic alkalosis is likely to induce progressive calcification and renal failure. Both our patients developed nephrocalcinosis in the transplanted kidneys suggesting that this complication is a consequence of intestinal SLC26A3 deficiency. Interestingly, the transporter is expressed in the distal nephron but the recurrence of nephrocalcinosis in the transplanted kidney suggests that it does not play a significant renal role in this syndrome.  相似文献   

20.
Organic anion transporters (OATs) translocate drugs as well as endogenous substances and toxins. The prototype, OAT1 (SLC22A6), first identified as NKT in 1996, is the best-studied member of the OAT subgroup of the SLC22 transporter family, which also includes OCTs (organic cation transporters), OCTNs (organic cation transporters of carnitine) and Flipts (fly-like putative transporters). The SLC22 family is evolutionarily conserved, with members expressed in fly and worm. An unusual feature of many SLC22A genes is a tendency to exist in pairs or clusters in the genome. Much of the early research in the field focused on the role of OATs and other SLC22 family members in renal drug transport. OATs have now been localized to other epithelial tissues, including placenta (OAT4) and mouse olfactory mucosa (Oat6). Although findings from in vivo physiological studies in mice lacking OATs (e.g. Oat1 and Oat3) have generally been consistent with in vitro transport data from Xenopus oocytes and transfected cells, these in vivo data are helping to clarify the relative contributions of individual OATs to the renal excretion of particular organic anions and drugs. Moreover, in mutant mice, certain endogenous anions accumulate, suggesting the physiological roles of the proteins encoded by the mutant genes. It has been proposed that the presence of OATs and other SLC22-family members in multiple tissue compartments might enable a 'remote sensing' mechanism by allowing communication between organs, and possibly individuals, through organic ions. Variability of human drug responses and susceptibility to drug toxicity might, in part, be explained by variations in the coding and promoter regions of these genes. Computational biological studies are likely to not only shed light on molecular mechanisms of transport for compounds of clinical and toxicological interest, but also aid in drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号