首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Various conjugates of anticancer drug doxorubicin (DOX) covalently attached via hydrolytically degradable hydrazone bond to water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer drug carriers were synthesized. Three types of precursors containing either positively or negatively charged groups or a hydrophobic substituent were employed. In vitro incubation of the conjugates in buffers showed relative stability at pH 7.4 (modelling blood) and a fast DOX release at pH 5 (modelling intracellular environment). The presence of carboxylic groups in the copolymer structure resulted in an increase in the DOX release rate of 15-20% while no effect of the introduction of positively charged groups was observed if compared with the unmodified conjugate. Self-assembling of the oleoyl groups-containing conjugate led into formation of polymeric micelles with high apparent molecular weight (M(w)=170,000) in aqueous solution and resulted in a decrease in the DOX release rate of approximately 20%. The cytostatic activity of the conjugates tested on several cancer cell lines was comparable with that of free DOX.HCl, depending on the sensitivity of a particular cell line to DOX. All the conjugates showed a much higher antitumour activity in vivo than the free drug tested in mice bearing EL4 T-cell lymphoma and treated using the therapeutic regime of drug administration. The highest activity (100% long-term survivors) exhibited polymer-DOX conjugate containing negatively charged GFLG sequences.  相似文献   

2.
In this paper we describe the synthesis, physico-chemical characteristics and results of tests of biological activity of polymer drugs based on conjugates of anti-cancer drug doxorubicin (Dox) with water-soluble polymer drug carriers, N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. In the conjugates the drug is attached to the polymer backbone via a spacer stable under physiological conditions (pH 7.4) and hydrolytically degradable in mild acidic environment (e.g., endosomes, pH approximately 5). This enables designing polymer drugs with long blood circulation and release and specific activation of the active compound in endosomes of target cells. Two types of Dox conjugates differing in the length and structure of the oligopeptide spacer were synthesised (GG and GFLG). In both types, the linkage susceptible to hydrolytic cleavage was formed by the reaction of the carbonyl group of Dox with the hydrazide group terminating the oligopeptide side chains of the polymer. In vitro incubation of conjugates in buffers resulted in much faster release of Dox from the polymer at pH 5 than at pH 7.4 (more than 10 times) the rate being higher for the conjugate containing GG spacer. The presence of cathepsin B in incubation media increased the rate of Dox release from the conjugate with GFLG spacer, Dox release from conjugate with GG spacer remained unchanged. Cytotoxicity of conjugates for T-splenocytes and mouse EL-4 T cell lymphoma cells was much higher compared with the effect of similar 'classic' conjugates bearing Dox attached via amide bond. In vivo anti-tumor activity of conjugates containing hydrolytically sensitive linkage was also significantly improved in mouse EL4 T cell lymphoma.  相似文献   

3.
Synthesis, physicochemical and biological properties and preliminary anticancer activity of new star-shaped polymer–doxorubicin (DOX) conjugates targeted with anti-CD20 monoclonal antibody were investigated. Mild reduction of antibody (Ab) with dithiothreitol (DTT) resulted in introduction of thiol groups into Ab. Polymer precursors used for the synthesis of the conjugates were based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with a functional group at the polymer chain end. The copolymers were linked to the thiol groups of the reduced Ab via one-point attachment forming a star-shaped structure with central antibody surrounded by hydrophilic polymer chains. Neither reduction nor polymer modification of Ab influenced binding activity of the Ab to its specific cancer cell membrane antigen as it was confirmed in vitro by standard flow cytometry. The anticancer drug DOX was attached to the HPMA copolymer chain in an Ab–polymer system via a pH–labile hydrazone linkage or via an oligopeptide sequence degradable by lysosomal enzymes. Such Ab–polymer–DOX conjugates were fairly stable in aqueous solution at pH 7.4 and the drug was readily released in mildly acid environment at pH 5–5.5 by hydrolysis of hydrazone bond or more slowly by enzymolysis with lysosomal enzymes. The cytostatic activity of the anti-CD20 monoclonal Ab-targeted conjugates tested on several CD20-positive or negative human and mouse cancer cell lines confirmed considerable targeting capacity of the monoclonal Ab after its binding to the polymer carrier. New method of synthesis of star antibody-targeted polymer–drug conjugates with pH-controlled drug release described in this paper opens new perspectives for development of new therapeutics intended for cancer therapy.  相似文献   

4.
We provide data on in vivo targeting of the Thy 1.2 (CDw90) cell surface receptor expressed on neoplastic T cells, mouse EL4 T cell lymphoma. The targeting antibody and the anticancer drug, doxorubicin (DOX) were conjugated to a water-soluble copolymer based on N-(2-hydroxypropyl)methacrylamide (HPMA) acting as a carrier responsible for controlled intracellular release of the conjugated drug. The in vivo therapeutic efficacy of HPMA copolymer-bound DOX targeted with anti-EL4 antibody, polyclonal anti-thymocyte globulin (ATG), monoclonal anti-Thy 1.2 antibody or its F(ab')(2) fragment was compared with the efficacy of DOX conjugated to HPMA copolymer containing nonspecific IgG or bovine serum albumin (BSA). Anti-EL4 antibody-targeted conjugate caused a significant retardation of tumor growth and an extension of the life span of treated mice. The effect was comparable with that of HPMA copolymer-bound DOX targeted with ATG, anti-Thy 1.2 antibody or its F(ab')(2) fragment. However, considerable antitumor effect was seen also in conjugates targeted instead of specific antibodies with syngeneic nonspecific IgG or BSA. Patients with advanced cancer are often immunocompromised due to dysfunction of their immune system induced by cancer and cytotoxic drugs. A significant decrease of unwanted side-effects of targeted drugs against a number of vital organs was already documented. In this study we have compared immunotoxic effects of free DOX with those of its antibody-targeted form on NK cells and cytolytic T lymphocytes (CTLs) isolated from C57BL/10 mice bearing EL4 T cell lymphoma. In the same model we have tested the combination therapy with immunomodulators (beta-glucan or AM-2) injected together with targeted daunomycin. We have observed a significant protective effect of targeted DOX against NK cells and CTLs. Moreover, the data revealed that combination therapy considerably enhances antitumor efficacy of the targeted anticancer drug.  相似文献   

5.
Herein, new biodegradable star polymer-doxorubicin conjugates designed for passive tumor targeting were investigated, and their synthesis, physico-chemical characterization, drug release, biodegradation, biodistribution and in vivo anti-tumor efficacy are described. In the conjugates, the core formed by poly(amidoamine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin (Dox) attached by hydrazone bonds, which enabled intracellular pH-controlled drug release. The described synthesis facilitated the preparation of biodegradable polymer conjugates in a broad range of molecular weights (200-1000 g/mol) while still maintaining low polydispersity (~ 1.7). The polymer grafts were attached to the dendrimers through either stable amide bonds or enzymatically or reductively degradable spacers, which enabled intracellular degradation of the high-molecular-weight polymer carrier to excretable products. Biodegradability tests in suspensions of EL4 T-cell lymphoma cells showed that the rate of degradation was much faster for reductively degradable conjugates (close to completion within 24 h of incubation) than for conjugates linked via an enzymatically degradable oligopeptide GFLG sequence (slow degradation taking several days). This finding was likely due to the differences in steric hindrance in terms of the accessibility of the small molecule glutathione and the bulky enzyme cathepsin B to the polymer substrate. Regarding drug release, the conjugates were fairly stable in buffer at pH 7.4 (model of blood stream) but released doxorubicin under mild acidic conditions that model the tumor cell microenvironment. The star polymer-Dox conjugates exhibited significantly prolonged blood circulation and enhanced tumor accumulation in tumor-bearing mice, indicating the important role of the EPR effect in its anti-cancer activity. The star polymer conjugates showed prominently higher in vivo anti-tumor activities than the free drug or linear polymer conjugate when tested in mice bearing EL4 T-cell lymphoma, with a significant number of long-term surviving (LTS). Based on the results, we conclude that a Mw of HPMA copolymers of 200,000 to 600,000 g/mol is optimal for polymer carriers designed for the efficient passive targeting to solid tumors. In addition, an expressive therapy-dependent stimulation of the immune system was observed.  相似文献   

6.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer carrier containing the anticancer drug doxorubicin and targeted with B1 monoclonal antibody (mAb) to BCL1 leukemia cells was synthesised and tested in vitro and in vivo. BCL1 leukemia growing in syngenic Balb/c mice was selected as a tumor model system. B1 mAb recognising the idiotype of surface IgM on BCL1 cells was used as a targeting moiety. Both B1 mAb and doxorubicin were conjugated to HPMA copolymer carrier by aminolysis through a tetrapeptidic Gly-Phe(D,L)-Leu-Gly spacer to ensure the intracellular delivery and controlled release of the drug. B1 mAb-targeted conjugate was shown to possess strictly tumor-specific binding capacity to target BCL1 cells in vitro. A similar conjugate, but containing human nonspecific Ig (HuIg) instead of B1 mAb, failed to bind to BCL1 cells. In vitro, B1 mAb-targeted conjugate demonstrated 40-fold higher cytotoxic effect than nontargeted or human nonspecific Ig-containing HPMA copolymer-bound doxorubicin. Conjugate targeted with B1 mAb was also shown to bind to target BCL1 cells in vivo. B1 mAb-targeted conjugate was shown to be more efficient in the treatment of established BCL1 leukemia than free doxorubicin, nontargeted and human nonspecific Ig-containing conjugate. Antibody-targeted polymeric drugs are thus promising conjugates for cancer treatment.  相似文献   

7.
We have synthesized conjugates containing doxorubicin (DOX) bound to oligopeptide side chains (GlyGly or GlyPheLeuGly) of a water-soluble copolymer carrier based on poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) either through proteolytically (PK1 conjugates) [Synthetic polymeric drugs. U.S. Patent 5,037,883 (1991)] or hydrolytically cleavable bond (HC conjugates). Pharmacological efficacy of PK1 and HC conjugates was compared in vitro on murine: T-cell lymphoma EL4, B-cell leukemia BCL1, B-cell lymphoma 38C13, leukemia P388 and Con A-stimulated A/Ph splenocytes and on human: primary (SW480) and metastatic (SW620) colorectal cancer cell lines parent and transfected with Thy 1.2 gene [2] and on erythromyeloid leukemia cell line K 562. Inhibition of proliferation determined by 3[H]-thymidine incorporation revealed that the cytostatic effect of HC conjugates is up to two orders of magnitude higher compared to PK1 conjugates. In some cancer cell lines (SW 620/T, SW 480) the pharmacological activity of HC conjugates is in vitro comparable with the activity of the free drug. Unlike PK1 conjugates, HC conjugates with a lysosomally degradable spacer (GlyPheLeuGly) are less effective compared to HC conjugates containing lysosomally non-degradable spacer (GlyGly). Moreover, HC conjugates exert pronounced anti-proliferative activity also in erythroblastoid leukemia cell line K 562 with a limited content of lysosomes.  相似文献   

8.
In recent years, polymer drug carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with pH-triggered drug release have shown enhanced uptake in solid tumors and excellent antitumor activity. Here, the impact of the structure of the acid-labile spacer between the drug and the polymer carrier on the biodistribution of both the drug and the carrier was studied using in vivo noninvasive multispectral optical imaging of dual fluorescently labeled HPMA copolymers. Five different spacers containing a pH-sensitive hydrazone bond were synthesized and used to combine a fluorescent model drug with a polymer backbone, conjugated with another non-releasable fluorescent dye. Two copolymers differing in polymer chain structure (linear and star-like) and molecular weight (30 and 200 kDa) were used to distinguish between carriers with molecular weights above and below the limit for renal filtration. The rate of model drug release from the conjugates was determined in vitro. The biodistributions of the six most promising conjugates were investigated in vivo in athymic nude mice inoculated with human colon carcinoma xenograft. The structure of the spacer in the vicinity of the hydrazone bond significantly influenced the release rate of the model drug. The slow release rate of a pyridyl group bearing spacer resulted in a greater amount of the model drug being transported to the tumor, which was independent of the carrier structure. The results of this study emphasize the importance of careful selection of the structure and appropriate spacer when designing polymer conjugates intended for passive tumor targeting.  相似文献   

9.
In this study, we report the design and delivery of a tumor-targeted, pH-responsive quantum dot-mucin1 aptamer-doxorubicin (QD-MUC1-DOX) conjugate for the chemotherapy of ovarian cancer. To achieve active cancer targeting, QD was conjugated with a DNA aptamer specific for mutated MUC1 mucin overexpressed in many cancer cells including ovarian carcinoma. DOX was attached to QD via a pH-sensitive hydrazone bond in order to provide the stability of the complex in systemic circulation and drug release in acidic environment inside cancer cells. The data show that this bond is stable at neutral and slightly basic pH and undergoes rapid hydrolysis in mildly acidic pH. Confocal microscopy and in vivo imaging studies show that the developed QD-MUC1-DOX conjugate had higher cytotoxicity than free DOX in multidrug resistant cancer cells and preferentially accumulated in ovarian tumor. Data obtained demonstrate a high potential of the proposed conjugate in treatment of multidrug resistant ovarian cancer.  相似文献   

10.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer-9-aminocamptothecin (9-AC) conjugate for oral colon-specific drug delivery was designed, synthesized, and characterized. The drug, 9-AC, was attached to the polymer carrier via a spacer containing a combination of an aromatic azo bond and a 4-aminobenzylcarbamate group. The design of the spacer ensured a fast and highly efficient release of unmodified 9-AC from the polymer in the colon by azo bond cleavage followed by a 1,6-elimination mechanism. An in vitro degradation study indicated that this conjugate was stable in simulated upper GI tract conditions, including small intestine (SI) contents, SI mucosa suspension, and in PBS (pH 1.5 and 7.4). A fast release of the unmodified drug (85+/-10% of 9-AC in 12 h) was detected in rat cecal contents. This drug delivery system has potential in the treatment of colon cancer.  相似文献   

11.
Polymeric micellar pH-sensitive drug delivery system for doxorubicin.   总被引:6,自引:0,他引:6  
A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.  相似文献   

12.
N-(2-Hydroxypropyl) methacrylamide (HPMA) copolymers containing oligopeptide side-chains terminating in anticancer drugs (daunomycin, adriamycin) have been synthesized. The bond between the drug and the carrier was stable in the bloodstream, but was cleaved intracellularly on exposure to the lysosomal cysteine proteinases. HPMA copolymers have also been modified with targeting moieties: galactosamine, which targets the conjugate to hepatocytes; anti θ antibodies recognizing θ alloantigen expressed on immunocompetent lymphocytes; and fucosylamine, since there is a receptor on mouse leukemia L1210 cells that recognizes and binds this carbohydrate moiety.In vitro and in vivo experiments demonstrated preferential interaction of modified HPMA copolymers with the respective target cells. Subsequent experiments were performed to test the pharmacological activity of anticancer polymeric prodrugs in vivo against L1210 leukemia in DBA2 mice. Two localizations of tumor were chosen — intraperitoneal and subcutaneous. In both cases experimental animals were treated intraperitoneally with free drug or drug-HPMA copolymer conjugates. HPMA copolymers containing anticancer drugs have shown therapeutic effect only when the oligopeptide sequence between the drug and the polymeric carrier was biodegradable.Polymeric products produced increased life span and an increased number of long term survivors depending on the structure of the conjugate (i.e. presence of biodegradable side-chains or targeting moieties), timing of administration and number of doses. From the data presented it can be concluded that targetable anticancer polymeric prodrugs may be useful clinically.  相似文献   

13.
Novel polymeric prodrug with multivalent components for cancer therapy   总被引:4,自引:0,他引:4  
We designed, synthesized, and evaluated in vitro and in vivo a novel targeted anticancer polymeric prodrug containing multiple copies of tumor targeting moiety [synthetic luteinizing hormone-releasing hormone (LHRH) peptide, analog of LHRH] and anticancer drug (camptothecin). One, two, or three molecules of the targeting peptide and anticancer drug were covalently conjugated with bis(2-carboxyethyl) polyethylene glycol polymer using citric acid as a multivalent spacer. We showed that LHRH peptide was bound to extracellular receptors and localized in plasma membrane of cancer cells. The designed tumor-targeted prodrug increased the solubility of anticancer drug and offered cytoplasmic and/or nuclear delivery of drug to cancer cells expressing LHRH receptors. The multicomponent prodrug containing three copies of the targeting peptide and drug was almost 100 times more cytotoxic and substantially had enhanced antitumor activity compared with the analogous nontargeted prodrug and prodrugs containing one or two copies of active components.  相似文献   

14.
The present work describes the synthesis, characterization, and biological evaluation of targetable N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-anti-leishmanial drug conjugates for the treatment of visceral leishmaniasis (VL). Conjugates of HPMA copolymer with NPC1161, an 8-aminoquinoline analog with anti-leishmanial activity, containing N-acetylmannosamine (ManN) in the side chains were synthesized and characterized. In vitro anti-leishmanial efficacy of the conjugates was determined in mouse peritoneal macrophages infected with Leishmania donovani amastigotes. The conjugates were tested against mammalian KB cells for cytotoxicity. The effect of ManN content on uptake was evaluated in RAW 264 murine macrophages. In vivo anti-leishmanial efficacy was evaluated at 1 mg/kg intravenous dose in BALB/c mice. HPMA copolymer-NPC1161 conjugates with 5 mole% or higher ManN content were significantly (p<0.0001) more active (ED50<15 microg/ml) than nontargeted conjugates (ED50>30 microg/ml). All conjugates were relatively nontoxic towards the mammalian cells. Significantly (p<0.003) higher uptake was observed for targeted conjugates compared to nontargeted conjugates. The targeted conjugates were significantly more effective in vivo (67-80% inhibition, p<0.0001) than nontargeted conjugate (47% inhibition). HPMA copolymers containing ManN in the side chains can potentially reduce the toxicity and increase efficacy of anti-leishmanial drugs for the treatment of VL.  相似文献   

15.
A thermoresponsive, genetically engineered, elastin-like polypeptide (ELP) containing a C-terminal cysteine residue was synthesized and purified by inverse transition cycling (ITC) and conjugated to doxorubicin (Dox) molecules through four different pH-sensitive, maleimide-activated, hydrazone linkers. The efficiency of Dox activation, conjugation ratios to ELP and biophysical characterization-hydrodynamic radius (Rh) and the temperature transition kinetics-of the ELP-Dox conjugates and pH-mediated release of Dox were quantified in this study. Conjugation ratios of the maleimide-activated Dox to the thiol group of a unique cysteine in the ELP were close to unity. The Rh of the conjugate increased as the linker length between the ELP backbone and Dox was increased. The linker structure and length had little effect on the Tt of the ELP-Dox conjugates, as all conjugates exhibited Tt's that were similar to the native ELP. However, the ELP-Dox conjugates with longer linkers exhibited slower transition kinetics compared to the ELP-Dox conjugates with shorter linkers. The highest release of the ELP-Dox conjugate by cleavage of the hydrazone bond at pH 4 was nearly 80% over 72 h and was exhibited by the conjugate with the shortest linker.  相似文献   

16.
To increase the selectivity and consequently to minimize the side effects of chemotherapeutic agents, receptor mediated tumor targeting approaches have been developed. In the present work, various anthracycline-GnRH derivative bioconjugates were synthesized with the aim of investigating the influence of (i) different anthracycline anticancer drugs, (ii) different linkages between the targeting moiety and the anticancer drug, and (iii) different targeting moieties (e.g., GnRH-III and [D-Lys6]-GnRH-I) on their in vitro drug release and cytostatic effect. The anthracyclines, daunorubicin or doxorubicin, were attached to the ε-amino group of Lys of GnRH-III or [D-Lys6]-GnRH-I through oxime, hydrazone or ester bonds. In another bioconjugate, a self-immolative p-aminobenzyloxycarbonyl spacer was used to link daunorubicin to GnRH-III. The in vitro degradation of the bioconjugates was investigated in the presence of rat liver lysosomal homogenate and cathepsin B. The cellular uptake of the compounds was evaluated by flow cytometry and their in vitro cytostatic effect was determined by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay.The results indicate that on the tested cancer cell lines there is no significant difference in the cellular uptake and in vitro cytostatic effect of bioconjugates containing GnRH-III or [D-Lys6]-GnRH-I as a targeting moiety. The bioconjugates containing ester bond, hydrazone bond and the self-immolative spacer exert the highest cytostatic effect, followed by oxime bond-linked compounds.  相似文献   

17.
The folate receptor is overexpressed in a broad spectrum of malignant tumors and represents an attractive target for selective delivery of anticancer agents to folate receptor-expressing tumors. This study examines folate-lipid conjugates as a means of enhancing the tumor selectivity of liposome-encapsulated drugs in a mouse lymphoma model. Folate-derivatized polyethylene glycol (PEG3350)-distearoyl-phosphatidylethanolamine was post-loaded at various concentrations into the following preparations: radiolabeled PEGylated liposomes, PEGylated liposomes labeled in the aqueous compartment with dextran fluorescein, and PEGylated liposomal doxorubicin (PLD, Doxil). We incubated folate-targeted radiolabeled or fluorescent liposomes with mouse J6456 lymphoma cells up-regulated for their folate receptors (J6456-FR) to determine the optimal ligand concentration required in the lipid bilayer for liposomal cell association, and to examine whether folate-targeted liposomes are internalized by J6456-FR cells in suspension. Liposomal association with cells was quantified based on radioactivity and fluorescence-activated cell sorting analysis, and internalization was assessed by confocal fluorescence microscopy. We found an optimal ligand molar concentration of approximately 0.5% using our ligand. A substantial lipid dose-dependent increase in cell-associated fluorescence was found in folate-targeted liposomes compared with nontargeted liposomes. Confocal depth scanning showed that a substantial amount of the folate-targeted liposomes are internalized by J6456-FR cells. Binding and uptake of folate-targeted PLD by J6456-FR cells were also observed in vivo after i.p. injection of folate-targeted PLD in mice bearing ascitic J6456-FR tumors. The drug levels in ascitic tumor cells were increased by 17-fold, whereas those in plasma were decreased by 14-fold when folate-targeted PLD were compared with nontargeted PLD in the i.p. model. Folate-targeted liposomes represent an attractive approach for the intracellular delivery of drugs to folate receptor-expressing lymphoma cells and seem to be a promising tool for in vivo intracavitary drug targeting.  相似文献   

18.
A new polymeric prodrug was prepared coupling 5-iodo-2'-deoxyuridine (IDU) to poly(d,l-lactic acid) (PLA) via a succinic acid spacer. The PLA-IDU conjugate was characterised by thermal analysis, IR and 1H and 13C NMR spectroscopy. The IDU content (0.024 mequiv.g-1 of PLA) was consistent with the carboxylic acid endgroup present in the polymer sample (0.025 mequiv.g-1 of polymer). The PLA-IDU conjugate was susceptible to degradation in biological environments containing esterase, whereas IDU was not detected by chemical hydrolysis in pH 7.4 phosphate buffer. The conjugate should be used to prepare injectable microspheres and nanospheres containing IDU chemically coupled to the polymer carrier.  相似文献   

19.
In an attempt to explore the potential of dendritic systems for the development of effective anticancer drug delivery systems, we explored a simple modular approach of preparing polyglycerol doxorubicin prodrugs, with flexibility for drug loading using an acid-sensitive hydrazone linker and further post-modification with poly(ethylene glycol) shell. The resulting drug polymer conjugates showed optimal properties for in vitro and in vivo applications because of their high water solubility, an appropriate size for passive tumor targeting, a high stability at physiological conditions, pronounced acid-sensitive properties, cellular internalization, and a favorable toxicity profile. Doxorubicin polyglycerol conjugates with a high drug loading ratio showed clearly improved antitumor efficacy over doxorubicin in an ovarian xenograft tumor model (A2780) inducing transient complete remissions thus demonstrating the potential of developing efficient multifunctional dendritic drug delivery using our modular approach.  相似文献   

20.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer carrier containing the anticancer drug doxorubicin bound either by a proteolytically degradable bond (non-targeted PK1 or targeted with alpha-CD71 mAb) or by a hydrolytically degradable bond were synthesised and tested in vivo for various biological properties. Mouse 38C13 B-cell lympoma was used as a well established and defined cell line for this study. 38C13 cells are sensitive to free doxorubicin and IC50 was very low, about 0.014 microM. PK1 showed a strongly decreased cytostatic effect, IC50 being 12.6 microM. alpha-CD71 targeted conjugate, which can be considered as an antibody-targeted form of PK1, had IC50 0.358 microM. HPMA copolymer with doxorubicin bound via a hydrolytically sensitive bond (HYD conjugate) showed a high cytostatic effect with IC50 about 0.052 microM. We demonstrated that HYD conjugate inhibited DNA synthesis and induced p21(Waf1/Cip1) protein expression (p21(Waf1/Cip1) is cyclin-dependent kinase inhibitor which blocks cell cycle progression) as quickly as free doxorubicin, whereas PK1 acted much more slowly. Similarly, apoptosis induction measured by Annexin V binding and Caspase 3 activity was detected later after incubation of cells with PK1 or alpha-CD71 targeted conjugate. Apoptosis was manifested by elevation of bax and bad mRNA levels, which was much more rapid and intense in the case of free doxorubicin and HYD conjugate. Expression of antiapoptotic genes as well as cyclin-dependent kinases was surprisingly not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号