首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the diversity of IS6110 fingerprints of Mycobacterium tuberculosis isolates in the United States and to determine if matching IS6110 fingerprints represent recent interstate tuberculosis transmission, we performed restriction fragment length polymorphism analysis of M. tuberculosis isolates from 1,326 patients in three geographically separated states. Seven hundred ninety-five different IS6110 fingerprint patterns were generated, and pattern diversity was similar in each state. Ninety-six percent of the fingerprint patterns were observed in only one state, demonstrating that most IS6110 fingerprint patterns are confined to a single geographic location. Of the IS6110 fingerprint patterns that were shared by isolates from more than one state, most isolates with 1 to 5 IS6110 copies were separable by pTBN12 fingerprinting whereas those with >15 copies were not. One high-copy-number M. tuberculosis strain had identical IS6110 and pTBN12 fingerprints and included 57 isolates from three states. Epidemiological data demonstrated significant recent transmission of tuberculosis within each city but not among the states. This suggests that identical fingerprints of isolates from geographically separate locations most likely reflect interstate tuberculosis transmission in the past, with subsequent intrastate spread of disease. Further evaluation of M. tuberculosis strains that cause outbreaks in different geographic locations will provide insight into the epidemiological and bacteriological factors that facilitate the spread of tuberculosis.  相似文献   

2.
Forty-three percent of the tuberculosis cases reported in France are from the Ile de France region. The incidence of tuberculosis in this region is 33 cases per 100,000 inhabitants, twice the national average. A restriction fragment length polymorphism (RFLP) analysis was performed with clinical isolates of Mycobacterium tuberculosis isolated during 1995 in 10 hospitals in Paris and surrounding areas to detect tuberculosis transmission and define the factors associated with clustering in this population. The molecular markers used were the insertion sequence IS6110 and the direct repeat (DR) sequence. Social, demographic, and clinical data were collected from the patients’ medical files. Ten patients with isolates with a single copy of IS6110 were excluded from further analysis. Twenty-four patients with false-positive cultures due to laboratory contamination (based on RFLP analysis with IS6110 and examination of patient data) were also excluded. The study was then conducted with 272 strains isolated from 272 patients. Further fingerprinting was performed by using the DR element with strains with patterns by RFLP analysis with IS6110 that differed by one band only and strains with identical patterns by RFLP analysis with IS6110 and with low numbers of copies of IS6110. The combined use of both markers identified unique patterns for 177 strains and clustered 95 (35.7%) strains in 26 groups, each containing isolates from 2 to 12 patients. The clustering was strongly associated with homelessness and the male sex. It was not associated with age, birth in a foreign country, human immunodeficiency virus positivity, or residence in hostels or prison. Isolates from homeless people were often included in large clusters, and homeless people could be the source of tuberculosis transmission for more than 50% of the clustered patients. These results suggest that homeless people play a key role in the spread of M. tuberculosis in the community and that poor socioeconomic conditions are the main risk factors associated with active tuberculosis transmission.  相似文献   

3.
To study possible nosocomial transmission of multidrug-resistant (MDR) Mycobacterium tuberculosis, strain types and other information on 24, mostly human immunodeficiency virus-positive patients, were collected. Isolates from 11 patients had identical IS6110 restriction fragment length polymorphism (RFLP) patterns as well as spoligotype patterns and resistance profiles. Noticeably, nine other isolates from related cases also exhibited identical spoligotypes but slightly different RFLP patterns. These results indicate that for some MDR strains, the evolutionary clock of IS6110 RFLP may run too fast for reliable interpretation of strain typing results over a period of a few years.  相似文献   

4.
Five Mycobacterium tuberculosis isolates were obtained from three body sites from a Dutch patient. The isolates displayed a single genotype by 24-locus MIRU-VNTR typing (except for a single locus not amplified from one isolate) but were differentiated by small variations in IS6110 fingerprints, spoligotypes, 6 hypervariable MIRU-VNTR loci, and/or DiversiLab profiles, revealing patterns of microevolution in a clonal infection.  相似文献   

5.
Isolates of the Mycobacterium tuberculosis Beijing lineage are associated with high rates of transmission, hypervirulence and drug resistance. The Beijing lineage has been shown to dominate the tuberculosis (TB) epidemic in East Asia; however, the diversity and frequency of M. tuberculosis genotypes from Myanmar are unknown. We present the first comprehensive study describing the M. tuberculosis isolates circulating in Yangon, Myanmar. Thus, 310 isolates from pulmonary TB patients from Yangon, Myanmar, were genotyped by spoligotyping and IS6110-based restriction fragment length polymorphism analysis (IS6110 RFLP). The most frequent lineages observed were the East African-Indian (EAI; 48.4%; n = 150) and Beijing (31.9%; n = 99) lineages. Isolates belonging to the most frequent shared types (STs), ST1 (n = 98; Beijing), ST292 (n = 28; EAI), and ST89 (n = 11; EAI), had ≥75% similarity in their IS6110 patterns. Five of 11 Beijing isolates comprising five clusters with identical IS6110 RFLP patterns could be discriminated by mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) analysis. Of the 150 EAI isolates, 40 isolates (26.7%) had only one IS6110 copy, and 17 of these isolates could be discriminated by MIRU-VNTR analysis. The findings from this study suggest that although there is a predominance of the ancient EAI lineage in Yangon, the TB epidemic in Yangon is driven by clonal expansion of the ST1 genotype. The Beijing lineage isolates (21.4%) were more likely (P = 0.009) than EAI lineage isolates to be multidrug resistant (MDR) (1.3%; odds ratio, 3.2, adjusted for the patients' history of exposure to anti-TB drugs), suggesting that the spread of MDR Beijing isolates is a major problem in Yangon.  相似文献   

6.
DNA fingerprinting techniques were used to type 273 isolates of Mycobacterium bovis from Australia, Canada, the Republic of Ireland, and Iran. The results of restriction fragment length polymorphism (RFLP) analysis with DNA probes from IS6110, the direct repeat (DR), and the polymorphic GC-rich sequence (PGRS) were compared with those of a new PCR-based method called spacer oligonucleotide typing (spoligotyping) developed for the rapid typing of Mycobacterium tuberculosis (J. Kamerbeek et al., J. Clin. Microbiol. 35:907–914, 1997). Eighty-five percent of the isolates harbored a single copy of IS6110, and 81.5% of these carried IS6110 on the characteristic 1.9-kb restriction fragment. RFLP analysis with IS6110 identified 23 different types, RFLP analysis with the DR probe identified 35 types, RFLP analysis with the PGRS probe identified 77 types, and the spoligotyping method identified 35 types. By combining all results, 99 different strains could be identified. Isolate clusters were frequently associated within herds or were found between herds when epidemiological evidence confirmed animal movements. RFLP analysis with IS6110 was sufficiently sensitive for the typing of isolates with more than three copies of IS6110, but RFLP analysis with the PGRS probe was the most sensitive typing technique for strains with only a single copy of IS6110. Spoligotyping may have advantages for the rapid typing of M. bovis, but it needs to be made more sensitive.  相似文献   

7.
Mycobacterium tuberculosis isolates from different regions of Bulgaria were studied by a variety of molecular typing tools. Based on spacer oligonucleotide typing (spoligotyping), the 113 strains were subdivided into 35 spoligotypes: 5 unique profiles and 15 profiles shared by two to 29 strains; the Hunter-Gaston diversity index (HGI) was 0.9. Comparison with the international database SITVIT2 at the Institut Pasteur de Guadeloupe showed the presence of two globally distributed shared types, ST53 (25.7%) and ST47 (6.2%). Nineteen (16.8%) and six (5.3%) strains belonged to the ST125 (LAM/S subfamily) and ST41 (LAM7_TUR subfamily) types described in SITVIT2 as ubiquitous/rare and ubiquitous/common types, respectively. Seven spoligoprofiles (12 strains) were not found in the database; two of them constituted new shared types. The Beijing genotype strains were not found in the studied collection in spite of close contacts with Russia in the recent and historical past. Additional subtyping by IS6110-restriction fragment length polymorphism (RFLP) and 12-locus mycobacterial interspersed repetitive unit (MIRU)-variable number of tandem repeat analyses were performed within selected spoligotypes. In particular, MIRU typing showed better discrimination within ST125 than IS6110-RFLP typing (HGI = 0.83 versus 0.39). A high gradient for ST125 in Bulgaria compared to its negligible presence in the global database and neighboring countries leads us to suggest a Bulgarian phylogeographic specificity of this spoligotype. To conclude, this first study of the Bulgarian M. tuberculosis population demonstrated its heterogeneity and predominance of several worldwide-distributed and Balkan-specific spoligotypes.  相似文献   

8.
A total of 2,346 Mycobacterium tuberculosis isolates from 13 provinces in China were genotyped by spoligotyping. Two hundred seventy-eight spoligotypes were identified: 2,153 isolates were grouped into 85 clusters, and the remaining 193 isolates were orphans. Comparison with the SpolDB4.0 database revealed that 118 spoligotypes had shared international type numbers in the database and the other 160 were novel. These 160 novel spoligotypes were assigned to families and subfamilies using the SpotClust program. The most prevalent family was the Beijing family (74.08%), followed by the T family (14.11%). CAS family strains were found only in the Xinjiang and Tibet regions, while EAI family strains were found only in Fujian Province. In conclusion, the present study of the M. tuberculosis population in China demonstrated that Beijing family isolates are the most prevalent strains in China and that they exhibit geographical variation. Furthermore, many new spoligotypes were found in this study.Tuberculosis (TB) continues to be a major public health problem in China. Based on the data from a nationwide random survey of the epidemiology of TB in China in 2000, there were probably 4.51 million active-TB patients in the country, including 1.50 million smear-positive cases, which were the infectious sources (16). From 2006 to 2009, more than 1 million new TB cases emerged each year. Consequently, the task of controlling TB in China remains difficult.The genotyping of Mycobacterium tuberculosis strains is important for TB control because it allows the detection of suspected outbreaks and the tracing of transmission chains. It is also important to monitor species diversity, as well as to identify secondary infections (4, 7, 13, 19). Insertion sequence (IS) 6110 restriction fragment length polymorphism (IS6110 RFLP) is thought of as the gold standard genotyping method for M. tuberculosis strain genotype identification (6, 13, 21). However, the method is time-consuming, labor-intensive, and costly. Furthermore, it is difficult to compare results between laboratories. Spacer oligonucleotide typing (spoligotyping), which is based on the analysis of polymorphisms of direct-repeat (DR) regions comprised of 36-bp DRs interspersed with 35- to 41-bp unique spacer sequences, is a good alternative to traditional IS6110 RFLP fingerprinting because of its simplicity, speed, and reliability (9, 11). Spoligotyping is useful for classifying M. tuberculosis strains into spoligotype families and subfamilies according to the presence or absence of spacer regions (24). Brosch et al. reported that M. tuberculosis can be divided into ancestral or modern strains based on M. tuberculosis-specific deletion 1 (TbD1) region analysis. The TbD1 region is present in ancestral M. tuberculosis strains but is absent from modern ones. These ancestral strains predominantly originated from endemic foci, whereas modern M. tuberculosis strains represent epidemic strains that were introduced into the same geographical regions more recently as a consequence of the worldwide spread of the tuberculosis epidemic (4).Presently, an international spoligotype database, SpolDB4.0, has been established. Although the updated SpolDB4.0 version reflects the global distribution of M. tuberculosis spoligotypes, it contains little information regarding M. tuberculosis strains in China (5). In this study, we typed 2,346 M. tuberculosis clinical isolates from 13 different provinces across China between 2005 and 2007 using spoligotyping to study M. tuberculosis diversity in China.  相似文献   

9.
A total of 129 clinical isolates of Mycobacterium tuberculosis representing 91 patients were typed by a combination of direct-repeat (DR)-based spoligotyping and an inter-IS6110–PGRS (polymorphic GC-rich region)–PCR, also designated double-repetitive-element PCR (DRE-PCR). During the first phase of this investigation, 72 clinical strains representing 52 patients were initially typed by IS6110-restriction fragment length polymorphism (RFLP) and DR-RFLP, followed by spoligotyping and DRE-PCR. In the second phase of this investigation, the discriminating ability of spoligotyping plus DRE-PCR was studied for 57 isolates from 39 patients who were suspected to be epidemiologically linked, and the typing results were later confirmed by IS6110-RFLP and DR-RFLP analyses. The molecular clustering of the isolates remained identical irrespective of the methods used. These results show that the association of two PCR-based fingerprinting techniques for molecular epidemiology of tuberculosis has a discriminating ability similar to the IS6110-RFLP reference method.  相似文献   

10.
Fifty-two multidrug-resistant isolates of Mycobacterium tuberculosis representative of the currently predominant lineages in France were analyzed using repetitive-sequence-based PCR (rep-PCR) DiversiLab (DL), spoligotyping, 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat typing (MIRU-VNTR), and restriction fragment length polymorphism of IS6110 (IS6110-RFLP). DL, as opposed to MIRU-VNTR and IS6110-RFLP analysis, did not allow discrimination among half of the isolates, an indication of comparatively lower resolving power.  相似文献   

11.
Mycobacterium tuberculosis isolates (n = 1,429) from 1,283 patients collected as part of an ongoing population-based tuberculosis epidemiology study in Houston, Texas, were analyzed by spoligotyping and IS6110 profiling. The isolates were also assigned to one of three major genetic groups on the basis of nucleotide polymorphisms located at codons 463 and 95 in the genes (katG and gyrA) encoding catalase-peroxidase and the A subunit of DNA gyrase, respectively. A total of 225 spoligotypes were identified in the 1,429 isolates. There were 54 spoligotypes identified among 713 isolates (n = 623 patients) assigned to 73 IS6110 clusters. In addition, among 716 isolates (n = 660 patients) with unique IS6110 profiles, 200 spoligotypes were identified. No changes were observed either in the IS6110 profile or in the spoligotype for the 281 isolates collected sequentially from 133 patients. Five instances in which isolates with slightly different spoligotypes had the same IS6110 profile were identified, suggesting that in rare cases isolates with different spoligotypes can be clonally related. Spoligotypes correlated extremely well with major genetic group designations. Only three very similar spoligotypes were shared by isolates from genetic groups 2 and 3, and none was shared by group 1 and group 2 organisms or by group 1 and group 3 organisms. All organisms belonging to genetic groups 2 and 3 failed to hybridize with spacer probes 33 to 36. Taken together, the results support the existence of three distinct genetic groups of M. tuberculosis organisms and provide new information about the relationship between IS6110 profiles, spoligotypes, and major genetic groups of M. tuberculosis.  相似文献   

12.
The presence of enterobacterial repetitive intergenic consensus (ERIC) sequences was demonstrated for the first time in the genome of Mycobacterium tuberculosis; these sequences have been found in transcribed regions of the chromosomes of gram-negative bacteria. In this study genetic diversity among clinical isolates of M. tuberculosis was determined by PCR with ERIC primers (ERIC-PCR). The study isolates comprised 71 clinical isolates collected from Sardinia, Italy. ERIC-PCR was able to identify 59 distinct profiles. The results obtained were compared with IS6110 and PCR-GTG fingerprinting. We found that the level of differentiation obtained by ERIC-PCR is greater than that obtained by IS6110 fingerprinting and comparable to that obtained by PCR-GTG. This method of fingerprinting is rapid and sensitive and can be applied to the study of the epidemiology of M. tuberculosis infections, especially when IS6110 fingerprinting is not of any help.  相似文献   

13.
Mycobacterium tuberculosis sputum isolates from 38 patients, obtained in the first 6 months of 1997 in Havana, Cuba, were characterized by IS6110 restriction fragment length polymorphism (RFLP) analysis and the double-repetitive-element PCR (DRE-PCR) method. Among 41 strains from 38 patients, 24 and 25 unique patterns, and 5 and 4 cluster patterns, were found by the RFLP and DRE-PCR methods, respectively. Patients within two of these clusters were found to be epidemiologically related, while no relation was observed in patients in the other clusters. The DRE-PCR method is rapid, and it was as discriminating as IS6110 RFLP analysis in identifying an epidemiological association. Its simplicity makes the technique accessible for subtyping of M. tuberculosis strains in laboratories not equipped to perform RFLP analysis.  相似文献   

14.
Purpose: Extrapulmonary tuberculosis (EPTB) is emerging problem in developing and developed countries. The diagnosis of EPTB in its different clinical presentations remains a true challenge. IS6110-based polymerase chain reaction (PCR) is used for rapid identification and positivity rate of the Mycobacterium tuberculosis complex in clinical isolates of different sites of EPTB. The present study was carried out to study the prevalence of M. tuberculosis complex in clinical isolates of EPTB at tertiary care centres in Lucknow. Materials and Methods: Seven hundred fifty-six specimens were collected from the suspected cases of EPTB which were processed for Mycobacteria by Ziehl Neelson (ZN) staining and BACTEC culture. All the specimens were also processed for IS6110-based PCR amplification with primers targeting 123 bp fragment of insertion element IS6110 of the M. tuberculosis complex. Results: Of these 756 specimens, 71(9.3%) were positive for acid fast bacilli (AFB) by ZN staining, 227(30.1%) were positive for mycobacteria by BACTEC culture and IS6110 PCR were positive for M. tuberculosis complex in 165 (20.7%) isolates. We found a significant difference in sensitivities of different tests (P<0.05). Conclusions: This study reveals the positivity of M. tuberculosis complex in clinical isolates of EPTB case in tertiary care hospitals in Northern India. 72.7% of M. tuberculosis complex was confirmed by IS6110-PCR in culture isolates from different sites of EPTB. The high prevalence of the M. tuberculosis complex was seen in lymph node aspirate and synovial fluid. However, utility of PCR may play a potentially significant role in strengthening the diagnosis of EPTB especially targeting IS6110.  相似文献   

15.
The newly proposed variable-number tandem-repeat (VNTR) typing system, which includes a basic 15-locus set and a high-resolution 24-locus set (P. Supply et al., J. Clin. Microbiol. 44:4498-4510, 2006), demonstrated a high power for the discrimination of Mycobacterium tuberculosis isolates collected worldwide. To evaluate its ability to differentiate the Beijing genotype strains from the Beijing area in China, 72 isolates with typical Beijing or Beijing-like spacer oligonucleotide typing profiles were subjected to typing with the VNTR system (24 loci) and typing by restriction fragment polymorphism analysis with IS6110 (IS6110-RFLP). Compared to the “old” 12-locus VNTR typing method, use of the 15- and 24-locus systems had a dramatically improved power to discriminate the Beijing genotype strains. A subtle difference in the Hunter-Gaston discriminatory index (HGI) between the 15-locus and the 24-locus systems resulted from only one locus, Mtub29. However, the VNTR-based clusters could be further differentiated by IS6110-RFLP (HGI by IS6110 RFLP, 0.999), although in one case an IS6110 cluster was subdivided by the 15-locus VNTR system. In this sense, use of the newly proposed 15-locus VNTR system along with the Mtub29 locus can serve as a first-line typing method for the epidemiological study of M. tuberculosis isolates in Beijing, while secondary typing of clustered strains by IS6110-RFLP is still required.  相似文献   

16.
A comparison was made between DNA fingerprints of Mycobacterium tuberculosis produced with the insertion sequence IS6110 and those produced with the polymorphic GC-rich repetitive sequence contained in the plasmid pTBN12. A total of 302 M. tuberculosis isolates from the prison system in Madrid, Spain, and the Denver Public Health Department (Denver, Colo.) were analyzed with the two probes. Both probes identified the same isolates in the same clusters when the fingerprints had six or more copies of IS6110. Analysis of isolates with unique IS6110 fingerprints demonstrated that they were unique with pTBN12. The pTBN12 probe had greater discriminating power in isolates having five or fewer copies of IS6110. Forty-seven isolates from Denver having fewer than five copies of IS6110 which were grouped in 11 clusters with identical fingerprint patterns were subdivided into 35 different patterns by pTBN12. Isolates with IS6110 fingerprints with more than six copies of IS6110 that differed from one another by only one or two hybridizing bands were analyzed with pTBN12. Most of these sets of isolates demonstrated identical patterns with pTBN12. However, some exceptions were observed, suggesting that those having nearly identical IS6110 patterns should not necessarily be included in the same cluster. Since IS6110 provides more polymorphism in the fingerprint, it is most useful in identifying isolates with unique fingerprint patterns and those in clusters in which the isolates contain six or more copies of the insertion. However, it is necessary to employ a secondary probe, such as pTBN12, to discriminate isolates with five or fewer copies of IS6110 and those with similar but not identical IS6110 patterns.  相似文献   

17.
We compared the sensitivities and specificities of four nested PCR assays for the detection of Mycobacterium tuberculosis from formalin-fixed, paraffin-embedded tissues. Thirty-seven autopsy samples from human immunodeficiency virus-positive patients were analyzed: 15 were M. tuberculosis positive, 11 served as negative controls, and 11 were Ziehl-Neelsen positive without cultural confirmation of M. tuberculosis. Three genomic sequences (mtp40, 65-kDa antigen gene, and IS6110) with different molecular masses and numbers of repetitions within the M. tuberculosis genome were targeted. On the IS6110 sequence, two fragments of different sizes (106 and 123 bp, respectively) were amplified with two separate pairs of primers. The highest sensitivity rates were obtained by amplifying the highly repetitive IS6110 insertion sequence, and the different primers tested showed a sensitivity ranging from 80 to 87%. Amplification of the large 223-bp fragment of the mtp40 sequence present in a single copy in the M. tuberculosis genome yielded a high rate of false-negative results, ranging from 66 to 80%. A poor sensitivity (from 47 to 60%) was also shown by PCR amplification of the 142-bp 65-kDa antigen gene. All the PCRs except that for the 65-kDa antigen gene showed a specificity of 100%. Moreover, different results were obtained with different dilutions of DNA, and DNA concentrations of 1 and 3 μg yielded the highest sensitivities depending upon which protocol was used. Application of the PCRs to the Ziehl-Neelsen-positive, culture-negative samples confirmed the sensitivities of the PCRs obtained with the control samples. In conclusion, PCR can successfully be used to detect M. tuberculosis from paraffin-embedded tissues and can be particularly useful in the validation of a diagnosis of tuberculosis in clinical settings in which the diagnosis is uncertain. However, the efficacy of PCR strictly depends on several amplification parameters such as DNA concentration, target DNA size, and the repetitiveness of the amplified sequence.  相似文献   

18.
Isolates of Mycobacterium tuberculosis from patients with epidemiologic links frequently demonstrate identical IS6110 restriction fragment length polymorphism (RFLP) patterns (i.e., RFLP clustering) because they are infected with the same strain. Uncertainty arises with isolates that differ from one another by a few IS6110 hybridizing bands. During the period from 1 January 1996 to 31 December 1999, isolates from 585 tuberculosis (TB) cases were analyzed by RFLP, representing 98.2% of the 596 culture-positive TB cases reported in Arkansas during the study period. Of the 585 cases for which RFLP was available, 419 (71.6%) had an RFLP pattern with more than five copies of IS6110. Of the total 74 clusters, 48 comprised isolates with more than five copies of IS6110 and included 164 cases. Sixty-nine isolates with more than five copies of IS6110 comprising 16 clusters and 60 unique isolates were found to be similar to at least 1 other isolate (differing from it by one or two hybridizing bands). Among the 129 cases whose isolates were similar to other clustered or unique isolates, 16 cases were discovered with epidemiologic links: 14 (15.2%) were among the 92 cases with IS6110 RFLP patterns similar to those in clusters, and 2 (5.2%) were among the 37 unique cases that were similar to another unique case. The isolates from the epidemiologically linked patients shared common spoligotypes; all except one case shared common polymorphic GC-rich sequence (PGRS) patterns. Of the 129 patients whose isolates differed from another by one or two hybridizing IS6110 bands, 101 (78.3%) shared common spoligotypes and 87 (67.4%) shared common PGRS RFLP patterns.  相似文献   

19.
We have developed a multiplex assay, based on multiplex ligation-dependent probe amplification (MLPA), that allows simultaneous detection of multiple drug resistance mutations and genotype-specific mutations at any location in the Mycobacterium tuberculosis genome. The assay was validated on a reference panel of well-characterized strains, and the results show that M. tuberculosis can be accurately characterized by our assay. Eighteen discriminatory markers identifying drug resistance (rpoB, katG, inhA, embB), members of the M. tuberculosis complex (16S rRNA, IS6110, TbD1), the principal genotypic group (katG, gyrA), and Haarlem and Beijing strains (ogt, mutT2, mutT4) were targeted. A sequence specificity of 100% was reached for 16 of the 18 selected genetic targets. In addition, a panel of 47 clinical M. tuberculosis isolates was tested by MLPA in order to determine the correlation between phenotypic drug resistance and MLPA and between spoligotyping and MLPA. Again, all mutations present in these isolates that were targeted by the 16 functional probes were identified. Resistance-associated mutations were detected by MLPA in 71% of the identified rifampin-resistant strains and in 80% of the phenotypically isoniazid-resistant strains. Furthermore, there was a perfect correlation between MLPA results and spoligotypes. When MLPA is used on confirmed M. tuberculosis clinical specimens, it can be a useful and informative instrument to aid in the detection of drug resistance, especially in laboratories where drug susceptibility testing is not common practice and where the rates of multidrug-resistant and extensively drug resistant tuberculosis are high. The flexibility and specificity of MLPA, along with the ability to simultaneously genotype and detect drug resistance mutations, make MLPA a promising tool for pathogen characterization.  相似文献   

20.
Two hundred twenty-four Mycobacterium bovis isolates, mainly from South American countries, were typed by spoligotyping, and 41 different spoligotypes were identified. A total of 202 M. bovis isolates (90%) were grouped into 19 different clusters. The largest cluster contained 96 isolates (42.8%) on the basis of the most frequently observed spoligotype, spoligotype 34. Nineteen M. bovis isolates from humans in Argentina had spoligotypes and polymorphic GC-rich repetitive sequence (PGRS) types that represented the most common types found among isolates from cattle. All five isolates from Uruguay and three of the six isolates from Paraguay had spoligotypes that were also detected for isolates from Argentina. The spoligotypes of isolates from Brazil, Costa Rica, and Mexico and of some of the isolates from Paraguay could not be found in Argentina. A total of 154 M. bovis isolates were selected in order to compare the discriminative power of spoligotyping and restriction fragment length polymorphism (RFLP) analysis with direct repeat (DR) and PGRS probes. By spoligotyping, 31 different types were found, while AluI-digested DR probe-associated RFLP analysis identified 42 types, and RFLP analysis with the PGRS probe also detected 42 types; these were partly independent of the DR types. By combining the results obtained by spoligotyping and by RFLP analysis with the DR and PGRS probes, 88 different types were obtained. Although the differentiation of M. bovis by spoligotyping was less discriminatory than differentiation by RFLP analysis with the DR and PGRS probes, spoligotyping is easier to perform and its results are easier to interpret. Therefore, for the purpose of typing of M. bovis isolates, spoligotyping could be performed first and the isolates could be grouped into clusters and then analyzed by RFLP analysis with the DR and PGRS probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号