首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: To prospectively test the hypothesis that magnetic resonance (MR) imaging can detect changes in renal function at the time of renal artery stent placement in a swine model of renal artery stenosis (RAS). MATERIALS AND METHODS: In this animal care and use committee-approved study, hemodynamically significant (>50%) RAS was surgically induced in six pigs. MR imaging was employed for assessment of the anatomic and physiologic changes induced by fluoroscopically guided stent placement. With MR imaging, we assessed changes in renal blood flow (RBF), extraction fraction (EF), and single-kidney glomerular filtration rate (skGFR) during the procedure. Arterial diameter stenosis before and after stent placement was assessed with x-ray digital subtraction angiography (DSA). Mean changes in functional and anatomic parameters were compared with the Wilcoxon matched-pairs test, with an alpha level of 0.05. RESULTS: There was no significant change in mean RBF after stent deployment (P=.44). Mean EF increased from 0.19+/-0.08 before stent placement to 0.31+/-0.17 after stent placement (P=.16). Mean skGFR measurements were 25 mL/min+/-16 before stent placement and 41 mL/min+/-28 after stent placement (P<.05). According to x-ray DSA measurements, mean stenosis measurements were 60%+/-12% before stent placement and 24%+/-16% after stent placement (P<.02). CONCLUSIONS: In swine, MR imaging can detect immediate changes in renal function after radiographically guided stent placement for unilateral RAS. This functional MR technique may have applications in the setting of hybrid MR/x-ray DSA procedure suites.  相似文献   

2.
PURPOSE: To prospectively test--in a swine model of renal artery stenosis (RAS)--the hypothesis that magnetic resonance (MR) imaging can reveal changes in renal function at the time of percutaneous transluminal angioplasty (PTA). MATERIALS AND METHODS: In this animal care and use committee-approved study, high-grade unilateral RAS was surgically induced in six pigs. MR imaging at 3.0 T was used for intraprocedural assessment of the anatomic and physiologic changes induced by x-ray-guided PTA. With use of MR imaging, changes in single-kidney glomerular filtration rate, extraction fraction, and renal blood flow were assessed during PTA. The arterial diameter of stenosis before and after PTA was assessed by using conventional digital subtraction angiography. Mean changes in functional and anatomic parameters were compared by using the Wilcoxon signed rank test (alpha = .05). RESULTS: At digital subtraction angiography, the mean percentage of stenosis was 69% +/- 10 (standard deviation) before PTA and 26% +/- 10 after PTA (P<.03). Mean pre- and post-PTA extraction fraction values were 0.11 +/- 0.03 and 0.19 +/- 0.06, respectively (P<.03). The mean single-kidney glomerular filtration rate before PTA, 19 mL/min +/- 13, increased to 41 mL/min +/- 33 after PTA (P<.03). There was no significant change in mean renal blood flow after PTA (P=.44). CONCLUSION: In swine, MR imaging can reveal changes in renal function after x-ray-guided PTA for unilateral RAS.  相似文献   

3.
OBJECTIVE: Catheter-based intraarterial injections of gadolinium are useful during MR imaging-guided endovascular procedures to generate rapid vascular road maps. Using an animal model of renal artery stenosis, we tested the hypothesis that intraarterial gadolinium-enhanced MR angiography is as accurate as IV gadolinium-enhanced MR angiography and digital subtraction angiography (DSA). We also tested the hypothesis that intraarterial MR angiography uses less gadolinium than IV MR angiography. MATERIALS AND METHODS: We induced bilateral renal artery stenosis in five pigs. All pigs underwent comparative imaging with DSA, IV MR angiography, and aortic catheter-directed intraarterial MR angiography. For IV and intraarterial MR angiography, we used the same three-dimensional acquisition. We assessed differences in quantitative stenosis measurements among DSA, IV MR angiography, and intraarterial MR angiography using the Wilcoxon's signed rank test. RESULTS: Mean stenosis measurements (+/-SD) were as follows: DSA, 58% +/- 12%; IV MR angiography, 63% +/- 9.3%; and intraarterial MR angiography, 64% +/- 11%. There were no statistically significant differences in accuracy between DSA and IV MR angiography (p = 0.06), DSA and intraarterial MR angiography (p = 0.16), or IV and intraarterial MR angiography (p = 0.70). Intraarterial MR angiography used a mean gadolinium dose of 5.6 mL, compared with 9 mL for IV MR angiography. CONCLUSION: In swine, IV and intraarterial MR angiography have a similar accuracy for detecting renal artery stenosis. Intraarterial MR angiography uses smaller doses of injected gadolinium.  相似文献   

4.
PURPOSE: To evaluate the imaging of hemodialysis arteriovenous (AV) fistulas and grafts with use of magnetic resonance (MR) angiography with generalized autocalibrating partially parallel acquisition (GRAPPA) and time-resolved echo-sharing angiographic technique (TREAT) and compare the findings with those of digital subtraction angiography (DSA). MATERIALS AND METHODS: The vascular tree directly related to AV fistulas and grafts was divided into nine segments. Images of each segment obtained on GRAPPA MR angiography were evaluated for the presence of stenosis, occlusion, and any other disease (eg, pseudoaneurysm) by two independent observers and compared with a consensus reading of the same segments on DSA imaging. Sensitivity and specificity were calculated with use of DSA as the gold standard modality, and each image on MR angiography and DSA was rated for quality. Linear-weighted kappa scores were calculated as a measure of interobserver variability in the detection of pathologic processes. RESULTS: A total of 80 segments were evaluated by each observer. For both observers, sensitivity rates for the detection of stenosis, occlusion, and any disease were 100% (95% CI, 52%-100%), 100% (95% CI, 20%-100%), and 100% (95% CI, 60%-100%), respectively. For observer 1, specificity rates for the detection of stenosis, occlusion, and any disease were 96% (95% CI, 88%-99%), 100% (95% CI, 94%-100%), and 96% (95% CI, 88%-99%), respectively. For observer 2, the specificity rates for the detection of stenosis, occlusion, and any disease were 93% (95% CI, 84%-98%), 100% (95% CI, 94%-100%), and 93% (95% CI, 84%-97%), respectively. Linear-weighted kappa values for MR angiography and DSA were 0.78+/-0.084 and 0.62+/-0.152, respectively. CONCLUSION: Time-resolved MR angiography with GRAPPA and TREAT offers excellent image quality and provides an accurate and reliable modality for the detection of pathologic processes in hemodialysis AV fistulas and grafts.  相似文献   

5.
The purpose of this study was to prospectively evaluate the diagnostic performance of contrast material-enhanced magnetic resonance (MR) angiography performed at 3 T for assessment of renal artery stenosis (RAS) by using parallel acquisition techniques with high acceleration factors and with digital subtraction angiography (DSA) as the reference standard. The study was institutional review board approved, and written informed consent was obtained from all patients. Twenty-nine patients (18 men, 11 women; mean age, 57.1 years +/- 14.3 [standard deviation]) suspected of having RAS underwent MR angiography. Images were evaluated qualitatively and quantitatively. The interobserver variability, sensitivity, specificity, and positive and negative predictive values of 3-T MR angiography, as compared with DSA (performed in 15 patients), were calculated. All examinations yielded good or excellent image quality. The sensitivity and specificity of MR angiography in grading significant (>75%) stenosis were 94% and 96%, respectively. Owing to its high sensitivity, contrast-enhanced 3-T MR angiography can be used reliably to exclude RAS and can serve as a useful screening method in the diagnostic work-up of patients with arterial hypertension.  相似文献   

6.
PURPOSE: To evaluate whether and to what extent greater number of projection images obtained at three-dimensional (3D) time-of-flight (TOF) magnetic resonance (MR) angiography versus conventional digital subtraction angiography (DSA) causes overestimation of internal carotid arterial (ICA) stenosis. MATERIALS AND METHODS: DSA (two or three projections), rotational angiography (16 or 32 projections), and 3D TOF MR angiography (12 projections) were performed in 47 stenotic ICAs of 38 symptomatic patients. Two observers independently measured maximum stenosis, and the mean differences among MR angiography, DSA, and rotational angiography were compared. RESULTS: Three rotational and five MR angiograms were nondiagnostic. Seven MR angiograms of ICA stenoses showed a signal void and were excluded from analysis. On the remaining 32 angiograms, mean differences in maximum stenosis for observers 1 and 2, respectively, were 7% (95% CI: 3%, 12%) and 8% (95% CI: 3%, 13%) at MR angiography versus DSA and 2% (95% CI: -2%, 7%) and -1% (95% CI: -5%, 3%) at MR angiography versus rotational angiography. ICA stenosis was graded significantly higher at MR angiography versus DSA, whereas, it was not overestimated at MR angiography versus rotational angiography. The difference in maximum stenosis at MR angiography versus DSA was significantly different from that of MR angiography versus rotational angiography. CONCLUSION: Apparent overestimation of ICA stenosis at 3D TOF MR angiography versus conventional DSA may be partly explained by the greater number of projection images available at 3D TOF MR angiography.  相似文献   

7.
PURPOSE: To prospectively assess three-dimensional contrast material-enhanced magnetic resonance (MR) angiography for stenosis depiction in malfunctioning hemodialysis arteriovenous fistulas (AVFs) and grafts (AVGs), as compared with digital subtraction angiography (DSA). MATERIALS AND METHODS: Ethical review board approval and written informed consent were obtained. MR angiography and DSA were performed in 51 dysfunctional hemodialysis fistulas and grafts in 48 consecutive patients. Vascular tree of accesses was divided into between three and eight segments depending on access type (AVF or AVG) and length of venous outflow. Images obtained with MR and DSA were interpreted by two MR radiologists and two interventional radiologists, respectively, who were blinded to information from each other and other studies. DSA was reference standard for stenosis detection. Sensitivity, specificity, and predictive values with 95% confidence intervals (CIs) of contrast-enhanced MR in detection of vascular segments containing hemodynamically significant (> or =50%) stenosis were calculated. Linear-weighted kappa statistic was calculated for contrast-enhanced MR and DSA to determine interobserver agreement regarding stenosis detection. RESULTS: A total of 282 vascular segments were evaluated. Contrast-enhanced MR depicted three false-positive stenoses and all but two of 70 significant stenoses depicted with DSA. Sensitivity, specificity, and positive and negative predictive values of MR in detection of vessel segments with significant stenoses were 97% (95% CI: 90%, 99%), 99% (95% CI: 96%, 100%), 96% (95% CI: 88%, 99%), and 99% (95% CI: 97%, 100%), respectively. MR demonstrated significant stenosis in four of five nondiagnostic DSA segments, whereas DSA showed no significant stenosis in four nondiagnostic MR segments. Linear-weighted kappa statistic for interobserver agreement regarding stenosis detection was 0.92 (95% CI: 0.89, 0.95) for MR and 0.95 (95% CI: 0.92, 0.97) for DSA. CONCLUSION: MR angiography depicts stenoses in dysfunctional hemodialysis accesses but has limited clinical value as result of current inability to perform MR-guided access interventions after stenosis detection. MR of dysfunctional access should be considered only if nondiagnostic vascular segment is present at DSA.  相似文献   

8.
PURPOSE: To prospectively evaluate the accuracy of intraarterial magnetic resonance (MR) angiography in the depiction of significant stenoses and occlusions, with intraarterial digital subtraction angiography (DSA) serving as the reference standard. MATERIALS AND METHODS: Approval of the local ethics committee and informed consent were obtained. Twenty patients (11 men; nine women; age range, 48-86 years; mean age, 69.5 years+/-11.2 [standard deviation]) with symptomatic peripheral arterial occlusive disease (PAOD) were prospectively enrolled. After percutaneous transluminal angioplasty (PTA), intraarterial MR angiography was performed in the thigh and the calf with a 1.5-T MR imager in two consecutive runs. Intraarterial MR angiography was performed with a low-dose injection protocol (ie, two 20-mL injections of a 50-mmol gadolinium-based contrast agent). Moderate stenoses (luminal narrowing50%) or vessel occlusions; 95% confidence intervals (CIs) were calculated for sensitivity and specificity. RESULTS: Intraarterial DSA revealed 78 moderate stenoses, 57 significant stenoses, and 28 occlusions. Sensitivity, specificity, and accuracy of intraarterial MR angiography in the characterization of significant stenoses or occlusions were 92% (95% CI: 72%, 99%), 94% (95% CI: 82%, 98%), and 93%, respectively, in femoropopliteal arteries and 93% (95% CI: 83%, 98%), 71% (95% CI: 51%, 86%), and 86%, respectively, in infrapopliteal arteries. The main artifact observed with intraarterial MR angiography was venous contamination (12%). CONCLUSION: Intraarterial MR angiography is an accurate method used to depict significant stenoses and occlusions in lower extremity arteries with a low-dose injection protocol.  相似文献   

9.
PURPOSE: To assess accuracy of contrast material-enhanced magnetic resonance (MR) angiography as compared with three-dimensional (3D) time-of-flight (TOF) MR angiography and reference digital subtraction angiography (DSA) in diagnosis of carotid artery stenosis. MATERIALS AND METHODS: Enhanced and 3D TOF MR angiography and DSA were performed in 51 consecutive patients suspected of having carotid artery stenosis at duplex ultrasonography. Stenoses were measured by two independent observers blinded to clinical information and other test results. Pearson correlation coefficients were used, and kappa for interobserver variabilities was estimated. Sensitivity and specificity of enhanced and 3D TOF MR angiography were calculated and compared with those of DSA. RESULTS: Pearson correlation coefficients were 0.94 (P <.01) for enhanced angiography versus DSA, 0.92 (P <.01) for 3D TOF angiography versus DSA, and 0.93 (P <.01) for enhanced versus 3D TOF angiography for observer 1 and 0.94 (P <.01), 0.95 (P <.01), and 0.94 (P <.01), respectively, for observer 2. kappa statistics were 0.81 for enhanced angiography, 0.79 for 3D TOF angiography, and 0.78 for DSA. Stenosis measurements of observer 1 at enhanced MR angiography, with inclusion of carotid arteries on the symptomatic side only, compared with those of DSA yielded a sensitivity of 90% (95% CI: 68%, 99%) and a specificity of 77% (95% CI: 55%, 92%). 3D TOF angiography yielded a sensitivity of 86% (95% CI: 67%, 97%) and a specificity of 73% (95% CI: 50%, 89%) compared with those of DSA. For observer 2, sensitivity and specificity for enhanced angiography were 91% (95% CI: 70%, 99%) and 76% (95% CI: 52%, 91%), respectively, and 90% (95% CI: 68%, 99%) and 77% (95% CI: 51%, 92%), respectively, for 3D TOF angiography. CONCLUSION: Accuracy of enhanced MR angiography in diagnosis of severe stenosis is similar to that of 3D TOF MR angiography.  相似文献   

10.
PURPOSE: To compare three-dimensional (3D) time-of-flight (TOF) MR angiography, contrast-enhanced MR angiography, digital subtraction angiography (DSA), and rotational angiography for depiction of stenosis. MATERIALS AND METHODS: The study had Ethics Committee approval, and each patient gave written informed consent. Forty-nine patients (18 women, mean age, 67.2 years +/- 9.1 [+/- standard deviation], and 31 men, mean age, 63.1 years +/- 8.0) with symptomatic stenosis of internal carotid artery (ICA) diagnosed at duplex ultrasonography underwent transverse 3D TOF MR angiography with sliding interleaved kY acquisition and coronal contrast-enhanced MR angiography, followed by DSA and rotational angiography within 48 hours. MR angiography was performed at 1.5-T with a cervical coil. Contrast-enhanced MR angiograms were obtained after a bolus injection of 20 mL of gadobenate dimeglumine. Maximum ICA stenosis on maximum intensity projection and source images was quantified according to NASCET criteria. Correlations for 3D TOF MR angiography, contrast-enhanced MR angiography, DSA, and rotational angiography were determined by means of cross tabulation, and accuracy for detection and grading of stenoses were calculated. Data were evaluated with analysis of variance, Wilcoxon signed rank test, and McNemar test, all at significance of P < .05. RESULTS: Ninety-eight ICAs were evaluated at contrast-enhanced MR angiography, DSA, and rotational angiography, and 97 were evaluated at 3D TOF MR angiography. Correlations for contrast-enhanced MR angiography, 3D TOF MR angiography, and DSA relative to rotational angiography were r2 = 0.9332, r2 = 0.9048, and r2 = 0.9255, respectively. Lower correlation (r2 = 0.8593) was noted for contrast-enhanced MR angiography and DSA. Respective sensitivity and specificity for detection of hemodynamically relevant stenosis relative to rotational angiography were 100% and 90% for contrast-enhanced MR angiography, 95.5% and 87.2% for 3D TOF MR angiography, and 88.6% and 100% for DSA. Four of 31 severe stenoses were underestimated at DSA, and three were underestimated at contrast-enhanced MR angiography. Three severe stenoses were underestimated at 3D TOF MR angiography, and one was misclassified as occluded. Of 13 moderate (50%-69%) stenoses, one was overestimated at contrast-enhanced MR angiography, two were underestimated and three overestimated at 3D TOF MR angiography, and two were underestimated at DSA. CONCLUSION: DSA results in an underestimation of ICA stenosis compared with rotational angiography. Contrast-enhanced MR angiography correlates best with rotational angiography.  相似文献   

11.
PURPOSE: To prospectively determine, for both digital subtraction angiography (DSA) and contrast material-enhanced magnetic resonance (MR) angiography, the accuracy of subjective visual impression (SVI) in the evaluation of internal carotid artery (ICA) stenosis, with objective caliper measurements serving as the reference standard. MATERIALS AND METHODS: Local ethics committee approval and written informed patient consent were obtained. A total of 142 symptomatic patients (41 women, 101 men; mean age, 70 years; age range, 44-89 years) suspected of having ICA stenosis on the basis of Doppler ultrasonographic findings underwent both DSA and contrast-enhanced MR angiography. With each modality, three independent neuroradiologists who were blinded to other test results first visually estimated and subsequently objectively measured stenoses. Diagnostic accuracy and percentage misclassification for correct categorization of 70%-99% stenosis were calculated for SVI, with objective measurements serving as the reference standard. Interobserver variability was determined with kappa statistics. RESULTS: After exclusion of arteries that were unsuitable for measurement, 180 vessels remained for analysis with DSA and 159 vessels remained for analysis with contrast-enhanced MR angiography. With respect to 70%-99% stenosis, SVI was associated with average misclassification of 8.9% for DSA (8.9%, 7.8%, and 10.0% for readers A, B, and C, respectively) and of 11.7% for contrast-enhanced MR angiography (11.3%, 8.8%, and 15.1% for readers A, B, and C, respectively). Negative predictive values were excellent (92.3%-100%). Interobserver variability was higher for SVI (DSA, kappa = 0.62-0.71; contrast-enhanced MR angiography, kappa = 0.57-0.69) than for objective measurements (DSA, kappa = 0.75-0.80; contrast-enhanced MR angiography, kappa = 0.66-0.72). CONCLUSION: SVI alone is not recommended for evaluation of ICA stenosis with both DSA and contrast-enhanced MR angiography. SVI may be acceptable as an initial screening tool to exclude the presence of 70%-99% stenosis, but caliper measurements are warranted to confirm the presence of such stenosis.  相似文献   

12.
Omary RA  Gehl JA  Schirf BE  Green JD  Lu B  Pereles FS  Huang J  Larson AC  Li D 《Radiology》2006,238(2):489-496
PURPOSE: To test the hypothesis that the technical success rates, complication rates, and procedural times for magnetic resonance (MR) imaging-guided percutaneous transluminal angioplasty (PTA) and conventional (x-ray) fluoroscopy-guided PTA for treatment of renal artery stenosis are similar. MATERIALS AND METHODS: The study was animal care and use committee approved. After surgically inducing bilateral renal artery stenosis in 11 swine, the authors performed baseline digital subtraction angiography. They transferred each animal to a 1.5-T MR imaging unit and randomly decided which artery would be treated with MR-guided PTA. With MR imaging guidance, angioplastic devices were tracked by using active and passive techniques. Vascular depiction was achieved by using catheter-directed MR angiography. Stenotic vessels were dilated by using 5-6-mm-diameter balloon catheters. PTA was then performed in the contralateral artery by using conventional fluoroscopy-guided techniques. With the intention to treat, the authors compared the technical success (residual stenosis < 50%) rates, complication rates, and procedural times for each guidance method. They compared technical successes and complications by using the McNemar test and procedural times by using a paired t test, with P < .05 indicating a significant difference. RESULTS: The authors successfully dilated nine (82%) of 11 renal arteries with MR guidance and all 11 arteries (100%) with conventional fluoroscopic guidance. The difference was not significant (P = .5). Complications occurred in three (27%) arteries with MR guidance and in one (9%) artery with fluoroscopic guidance, with no significant differences (P = .5). The mean MR-guided PTA procedural time was 46 minutes longer than the fluoroscopy-guided PTA procedural time; this difference was significant (P = .01). CONCLUSION: In a small cohort of swine, the authors did not observe a significant difference between MR imaging- and conventional fluoroscopy-guided renal artery PTA in terms of success and complication rates. However, no evidence of similarity between the techniques should be assumed. Procedural times differed significantly.  相似文献   

13.
BACKGROUND AND PURPOSE: Since 1996, several preliminary studies have shown the usefulness of contrast material-enhanced MR angiography for imaging supraaortic vessels. The aim of this study was to compare the accuracy of contrast-enhanced 3D MR angiography with that of digital subtraction angiography (DSA) in the evaluation of carotid artery stenosis. METHODS: A blinded comparison of first-pass contrast-enhanced MR angiography with conventional DSA was performed in 120 patients (240 arteries). MR angiography was performed with a 1.5-T magnet with gradient overdrive equipment, by using a coronal radiofrequency-spoiled 3D fast low-angle-shot sequence after the intravenous injection of gadodiamide. The guidelines of the North American Symptomatic Carotid Endarterectomy Trial for measuring stenosis of the internal carotid artery were applied on maximum intensity projection (MIP) images and conventional catheter angiograms. RESULTS: Grading of stenoses on MR angiograms agreed with grading of stenoses on DSA images in 89% of arteries. In the severe stenosis group (70-99%), agreement was 93%. All internal carotid occlusions (n = 28) and seven of nine pseudo-occlusions were accurately detected with contrast-enhanced MR angiography. The correlation between MR angiography and DSA for determination of minimal, moderate, and severe stenoses and occlusion was statistically significant (r = 0.91, P<.001). CONCLUSIONS: This investigation with a large number of patients confirms that contrast-enhanced MR angiography could become a diagnostic alternative to DSA in the treatment of patients with carotid artery disease.  相似文献   

14.
PURPOSE: To prospectively compare the diagnostic accuracies of color duplex ultrasonography (US) and contrast material-enhanced magnetic resonance (MR) angiography and to assess interobserver agreement regarding contrast-enhanced MR angiographic findings in patients suspected of having peripheral arterial disease (PAD). MATERIALS AND METHODS: The institutional review board approved the study, and all patients provided signed informed consent. Two hundred ninety-five patients referred for diagnostic and preinterventional work-up of PAD with duplex US also underwent gadolinium-enhanced MR angiography. Data sets were reviewed for presence or absence of 50% or greater luminal reduction, which indicated hemodynamically significant stenosis, and to determine interobserver agreement. At duplex US, a peak systolic velocity ratio of 2.5 or greater indicated significant stenosis. Primary outcome measures were differences between duplex US and contrast-enhanced MR angiography in sensitivity and specificity for detection of significant stenosis, as assessed with the McNemar test, and interobserver agreement between the two contrast-enhanced MR angiogram readings, expressed as quadratic weighted kappa values. Intraarterial digital subtraction angiography (DSA) was the reference standard. RESULTS: Two hundred forty-nine patients had at least one hemodynamically significant stenotic lesion at contrast-enhanced MR angiography, duplex US, or both examinations. One hundred fifty-two patients underwent intraarterial DSA. The quadratic weighted kappa for agreement regarding the presence of 50% or greater stenosis at contrast-enhanced MR angiography was 0.89 (95% confidence interval [CI]: 0.87, 0.91). Sensitivity of duplex US was 76% (95% CI: 69%, 82%); specificity, 93% (95% CI: 91%, 95%); and accuracy, 89%. Sensitivity and specificity of contrast-enhanced MR angiography were 84% (95% CI: 78%, 89%) and 97% (95% CI: 95%, 98%), respectively; accuracy was 94%. Sensitivity (P = .002) and specificity (P = .03) of contrast-enhanced MR angiography were significantly higher. CONCLUSION: Results of this prospective comparison between contrast-enhanced MR angiography and duplex US provide evidence that contrast-enhanced MR angiography is more sensitive and specific for diagnosis and preinterventional work-up of PAD.  相似文献   

15.
PURPOSE: To prospectively use 3.0-T breath-hold high-spatial-resolution contrast material-enhanced magnetic resonance (MR) angiography with highly accelerated parallel acquisition to image the supraaortic arteries of patients suspected of having arterial occlusive disease. MATERIALS AND METHODS: Institutional review board approval and written informed consent were obtained for this HIPAA-compliant study. Eighty patients (44 men, 36 women; age range, 44-90 years) underwent contrast-enhanced MR angiography of the head and neck at 3.0 T with an eight-channel neurovascular array coil. By applying a generalized autocalibrating partially parallel acquisition algorithm with an acceleration factor of four, high-spatial-resolution (0.7 x 0.7 x 0.9 mm = 0.44-mm(3) voxels) three-dimensional contrast-enhanced MR angiography was performed during a 20-second breath hold. Two neuroradiologists evaluated vascular image quality and arterial stenoses. Interobserver variability was tested with the kappa coefficient. Quantitation of stenosis at MR angiography was compared with that at digital subtraction angiography (DSA) (n = 13) and computed tomographic (CT) angiography (n = 12) with Spearman rank correlation coefficient (R(s)). RESULTS: Arterial stenoses were detected with contrast-enhanced MR angiography in 208 (reader 1) and 218 (reader 2) segments, with excellent interobserver agreement (kappa = 0.80). There was a significant correlation between contrast-enhanced MR angiography and CT angiography (R(s) = 0.95, reader 1; R(s) = 0.87, reader 2) and between contrast-enhanced MR angiography and DSA (R(s) = 0.94, reader 1; R(s) = 0.92, reader 2) for the degree of stenosis. Sensitivity and specificity of contrast-enhanced MR angiography for detection of arterial stenoses greater than 50% were 94% and 98% for reader 1 and 100% and 98% for reader 2, with DSA as the standard of reference. Vascular image quality was sufficient for diagnosis or excellent for 97% of arterial segments evaluated. CONCLUSION: By using highly accelerated parallel acquisition, the described 3.0-T contrast-enhanced MR angiographic protocol enabled visualization and characterization of the majority of supraaortic arteries, with diagnostic or excellent image quality (97% of arterial segments) and diagnostic values comparable with those obtained by using CT angiography and DSA for detection of arterial stenoses.  相似文献   

16.
RATIONALE AND OBJECTIVES: Catheter-directed intraarterial (IA) injections of gadolinium contrast agents may be used during endovascular interventions with magnetic resonance (MR) imaging guidance. Injection protocols require further validation. Using a flow phantom and swine, the authors aimed to (a) measure the optimal arterial gadolinium concentration ([Gd]) required for MR angiography and (b) validate a proposed IA injection protocol for gadolinium-enhanced MR angiography. MATERIALS AND METHODS: For in vitro experiments, the authors placed a catheter in the aorta of an aorto-renal-iliac flow phantom. Injected [Gd], injection rates, and aortic blood flow rates were varied independently for 36 separate IA gadolinium injections. The authors performed 2D and 3D MR angiography with a fast spoiled gradient-recalled echo sequence. For subsequent in vivo experiments, they selectively placed catheters within the aorta, renal artery, or common iliac artery of three pigs. Injection rate and injected [Gd] were varied. The authors performed 32 separate IA gadolinium injections for 2D MR angiography. Signal-to-noise ratios (SNRs) were compared for the various combinations of injection rate and injected [Gd]. RESULTS: In vitro, an arterial [Gd] of 2%-4% produced an optimal SNR for 2D MR angiography, and 3%-5% was best for 3D MR angiography. In swine, an arterial [Gd] of 1%-4% produced an optimal SNR. In the phantom and swine experiments, SNR was maintained at higher injection rates by inversely varying the injected [Gd]. CONCLUSION: Dilute arterial [Gd] is required for optimal IA gadolinium-enhanced MR angiography. To maintain an optimal SNR, injection rates and injected [Gd] should be varied inversely. The postulated injection protocol was validated.  相似文献   

17.
PURPOSE: To prospectively assess the diagnostic accuracy of nonenhanced three-dimensional (3D) steady-state free precession (SSFP) magnetic resonance (MR) angiography for detection of renal artery stenosis (RAS), with breath-hold contrast material-enhanced MR angiography performed as the reference standard. MATERIALS AND METHODS: The study was local ethics committee approved; all patients gave written informed consent. Fifty-three patients (30 male, 23 female; mean age, 58 years) with arterial hypertension and suspected of having RAS were examined with 1.5-T 3D SSFP renal MR angiography. Stenosis grade, maximal visible vessel length, and subjective image quality were compared. Sensitivity, specificity, accuracy, and negative predictive value (NPV) were calculated on artery-by-artery and patient-by-patient bases. The significance of the results was assessed with the paired two-sided t test for continuous variables and with the marginal homogeneity test for categorical variables. Cohen kappa statistics were used to estimate interobserver agreement. RESULTS: One hundred eight renal arteries with 20 significant (>or=50%) stenoses were detected with contrast-enhanced MR angiography. At artery-by-artery analysis, sensitivity, specificity, accuracy, and NPV of nonenhanced SSFP MR angiography for RAS detection were 100%, 93%, 94%, and 100%, respectively, for observer 1 and 95%, 95%, 95%, and 99%, respectively, for observer 2. Corresponding patient-by-patient values were 100%, 92%, 94%, and 100%, respectively, for observer 1 and 100%, 95%, 96%, and 100%, respectively, for observer 2. Overestimation of stenosis grade with SSFP MR angiography resulted in six and four false-positive findings for readers 1 and 2, respectively. Mean maximal visible lengths of the renal arteries were 69.9 mm at contrast-enhanced MR angiography and 61.1 mm at SSFP MR angiography (P<.001). Both techniques yielded good to excellent image quality. CONCLUSION: Slab-selective inversion-prepared 3D SSFP MR angiography had high sensitivity, specificity, accuracy, and NPV for RAS detection, without the need for contrast material. However, RAS severity was overestimated in some patients.  相似文献   

18.
OBJECTIVE: The purpose of our study was to evaluate the diagnostic accuracy of hybrid MR angiography by comparison with digital subtraction angiography (DSA) in diabetic patients with critical limb ischemia. SUBJECTS AND METHODS: Thirty-one patients prospectively underwent both hybrid MR angiography and DSA. The hybrid MR angiography study consisted of high-resolution MR angiography of a single calf and foot using a contrast-enhanced 3D gradient-echo volumetric interpolated breath-hold examination with surface coils, followed by three-station bolus chase MR angiography with a dedicated peripheral vascular coil. Two blinded reviewers separately analyzed maximum-intensity-projection hybrid MR angiograms and DSA images. The peripheral vessels were divided into 10 anatomic segments for review. The status of each segment was graded as normal, stenosis less than 50% in diameter, stenosis greater than 50%, or occluded. The sensitivity and specificity of hybrid MR angiography were determined using DSA as the gold standard. Treatment options were considered separately from the results of each examination. RESULTS: Among 310 analyzed segments, the sensitivities of hybrid MR angiography for stenosis and occlusion were, respectively, 95% and 95% for reviewer 1 and 96% and 90% for reviewer 2. The specificities of hybrid MR angiography for stenosis and occlusion were, respectively, 98% and 98% for reviewer 1 and 98% and 99% for reviewer 2. In 25 patients (81%), the quality of bolus chase MR angiography images was insufficient to assess runoff arteries. All treatments proposed on the basis of DSA findings were endorsed by hybrid MR angiography findings. Eleven more treatments were formulated on the basis of hybrid MR angiography findings. Of these, four were due to overestimation of stenosis on MR angiography and seven were due to the detection of patent infrageniculate arteries on hybrid MR angiography that were not detected on DSA. CONCLUSION: Hybrid MR angiography depicts runoff arteries not seen on DSA. Hybrid MR angiography may be useful for treatment planning in selected diabetic patients with critical limb ischemia.  相似文献   

19.
AIM: To determine the accuracy of captopril renography (CR) and gadolinium-enhanced breath-hold magnetic resonance (MR) angiography in the diagnosis of 50-99% renal artery stenosis (RAS). MATERIALS AND METHODS: Forty-three patients with possible RAS, of whom 53% had renal function impairment (creatinine >130 micromol/l), were included.(99m)Tc-mercaptoacetyl triglycine (MAG(3)) renography was performed after an oral dose of 25 mg captopril. Gadolinium-enhanced MR angiography was performed on a standard 1.5 Tesla system: TR 13.5, TE 3.5, flip angle 60 degrees, matrix 195 x 512. Intra-arterial digital subtraction angiography (DSA) was the standard of reference. RESULTS: Captropril renography accurately categorized 22 of 26 patients who had either uni- or bilateral RAS of 50-99%. The sensitivity and specificity of CR for the detection of 50-99% stenosis were 85 and 71%, respectively. With MR angiography one occluded artery was incorrectly diagnosed as a stenosis. Sensitivity and specificity were 100 and 94%, respectively. The difference between the accuracies of MR angiography and CR was statistically significant (P = 0.02). The accuracy of CR was lower in patients with renal impairment (70%) than in those with normal renal function (90%).CONCLUSION: MR angiography showed a high accuracy in diagnosing RAS of between 50 and 99%. CR was less accurate than MR angiography, especially in patients with renal function impairment. In patients with normal renal function, however, CR remains a useful diagnostic test.  相似文献   

20.
PURPOSE: To assess the feasibility and accuracy of multiphase contrast-enhanced magnetic resonance angiography (CE-MRA) in patients with dysfunctioning hemodialysis arteriovenous fistulae (AVF), using digital subtraction angiography (DSA) as the standard of reference. MATERIALS AND METHODS: Fifteen patients with dysfunctioning AVF (eight radiocephalic and seven graft AVF) underwent CE-MRA. Dysfunction was defined as a flow decline of more than 25% in 1 month measured by dilutional flow measurements. CE-MRA was performed during injection of 35 mL of gadolinium-DTPA. The CE-MRA sequence consisted of a time-resolved series of 10 scans, each lasting approximately 10 seconds. The technical parameters were TR/TE/FA/voxel = 5.4/1.6/40/3.1 mm(3), and a rectangular surface reception coil was used. All patients were scheduled to undergo DSA at which an intervention was carried out when a stenosis >or=50% was seen. Two observers, unaware of each other's findings and the findings at DSA, quantified the number and degree of stenosis in the failing AVF. Image quality for CE-MRA and DSA was scored on a 3-point scale. The diagnostic performance of CE-MRA was analyzed with receiver-operator characteristic (ROC) analysis. RESULTS: CE-MRA and DSA examinations were performed without side effects in all 15 patients. Image quality was scored significantly better on CE-MRA (observer 1: CE-MRA, 2.0; DSA, 1.3; P =.001; observer 2: CE-MRA, 2.0; DSA, 1.4; P =.002). Interobserver agreement for detection of >or=50% stenosis was 0.81 (95% confidence interval (CI) = 0.71-0.92) for CE-MRA and 0.69 (95% CI = 0.55-0.84) for DSA. ROC analysis revealed a mean area under the curve of 0.78. On the patient level, at the >or=50% threshold, mean sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 100% (95% CI = 69%-100%), 10% (95% CI = 0%-78%), 70% (95% CI = 38%-92%), and 100% (95% CI = 50%-100%), respectively. At the >or=75% threshold, mean sensitivity, specificity, PPV, and NPV were 75% (95% CI = 20%-99%), 78% (95% CI = 39%-98%), 55% (95% CI = 12%-96%), and 89% (95% CI = 52%-100%), respectively. CONCLUSION: CE-MRA is a useful diagnostic tool for detecting stenoses in flow-declined hemodialysis AVF prior to interventional DSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号