首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 Bisindolylmaleimide inhibitors of protein kinase C (PKC), such as GF109203X and Ro31-8220, have been used to investigate the roles of PKC isoforms in many cellular processes in cardiac myocytes, but these agents may also inhibit p90RSK activity. 2 In in vitro kinase assays utilising 50 microM [ATP], GF109203X and Ro31-8220 inhibited p90RSK isoforms (IC50 values for inhibition of RSK1, RSK2 and RSK3, respectively, were 610, 310 and 120 nM for GF109203X, and 200, 36 and 5 nM for Ro31-8220) as well as classical and novel PKC isoforms (IC50 values for inhibition of PKCalpha and PKCepsilon, respectively, were 8 and 12 nM for GF109203X, and 4 and 8 nM for Ro31-8220). 3 At physiological [ATP] (5 mM), both GF109203X and Ro31-8220 exhibited reduced potency as inhibitors of RSK2, PKCalpha and PKCepsilon (IC50 values of 7400, 310 and 170 nM, respectively, for GF109203X, and 930, 150 and 140 nM, respectively, for Ro31-8220), with the latter agent retaining its relatively greater potency. 4 To determine the effects of GF109203X and Ro31-8220 on p90RSK activity in cultured adult rat ventricular myocytes (ARVM), phosphorylation of the eukaryotic elongation factor 2 kinase (eEF2K) at Ser366, a known p90RSK target, was used as the index of such activity. Adenoviral expression of a constitutively active form of mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) was used to induce PKC-independent p90RSK activation and downstream phosphorylation of eEF2K. 5 eEF2K phosphorylation was abolished by U0126 (1 microM), a selective inhibitor of MEK1, and was significantly reduced by GF109203X at > or =3 microM and by Ro31-8220 at > or =1 microM. At 1 microM, both agents inhibited PMA-induced PKC activity in ARVM. 6 These data show that GF109203X and Ro31-8220 inhibit various isoforms of PKC and p90RSK in vitro and in intact ARVM, with the former agent exhibiting relatively greater selectivity for PKC.  相似文献   

2.
Reflux esophagitis results from repeated exposure of the esophagus to acidic gastric juice or bile-containing duodenal contents. In Barrett’s adenocarcinoma, acid increases proliferation via ERK and p38 MAPK activation. This study was focused on determination of the mechanism(s) underlying MAPKs (ERK 1/2, p38 MAPK, and JNK) activation induced by acidic medium at pH 4 in normal feline primary cultured esophageal smooth muscle cells (FESMCs). We detected ERK 1/2 and p38 MAPK phosphorylation after exposure to pH 4 or neutral media in the presence or absence of several inhibitors and quantified the MAPK levels using western blotting analysis and densitometry. Acidic medium markedly increased the phosphorylation of ERK 1/2 and p38 MAPK within 10 min. Acid-induced ERK 1/2 and p38 MAPK activation was inhibited by pertussis toxin (PTX-sensitive Gi/o protein inhibitor), DEDA (phospholipase (PL) A2 inhibitor), ρCMB (PLD inhibitor), GF109203X (protein kinase C (PKC) inhibitor) and D609 (phosphatidylcholinespecific PLC inhibitor). But, genistein (tyrosine kinase inhibitor), forskolin (adenylate cyclase activator) and U73122 (phosphatidylinositol-specific PLC inhibitor) had no effect on acidinduced ERK1/2 and p38 MAPK activation. These findings indicate that the activation of ERK 1/2 and p38 MAPK pathways by acidic conditions, at least in part, may be mediated by activation of the Gi/o protein coupled receptors, PC-PLC, PLD, PLA2, and PKC in FESMCs.  相似文献   

3.
Effects of tributyltin chloride (TBT) and other organotin compounds on mitogen-activated protein kinases (MAPKs) were examined in CCRF-CEM human T lymphoblastoid cells. In response to the incubation with 0.25-2 microM TBT for 1 h, the levels of the phosphorylated form of extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 MAPK increased in a dose-dependent manner. The phosphorylation was observed after 15 min and lasted for 4 h following exposure to 1 microM TBT, while the cell viability was not lowered significantly within 6 h. On the other hand, no clear changes were found in the total protein levels of ERK, JNK, and p38 MAPK. The in vitro activities of MAPKs also increased in response to TBT exposure. The potentials of MAPKs phosphorylation and of cellular damage were TBT > dibutyltin dichloride (DBT) > monobutyltin trichloride (MBT). When compared to other triorganotin compounds such as trimethyltin chloride (TMT), triphenyltin chloride (TPT), and triethyltin bromide (TET), TBT exposure induced the most marked phosphorylation of MAPKs. Chelation of intracellular Ca(2+) suppressed TBT-induced MAPKs phosphorylation almost completely, but removal of external Ca(2+) did not. The present results showed that tributyltin is a potent activator of ERK, JNK, and p38 MAPK pathways, and Ca(2+) mobilized from intracellular stores plays an important role for the phosphorylation of MAPKs in this human T cell line.  相似文献   

4.
The effect of anandamide on human osteoblasts is unclear. This study examined the effect of anandamide on viability, apoptosis, mitogen-activated protein kinases (MAPKs) and Ca2+ levels in MG63 osteosarcoma cells. Anandamide at 50-200 microM decreased cell viability via apoptosis as demonstrated by propidium iodide staining and activation of caspase-3. Immunoblotting suggested that anandamide induced expression of ERK, JNK and p38 MAPK. Anandamide-induced cell death and apoptosis were reversed by SB203580, but not by PD98059 and SP600125, suggesting that anandamide's action was via p38 MAPK, but not via ERK and JNK. Anandamide at 1-100 microM induced [Ca2+]i increases. Removal of extracellular Ca2+ decreased the anandamide response, indicating that anandamide induced Ca2+ influx and Ca2+ release. Chelation of intracellular Ca2+ with BAPTA reversed anandamide-induced cell death and p38 MAPK phosphorylation. Collectively, in MG63 cells, anandamide induced [Ca2+]i increases which evoked p38 MAPK phosphorylation. This p38 MAPK phosphorylation subsequently activated caspase-3 leading to apoptosis.  相似文献   

5.
When CCRF-CEM cells were incubated with 5–40 μM CdCl2, apoptosis was observed most clearly at 10 μM. Prior to the development of apoptosis, mitogen-activated protein kinases (MAPKs), i.e. extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, were activated with different sensitivity to CdCl2 exposure. ERK and p38 MAPK were phosphorylated with incubation of 1 μM CdCl2, but higher than 20 μM CdCl2 was required for the clear phosphorylation of JNK. In the time–course study, ERK and p38 MAPK were phosphorylated earlier than JNK after CdCl2 exposure. The in vitro activities of MAPKs also increased in response to CdCl2 exposure. Pretreatment with an intracellular Ca2+ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA/AM), suppressed almost completely CdCl2-induced phosphorylation of JNK and p38 MAPK, but not ERK phosphorylation, indicating that the activation of JNK and p38 MAPK depends on the intracellular Ca2+ but that of ERK does not. On the other hand, treatment with a MAPK/ERK kinase (MEK) inhibitor, U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), suppressed CdCl2-induced ERK activation and the apoptosis as well. The inhibition of p38 MAPK activity with SB203580 (4-[4-fluorophenyl]-2-[4-methylsulfinylphenyl]-5-[4-pyridyl]1H-imidazole) did not protect cells from apoptosis. The present results showed that the activation of ERK, JNK, and p38 MAPK is differently regulated in CCRF-CEM cells exposed to CdCl2, and that the ERK pathway seems to be responsible for the induction of apoptosis by CdCl2 exposure in this human T cell line.  相似文献   

6.
Exposure of HgCl2 to CCRF-CEM human lymphoblastoid cells induced phosphorylation of mitogen-activated protein kinases (MAPKs); extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. LL-Z1640-2, a macrocyclic nonaketide, inhibited HgCl2-induced JNK phosphorylation at 5-100 ng/ml. It also inhibited phosphorylation of ERK and p38 but only at 100 ng/ml. The same doses of radicicol did not suppress MAPKs activation. LL-Z1640-2 (at 100 ng/ml) inhibited HgCl2-induced JNK phosphorylation in NIH 3T3 fibroblasts but not in LLC-PK(1) renal epithelial cells. Thus, LL-Z1640-2 is a potent inhibitor of HgCl2-induced MAPKs activation, especially that of JNK, in CCRF-CEM cells.  相似文献   

7.
We previously demonstrated that Group B Streptococcus (GBS), a pathogen that causes serious neonatal infections, induces macrophage apoptosis by beta-hemolysin to avoid the host immune response. GBS-induced macrophage apoptosis is characterized by a calcium increase and is caspase-independent. This study reports the involvement of c-Jun NH(2)-terminal kinase (JNK), p38 and extracellular signal-regulated kinase (ERK), three members of mitogen-activated protein kinases (MAPKs) family, in GBS-induced macrophage apoptosis. Our data indicate that during induction of apoptosis live GBS stimulates a strong persistent activation of JNK and p38 with concomitant inhibition of ERK. The time courses of MAPKs activation strongly correlate with GBS-induced macrophage apoptosis and are macrophage:GBS ratio-dependent. In fact, when GBS does not cause macrophage apoptosis, e.g. low macrophage:GBS ratio or non hemolytic GBS (gGBS), it induces a transient activation of JNK, p38, and ERK MAPKs. These latter results indicate that sustained and persistent activation of JNK and p38 and inhibition of ERK are involved in the GBS-induced macrophage apoptotic process and suggest that the time course and balance of MAPKs activation are critical for different macrophage responses to GBS (apoptosis versus antimicrobicidal activity). This study indicates a correlation between MAPKs activation and GBS-induced macrophage apoptosis. However, since neither ERK nor p38 inhibitors had an effect on GBS-induced apoptosis, their role in the complex signal network leading to GBS-induced macrophage apoptosis remains to be defined.  相似文献   

8.
Considering the importance of 5-hydroxytryptamine (5-HT) and cyclooxygenase (COX) products in vascular pathology, we investigated the effects of 5-HT on COX expression in rat vascular smooth muscle cells (VSMCs), and to provide mechanistic insights into these effects. VSMCs were enzymatically isolated from aortic media of Wistar rats. Incubation of VSMCs with 5-HT for 24h stimulated prostaglandin I(2) production, but this stimulation was completely suppressed by NS-398, a selective COX-2 inhibitor. 5-HT induced transient COX-2, but not COX-1, protein and mRNA expression in concentration- and time-dependent manners. This effect of 5-HT was completely inhibited by sarpogrelate, a 5-HT(2A) receptor antagonist. 5-HT-induced COX-2 expression was markedly blunted by Ca(2+) depletion; GF 109203X, a protein kinase C (PKC) inhibitor; PP2, an inhibitor of Src-family tyrosine kinase (Src); PD 98059, an inhibitor of extracellular signal-regulated kinase (ERK) activation; SB 203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK); and SP 600125, an inhibitor of c-Jun N-terminal kinase (JNK). 5-HT activated ERK and p38 MAPK, followed by JNK activation. PP2 inhibited these activations, while GF 109203X inhibited only JNK activation. Furthermore, PD 98059 inhibited JNK activation. These results suggest that 5-HT induces COX-2 expression in rat VSMCs, and that PKC, Src, and MAPK activation are each essential for the full expression of COX-2 pathways.  相似文献   

9.
Extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinase (MAPK) were all rapidly activated in a ROS-dependent manner during 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ)-mediated oxidative stress and oncotic cell death in renal proximal tubule epithelial cells (LLC-PK1). TGHQ-induced phosphorylation of ERK1/2 and JNK MAPKs required epidermal growth factor receptor (EGFR) activation, whereas p38 MAPK activation was EGFR independent. In contrast to their established roles in cell survival, TGHQ-activated ERK1/2 and p38 MAPK (but not JNK) appear to contribute to cell death, since inhibition of ERK1/2 or p38 MAPKs with PD098059 or SB202190 respectively, attenuated TGHQ-mediated cell death. TGHQ increased AP-1 and NFkappaB DNA-binding activity, but whereas pharmacological inhibition of ERK1/2 or p38 MAPKs attenuated AP-1 DNA binding activity, it potentiated TGHQ-mediated NFkappaB activation. Consistent with a role for NFkappaB activation in the cytoprotective response to ROS in renal epithelial cells, an anti-NFkappaB peptide SN50 suppressed the protective effects of ERK inhibition (PD098059 treatment). The data provide evidence that the activation of MAPKs by ROS in renal epithelial cells plays an important role in oncotic cell death, and NF-kB is involved in the cytoprotective effects of PD098059.  相似文献   

10.
In SH-SY5Y human neuroblastoma cells, the cholinergic agonist, carbachol, stimulates phosphorylation of the small heat shock protein 27 (HSP27). Carbachol increases phosphorylation of both Ser-82 and Ser-78 while the phorbol ester, phorbol-12, 13-dibutyrate (PDB) affects only Ser-82. Muscarinic receptor activation by carbachol was confirmed by sensitivity of Ser-82 phosphorylation to hyoscyamine with no effect of nicotine or bradykinin. This response to carbachol is partially reduced by inhibition of protein kinase C (PKC) with GF 109203X and p38 mitogen-activated protein kinase (MAPK) with SB 203580. In contrast, phosphorylation produced by PDB is completely reversed by GF 109203X or CID 755673, an inhibitor of PKD. Inhibition of phosphatidylinositol 3-kinase or Akt with LY 294002 or Akti-1/2 stimulates HSP27 phosphorylation while rapamycin, which inhibits mTORC1, does not. The stimulatory effect of Akti-1/2 is reversed by SB 203580 and correlates with increased p38 MAPK phosphorylation. SH-SY5Y cells differentiated with a low concentration of PDB and basic fibroblast growth factor to a more neuronal phenotype retain carbachol-, PDB- and Akti-1/2-responsive HSP27 phosphorylation. Immunofluorescence microscopy confirms increased HSP27 phosphorylation in response to carbachol or PDB. At cell margins, PDB causes f-actin to reorganize forming lamellipodial structures from which phospho-HSP27 is segregated. The resultant phenotypic change in cell morphology is dependent upon PKC, but not PKD, activity. The major conclusion from this study is that the phosphorylated state of HSP27 in SH-SY5Y cells results from integrated signaling involving PKC, p38 MAPK and Akt.  相似文献   

11.
Cinnamaldehyde (Cin) has been shown to be effective in inducing apoptotic cell death in a number of human cancer cells. The aim of this study was to investigate the effect of pifithrin-alpha (PFTalpha; a specific p53 inhibitor) and mitogen-activated protein kinases (MAPKs) inhibitors [namely SP600125 (a specific JNK inhibitor), SB203580 (a specific p38 inhibitor) and PD98059 (a specific ERK inhibitor)] on apoptotic signaling transduction mechanism induced by Cin in human hepatoma PLC/PRF/5 (CD95-negative) cells. Using XTT assay, Cin exhibited a powerful cytotoxic effect and apoptotic induction in PLC/PRF/5 cells. Apoptosis was elicited when cells were treated with 1 microM Cin as characterized by morphological changes and the appearance of phosphatidylserine on the outer surface of the plasma membrane. Cin down-regulated the expression of Bcl-(XL), up-regulated mutant p53 and Bax proteins and promoted caspase-3 to active forms, as well as cleaving poly (ADP-ribose) polymerase (PARP) in a time-dependent pattern. This could be supported by the activation and phosphorylation of MAPKs, including JNK, ERK and p38 kinases. Pre-incubation with PFTalpha and specific MAPK inhibitors significantly diminished the effect of Cin-induced apoptosis. The activities of anti-apoptotic (Bcl-(XL)) and pro-apoptotic (Bax) proteins were remarkably affected by PFTalpha and PD98059 pre-treatment. PFTalpha effectively blocked PARP cleavage in cells treated with Cin, and also markedly prevented the phosphorylation of JNK, p38 and ERK proteins. These results suggest that p53 induction and MAPK signaling pathways are required for Cin-mediated apoptosis in PLC/PRF/5 cells.  相似文献   

12.
1 Artocarpol A (ART), a natural phenolic compound isolated from Artocarpus rigida, stimulated a slow onset and long-lasting superoxide anion generation in rat neutrophils, whereas only slightly activated the NADPH oxidase in a cell-free system. 2 Pretreatment of neutrophils with pertussis toxin (1 microg ml(-1)), 50 microM 2'-amino-3'-methoxyflavone (PD 98059), or 1 microM 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126) had no effect on ART-stimulated superoxide anion generation. ART (30 microM) did not induce extracellular signal-regulated kinase (ERK) phosphorylation. 3 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB 203580) markedly attenuated the ART-stimulated superoxide anion generation (IC50 value of 4.3+/-0.3 microM). Moreover, ART induced p38 mitogen-activated PK (MAPK) phosphorylation and activation. 4 The superoxide anion generation in response to ART was also substantially inhibited in a Ca2+-free medium, and by pretreatment with 1 microM 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione (U-73122) and 100 microM 2-aminoethyldiphenyl borate (2-APB). ART (30 microM) stimulated the [Ca2+]i elevation in the presence or absence of external Ca2+, and also increased the D-myo-inositol 1,4,5-trisphosphate formation. 5 2-[1-(3-Dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide (GF 109203X) greatly inhibited the ART-stimulated superoxide anion generation (IC50 value of 7.8+/-1.0 nM). ART increased the recruitment of PKC-alpha, -betaI, and -betaII to the plasma membrane of neutrophils, and stimulated Ca2+-dependent PKC activation in the cytosol preparation. 6 ART induced the phosphorylation of p47phox, which was attenuated by GF 109203X. Moreover, ART evoked the membrane association of p47(phox), which was inhibited by GF 109203X and SB 203580. 7 These results indicate that the ART stimulation of superoxide anion generation involved the activation of p38 MAPK, PLC/Ca2+, and PKC signaling pathways in rat neutrophils.  相似文献   

13.
Angiotensin II (Ang II) induces a rapid increase in mitogen-activated protein kinase (MAPK) activity through the Ang II type 1 receptor in cultured rat vascular smooth muscle cells (VSMCs). In the present study, we examined the effects of the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor GF109203X, and the Ras inhibitor farnesylthiosalicylic acid (FTS) on Ang II-induced activation of p42/p44 MAPKs in cultured VSMCs. Phosphorylation was shown using the Western blot technique with specific phospho-antibodies against MAPK proteins. The PLC inhibitor U73122 abolished the Ang II-induced MAPK activity, while the PKC inhibitor GF109203X only decreased it. There was also an inhibition observed with the Ras inhibitor, FTS on Ang II-induced MAPK activity. These data suggest that Ang II-induced MAPK phosphorylation through the Ang II type 1 receptor could be mediated by Ras and/or PLC-dependent phosphorylations but not by PKC phosphorylation.  相似文献   

14.
15.
Levobupivacaine is a long-acting amide local anesthetic that intrinsically produces vasoconstriction both in vivo and in vitro. Levobupivacaine increases intracellular calcium concentrations ([Ca(2+)](i)) in vascular smooth muscle cells. The goals of this in vitro study were to investigate whether levobupivacaine-induced contraction is associated with increased Ca(2+) sensitivity and to identify the protein kinases involved in mediating contraction in response to levobupivacaine in isolated rat aortic smooth muscle. The effect of levobupivacaine and potassium chloride (KCl) on the [Ca(2+)](i) and tension was measured simultaneously with acetoxymethyl ester of fura-2-loaded aortic strips. Cumulative levobupivacaine concentration-response curves were generated in the presence or absence of the following antagonists: GF 109203X; Y-27632; genistein; SP600125; PD 98059; and SB 203580. Levobupivacaine-induced protein kinase C (PKC), extracellular signal-regulated kinase (ERK), and c-Jun NH(2)-terminal kinase (JNK) phosphorylation and Rho-kinase (ROCK-2) membrane translocation were detected in rat aortic vascular smooth muscle cells using Western blotting. The slope of the [Ca(2+)](i)-tension curve for levobupivacaine was higher than that for KCl. Y-27632, GF 109203X, and SP600125 attenuated levobupivacaine-induced contraction in a concentration-dependent manner. Genistein, PD 98059, and SB 203580 attenuated levobupivacaine-induced contraction. Pretreatment with GF 109203X and Y-27632 inhibited levobupivacaine-induced PKC phosphorylation and Rho-kinase (ROCK-2) membrane translocation, respectively. Pretreatment with SP600125 or PD 98059 attenuated the levobupivacaine-induced phosphorylation of JNK and ERK, respectively. These results indicate that levobupivacaine-induced contraction involving an increase in myofilament Ca(2+) sensitivity involves the primary activation of Rho-kinase-, PKC-, and JNK-mediated pathways of rat aortic smooth muscle.  相似文献   

16.
We previously reported that cadmium (Cd) induced prostaglandin E2 (PGE2) biosynthesis through the activation of cytosolic phospholipase A2 (cPLA2) and induction of cyclooxygenase 2 (COX-2) in primary mouse osteoblastic cells. In the present study, we further investigated the mechanism of PGE2 production by Cd focusing on the main mitogen-activated protein kinase (MAPK) subfamilies that mediate prostaglandin synthesis, extracellular signal-regulated kinase (ERK1/2 MAPK), c-jun-amino-terminal kinase (JNK MAPK) and p38 MAPK, and protein kinase C (PKC) which is activated by Cd in several kinds of cells. Cd at 2 μM and above stimulated PGE2 production in osteoblastic cells and its production was inhibited by the kinase-specific inhibitors PD98059, SB203580, curcumin, and calphostin C. Calphostin C also inhibited the production of PGE2 by phorbol 12-myristate 13-acetate (PMA), which is a potent activator of PKC. PD98059 inhibited PGE2 production stimulated by PMA as well as Cd, indicating that activation of PKC by ERK1/2 MAPK was necessary for Cd-stimulated PGE2 production. Moreover, Cd stimulated the phosphorylation of these three MAPKs, and inhibition of the phosphorylation of ERK1/2 MAPK by calphostin C was also observed. On the other hand, Cd was found to phosphorylate cPLA2 and the phosphorylation was inhibited by PD98059, indicating that cPLA2 was activated by Cd through ERK1/2 MAPK and released arachidonic acid (AA), a substrate of COX-2, from membranous phospholipids. From these results, it was suggested that activation of each of the ERK1/2, p38, and JNK MAPK cascades in addition to that of PKC and cPLA2 played an important role in the Cd-stimulated biosynthesis of PGE2 in mouse osteoblastic cells.  相似文献   

17.
Asthma is associated with abnormal airway smooth muscle (ASM) growth that may contribute to airway narrowing and hyperresponsiveness. We investigated the role of mitogen-activated protein kinase (MAPK) pathway in IL-1beta induced ASM proliferation in the rat. Rat tracheal ASM cells were dissociated and maintained in culture. We examined the effect of selective MAPK inhibitors, SB239063 (a p38 MAPK inhibitor), U0126 (a mitogen-activated and extracellular regulated kinase kinase, MEK-1, inhibitor which inhibits downstream extracellular regulated kinase, ERK, activity), and SP600125 (a c-jun N-terminal kinase, JNK, inhibitor) on IL-1beta-induced proliferation. Proliferation of ASM cells was significantly increased following exposure to IL-1beta in a dose-dependent manner. p38, JNK and ERK MAPKs were activated by IL-1beta in a time-dependent manner, with peak activation time at 30, 60 min and at 6 h, respectively. This activation was inhibited by their respective inhibitors. SP600125 (20 microM) had no effect on IL-1beta-induced ERK and p38 phosphorylation. SB239063, U0126 and SP600125 dose-dependently inhibited IL-1beta-dependent proliferation at doses that inhibit the activities of p38, ERK and JNK MAPKs, respectively. No additive or synergistic effects were observed on proliferative responses with any combination of these compounds. In conclusion, the three major MAPK pathways, ERK as well as the p38 MAPK and JNK pathways, are independent regulators of IL-1beta-dependent proliferation of rat ASM.  相似文献   

18.
19.
Reactive oxygen species (ROS) production by the neutrophil NADPH oxidase plays a key role in host defense against pathogens, such as bacteria and fungi. Zymosan a cell-wall preparation from Saccharomyces cerevisiae is largely used to activate neutrophils in its opsonized form. In this study, we show that non-opsonized zymosan alone induced ROS production by human neutrophils. Zymosan-induced ROS production is higher than the formyl-methionyl-leucyl-phenylalanine (fMLF)- or the phorbol myristate acetate (PMA)-induced ROS production but is lower than the one induced by opsonized zymosan. Most of the zymosan-induced ROS production is intracellular. Interestingly, zymosan induced the phosphorylation of the NADPH oxidase cytosolic component p47phox on several sites which are Ser315, Ser328 and Ser345. Zymosan induced also the activation of the small G-protein Rac2. Phosphorylation of the p47phox as well as Rac2 activation were inhibited by genistein a broad range protein tyrosine kinase inhibitor and by wortmannin a PI3Kinase inhibitor. GF109203X a PKC inhibitor inhibited phosphorylation of p47phox on Ser315 and Ser328. SB203580 and UO126, inhibitors of p38MAPK and ERK1/2-pathway, respectively, inhibited phosphorylation of p47phox on Ser345. Zymosan-induced ROS production was completely inhibited by genistein and wortmannin and partially inhibited by SB203580, UO126 and GF109203X. These results show that zymosan alone is able to activate NADPH oxidase in human neutrophils via the phosphorylation of p47phox and Rac2 activation and that a protein tyrosine kinase, PI3Kinase, p38MAPK, ERK1/2 and PKC are involved in this process. These pathways could be potential pharmacological targets to treat zymosan- and S. cerevisiae-induced inflammation.  相似文献   

20.
Nordihydroguaiaretic acid (NDGA), a general lipoxygenase (LOX) enzyme inhibitor, induces apoptosis independently of its activity as a LOX inhibitor in murine pro-B lymphocytes (FL.12 cells) by a mechanism that is still not fully understood. Glutathione depletion, oxidative processes and mitochondrial depolarization appear to contribute to the apoptosis induced by NDGA. The current data demonstrate that NDGA (20 microM)-induced apoptosis in FL5.12 cells is partially protected by N-acetylcysteine (NAC) (10 mM) and dithiothreitol (DTT) (500 microM) pretreatment, confirming a role for oxidative processes. In addition, the treatment of FL5.12 cells with NDGA led to an increase in phosphorylation and activation of the MAP kinases ERK, JNK and p38. Although pretreatment with ERK inhibitors (PD98059 or U0126) abolished ERK phosphorylation in response to NDGA, neither inhibitor had any effect on NDGA-induced apoptosis. SP600125, a JNK inhibitor, did not have any effect on NDGA-induced phosphorylation of JNK nor apoptosis. Pretreatment with the p38 inhibitor SB202190 attenuated NDGA-induced apoptosis by 30% and also abolished p38 phosphorylation, compared to NDGA treatment alone. NAC, but not DTT, also decreased the phosphorylation of p38 and JNK supporting a role for oxidative processes in activating these kinases. Neither NAC nor DTT blocked the phosphorylation of ERK suggesting that this activation is not related to oxidative stress. The release of cytochrome c and activation of caspase-3 induced by NDGA were inhibited by NAC. SB202190 slightly attenuated caspase-3 activation and had no effect on the release of cytochrome c. These data suggest that several independent mechanisms, including oxidative reactions, activation of p38 kinase and cytochrome c release contribute to NDGA-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号